Ahmed Sobhy Abdelrahim Abdallah Darwish | Cell Biology | Research Excellence Award

Dr. Ahmed Sobhy Abdelrahim Abdallah Darwish | Cell Biology | Research Excellence Award

Zagazig University & Egyptian International Pharmaceutical Industries Company, EIPICO | Egypt

Ahmed Sobhy Abdelrahim Abdallah Darwish is a highly accomplished analytical chemist with extensive expertise in analytical methodologies and chemical research. His academic journey demonstrates a consistent commitment to scientific rigor, progressing from a strong foundation in chemistry and physics to advanced studies in analytical chemistry. He has completed a diploma in analytical chemistry with distinction, a pre-master qualification with outstanding performance, and a master’s degree in analytical chemistry. Currently pursuing a Ph.D. in the same field, his research is centered on the development, optimization, and validation of analytical techniques for pharmaceutical and industrial applications. His work emphasizes precision, reliability, and innovation in chemical analysis, including method development for complex matrices, quality control protocols, and instrumental analysis techniques. His contributions aim to enhance the accuracy and efficiency of laboratory workflows, ensuring robust and reproducible results in pharmaceutical and chemical research. Additionally, he demonstrates proficiency in data interpretation, statistical analysis, and experimental design, contributing to high-quality scientific outcomes. His ongoing research reflects a commitment to advancing analytical chemistry through both theoretical insights and practical applications, positioning him as a significant contributor to the field and a strong candidate for recognition in research excellence.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Ma, J. K., Darwish, A. S., Al Ali, A., Abdelazim, A. M., Darwish, W. S., Li, X., & Huang, X. C. (2025). An ecologically sound HPLC determination of LEVOMENOL in topical therapies using a certified reference material with green properties. Results in Chemistry, 13, 102338.

Alenezi, S. S., Gouda, A. A., El Sheikh, R., Badahdah, N. A., Alzuhiri, M. E., & others. (2025). Environmental sustainability profiles assessment of HPLC stability indicating method for quantitation of piracetam and vincamine in pharmaceutical medications. Talanta Open, 11, 100407.

Darwish, A. S., Zaki, M. S. A., Salih, A. G. K. A., Ellatif, M. A., Patel, A. A., Mallick, A. K., & others. (2025). A simple eco‐friendly stability‐indicating HPLC method for determination of NETILMICIN in bulk and ophthalmic solution. Biomedical Chromatography, 39(8), e70152.

Gouda, A. A., Elsheikh, R., Eldien, A. S., & Darwish, A. S. (2025). Development and validation of stability indicating RP-HPLC method for simultaneous determination of simvastatin and fenofibrate in bulk and dosage form. Bulletin of Faculty of Science, Zagazig University, 2025(3), 134–146.

Huang, X. C., Darwish, A. S., Darwish, W. S., Chen, R. M., & Ma, J. K. (2025). Green rapid HPLC method for testing retinol and tocopherol in ophthalmic gels. Talanta Open, 100538.

Darwish, A. S., Gouda, A. A., & Eldien, A. S. (2025). Simple validated approach to quantify valsartan and sacubitril in medications using liquid chromatography. Bulletin of Faculty of Science, Zagazig University, 2025(3), 216–229.

Darwish, W. S. D., Zaki, M. S. A., Salih, A. G. K. A., & others. (2025). Developing a sensitive, ecological, and economic HPLC method for the concurrent quantification of KOLCHICINE and KHELLIN, used in bulk and sachet pharmaceuticals. Microchemical Journal, 114716.

Ma, J. K., Chen, X. Y., Zhang, N., Darwish, A. S., Gouda, A. A., El Sheikh, R., & others. (2025). A straightforward HPLC approach to testing butylated hydroxytoluene, an antioxidant, in pure and topical anti-burn gels; evaluation of greenness, blueness, and whiteness grades. Talanta Open, 100565.

Huang, X. C., Darwish, A. S., Darwish, W. S., Zaki, M. S. A., Lin, Y. T., Liang, N. L., & Ma, J. K. (2025). Ecologically conscious profiles assessments for economic, and concurrent HPLC detection of chlordiazepoxide and clidinium bromide in bulk and tablets solid dosage form. Results in Chemistry, 1, 102739.

Meenakshi | Signal Transduction Networks | Research Excellence Award

Assoc. Prof. Dr. Meenakshi | Signal Transduction Networks | Research Excellence Award

Chandigarh University | India

Dr. Meenakshi Munjal is an active researcher in the field of wireless communication, contributing extensively to advancements in emerging communication technologies. Over the past several years, she has maintained a strong research trajectory, completing one funded research project and producing a substantial body of scholarly work. Her research output includes more than 30 Scopus-indexed publications and a total citation count of 100, reflecting the growing impact of her contributions within the scientific community. She has authored one book with an ISBN and has two patents published or under process, demonstrating her commitment to innovation and applied research in communication systems. In addition to her publications, she has published eight peer-reviewed journal articles across SCI and Scopus-indexed platforms, strengthening the scientific understanding of wireless networks, signal processing, and communication technologies. Her work aligns with contemporary challenges in wireless systems, contributing to enhanced network performance, reliability, and efficiency. She also holds three professional memberships, supporting collaborative engagement within the research ecosystem. Overall, her research contributions highlight a sustained focus on innovation, scholarly excellence, and the advancement of wireless communication technologies

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Munjal, M., & Singh, N. P. (2018). Utility aware network selection in small cell. Wireless Networks, 1–14.

Munjal, M., & Singh, N. P. (2019). Group mobility by cooperative communication for high speed railway. Wireless Networks, 25(7), 3857–3866.

Gupta, S. (2014). A review and comprehensive comparison of image denoising techniques. Proceedings of the International Conference on Computing for Sustainable Global Development, 1–6.

Munjal, M., & Singh, N. P. (2019). QoS and cost-aware protocol selection for next generation wireless network. Journal of Network and Systems Management, 27(2), 327–350.

Munjal, M., & Singh, N. P. (2017). Improved network selection for multimedia applications. Transactions on Emerging Telecommunications Technologies, 28(5), e3121.

Munjal, M., & Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. Computational Techniques in Information and Communication Technologies Conference Proceedings, 1–5.

Meenakshi, G., & Gupta, S. (2014). Advanced level cyclic gray codes with application. International Journal of Electronics Communication and Computer Technology, 1–6.

Munjal, M., & Singh, N. P. (2020). Low cost communication for high speed railway. Wireless Personal Communications, 111(1), 163–178.

Munjal, M. (2024). A comprehensive review of wireless body area network in medical applications. AIP Conference Proceedings, 3100(1), 040013.

Munjal, M., & Dev, S. (2021). Utility based handoff decision for Internet of Everything (IoE). Photonics & Electromagnetics Research Symposium (PIERS) Proceedings, 1396–1405.

Singh, I., & Munjal, M. (2025). Intelligent network selection mechanisms in the Internet of Everything system. IEEE Access.

Munjal, M., Kaistha, K., Gupta, P., Sardana, L., Verma, R., & Verma, S. (2024). Handoff management using RSS in a heterogeneous system. AIP Conference Proceedings, 3072(1), 030003.

Junning Ma | Cell Surface Receptors | Best Research Article Award

Dr. Junning Ma | Cell Surface Receptors | Best Research Article Award

Zhejiang University | China

Dr. Junning Ma has developed a multidisciplinary portfolio spanning neurosurgery, neural engineering, biomaterials, and nanomedicine. Their work integrates neural stem cell biology, targeted drug delivery, and tumor microenvironment modulation to create innovative therapeutic strategies for brain diseases. They have conducted advanced postdoctoral and doctoral research at major institutions, contributing to National Natural Science Foundation of China (NSFC) Youth Fund projects and multiple US-funded NIH and AHA grants. Their research focuses on biomimetic nanocarriers, including cell membrane-coated nanoparticles, PLGA-based delivery systems, and fusion-membrane technologies designed for precision therapy of glioma, pituitary adenoma, and ischemic stroke.

Key projects include engineered neural stem cell membrane-coated nanoparticles for stroke targeting, biomimetic nanoplatforms for cancer immunotherapy, and tumor microenvironment–responsive delivery systems. They have also contributed to studies on neuromodulation, neurotrophic factor-based therapy, neural stem cell transplantation, and photothrombotic stroke models. Their publication record includes high-impact journals such as Materials Today Bio, Biomaterials, Nano Letters, Small, and Cell Reports Physical Science, covering topics like vascular-targeting nanoclusters, polyphenol nanoparticles, and membrane-engineered carriers.

Overall, their research advances translational nanomedicine and regenerative neuroscience, with an emphasis on targeted therapies capable of overcoming the challenges of brain tumor heterogeneity, the blood–brain barrier, and ischemic neural injury.

Profiles: Scopus | Orcid

Featured Publications: 

Ma, J., Win, Y., Xiaojian, Z., et al. (2023). Enhanced EPR effects by folliculostellate cell membrane–coated nanoparticles on invasive pituitary adenoma. Materials Today Bio.

Ma, J., Dai, L., Jianbo, Y., et al. (2023). Tumor microenvironment targeting system for glioma treatment via fusion cell membrane coating nanotechnology. Biomaterials.

Ma, J., Liu, F., Wendy, C., et al. (2020). Co-presentation of tumor antigens with costimulation via biomimetic nanoparticles for effective cancer immunotherapy. Nano Letters.

Ma, J., Zhang, S., Jun, L., et al. (2019). Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membranes of engineered neural stem cells. Small.

Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Dr. Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Bahauddin Zakariya Univeristy |Pakistan

Dr. Muhammad Junaid Anwar is a rising scholar in Food Science & Technology whose work spans bioactive compounds, dairy protein‐based nanoencapsulation, food safety, and nutraceutical applications. According to Google Scholar, he has authored over 20 peer-reviewed articles and accumulated more than 270 citations to date, reflecting an h-index of 8.  His research includes investigations into olive oil polyphenols for cancer prevention, development of casein-based nanoencapsulation for managing cow’s milk allergy, optimization of ultrasonication pre-treatments for microbial reduction in fresh produce, and exploration of isoflavones and resveratrol in anticancer contexts. Through a blend of experimental and review work, he advances both the applied and mechanistic understanding of functional foods and health-promoting ingredients.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Anwar, M. J., Anwar, M. H., Imran, M., Noman, A. M., Hussain, M., Raza, H., … & Selim, S. (2025). Olive oil polyphenols: A promising approach for cancer prevention and therapy. Food Science & Nutrition, 13(9), e70976.

Anwar, M. J., Hameed, A., Khan, M. U., Mazhar, A., & Manzoor, H. M. I. (2025). Development and exploration of casein-based nano-encapsulation of mangiferin for cow milk allergy management and immunomodulation. Food Bioscience, 66, 106278.

Javed, M. S., Nawaz, H., Filza, F., Anwar, M. J., Shah, F. U. H., Ali, U., … & Nayik, G. A. (2025). Optimization of calcium chloride and ultrasonication pre-treatment to mitigate the microbial load on fresh carrots using response surface methodology. Ultrasonics Sonochemistry, 116, 107311.

Ul Hassan, M. H., Shahbaz, M., Imran, M., Momal, U., Naeem, H., Mujtaba, A., Hussain, M., Anwar, M. J., Alsagaby, S. A., Al Abdulmonem, W., Yehuala, T. F., & Mostafa, E. M. (2025). Isoflavones: Promising natural agent for cancer prevention and treatment. Food Science & Nutrition, 13(3), e70091.

Hameed, A., Ashraf, F., Anwar, M. J., Amjad, A., Hussain, M., Imran, M., … & Jbawi, E. A. (2024). α-Amylase enzyme inhibition relevant to type II diabetes by using functional yogurt with Cinnamomum verum and Stevia rebaudiana. Food and Agricultural Immunology, 35(1), 2389091.

Khalid, M. U., Sultan, M. T., Khan, W. A., Israr, M., Zafar, N., Noman, A. M., Imtiaz, S., Younis, M., Anwar, M. J., Nayyar, A., Orabi, A. A., & Khalil, N. A. (2024). Nutritional and physico-chemical profiling of Tribulus terristris and its nutraceuticals application. Journal of Population Therapeutics & Clinical Pharmacology, 31(9), 1230–1241.

Faisal, Z., Irfan, R., Akram, N., Manzoor, H. M. I., Aabdi, M. A., Anwar, M. J., … & Desta, D. T. (2024). The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Science & Nutrition, 12(4), 2294–2310.

Javed, M. S., Alvi, S. Q., Amjad, A., Sardar, H., Anwar, M. J., Javid, A., … & AbdElgawad, H. (2024). Protein extracted from Moringa oleifera Lam. leaves: Bio-evaluation and characterization as suitable plant-based meat-protein alternative. Regulatory Toxicology and Pharmacology, 146, 105536.

Anwar, M. J., Altaf, A., Imran, M., Amir, M., Alsagaby, S. A., Al Abdulmonem, W., Mujtaba, A., El-Ghorab, A. H., Ghoneim, M. M., Hussain, M., Al Jbawi, E., Shaker, M. E., & Abdelgawad, M. A. (2023). Anti-cancer perspectives of resveratrol: A comprehensive review. Food and Agricultural Immunology, 34(1).

Hameed, A., Anwar, M. J., Khan, M. I., Tarar, O. M., Ali, S. W., Faraz, A., … & Kashif, A. S. (2023). Assessing the impact of camel breed and their grazing habits on the nutritional profile of milk. Pakistan Journal of Agricultural Sciences, 60(2).

Yavuz Tekelioğlu | Cancer Cell Biology | Best Academic Researcher Award

Prof. Dr. Yavuz Tekelioğlu | Cancer Cell Biology | Best Academic Researcher Award

Prof. Dr. Yavuz Tekelioğlu | Karadeniz Technical University | Turkey

Prof. Dr. Yavuz Tekelioğlu is a distinguished professor at Karadeniz Technical University’s Faculty of Medicine, specializing in histology, embryology, and toxicology. He has built a prolific academic career focused on cellular and tissue analysis using advanced methods like flow cytometry. Since beginning as a research assistant, he has steadily advanced through academic ranks, culminating in a full professorship. He has supervised numerous theses, contributing significantly to training future scientists. His research emphasizes the protective effects of antioxidants and stem cell therapies on tissue toxicity, with over 100 peer-reviewed publications. Active in professional societies, he also provides comprehensive educational instruction in medicine and dentistry. Prof. Tekelioğlu is committed to advancing biomedical research, particularly in reproductive and hepatic toxicology, through innovative experimental approaches.

Publication Profile:

Scopus

Education:

Prof. Dr. Yavuz Tekelioğlu completed his higher education at Karadeniz Technical University, where he earned his PhD after serving as a research assistant. His academic foundation is firmly rooted in medical sciences, with a focus on histology and embryology. During his doctoral studies, he developed expertise in experimental toxicology and cellular biology, particularly utilizing flow cytometry for immunophenotyping. His training includes specialized certifications in scientific research ethics, flow cytometry techniques, and institutional educational management. These credentials equip him to conduct rigorous, ethical research and provide effective academic leadership. Continuous participation in national and international workshops and symposiums reflects his commitment to staying current with cutting-edge methodologies and ethical standards in biomedical research.

Experience:

Starting as a research assistant, Prof. Tekelioğlu quickly advanced to PhD research assistant, assistant professor, associate professor, and finally full professor at Karadeniz Technical University. Over more than three decades, he has taught histology and embryology to medical, dental, and graduate students while supervising numerous theses on tissue toxicity and protective agents. He has led multiple TÜBİTAK and university-funded projects focusing on mesenchymal stem cells and toxicological evaluations using flow cytometry and histopathology. His academic service extends to practical flow cytometry training, contributing to capacity building in biomedical research. His administrative roles include coordinating research ethics training and educational management. He is a member of prominent scientific societies, contributing to Turkey’s scientific community. His career demonstrates dedication to both research and education.

Research Focus:

Prof. Dr. Tekelioğlu’s research primarily focuses on the histopathological and immunological effects of toxic agents on reproductive and hepatic tissues. His work extensively explores the protective roles of antioxidants like vitamin E, lycopene, beta-glucan, and Coenzyme Q10 against methotrexate-induced toxicity. Employing flow cytometry, histology, and biochemical assays, his studies provide mechanistic insights into cellular apoptosis, oxidative stress, and tissue regeneration. He investigates mesenchymal stem cells for their therapeutic potential in tissue repair and immunomodulation. His experimental models often include rats and mice, enabling controlled studies of drug-induced organ damage and protective interventions. By bridging toxicology with cellular analysis, his research contributes to safer clinical drug use and novel treatment strategies. Additionally, his recent work on ovarian and cardiac protection highlights translational relevance. His interdisciplinary approach combines toxicology, reproductive biology, and flow cytometry, establishing him as a leader in biomedical research.

Publication Top Notes: 

  • Coenzyme Q10 may protect ovarian tissue against methotrexate-induced gonadotoxicity: a biochemical, flow cytometric, and histopathological study

  • A Comparison of the Flow Cytometric Analysis Results of Benign and Malignant Serous Tumors of the Ovary

  • Should combined MTX and CoQ10 use be reconsidered in terms of steatosis? A biochemical, flow cytometry, histopathological experimental study

  • Histological and flow cytometric evaluation of astaxanthin’s effects against cyclophosphamide induced heart injury in rats

  •  Melamine exposure during the weaning period negatively affects ovarian reserve

Conclusion:

Prof. Dr. Yavuz Tekelioğlu is well-qualified and highly suitable for the Best Academic Researcher Award based on his extensive career, strong research leadership, significant scholarly contributions, and educational impact. His focused expertise on toxicology, histology, and cellular analysis is both relevant and impactful.

With strategic enhancements in international collaborations and visibility, he can further solidify his standing as a leading academic researcher. Nonetheless, his current achievements and dedication clearly merit recognition at this level.

Charles Wang | Epigenomics | Distinguished Scientist Award

Prof. Charles Wang | Epigenomics | Distinguished Scientist Award

Prof. Charles Wang | Loma Linda University Center for Genomics | United States

Dr. Changhong Wang (now known as Dr. C. Wang), a U.S. citizen, is a distinguished molecular toxicologist and genomic scientist currently serving as Director and Tenured Professor at the Center for Genomics, Loma Linda University. Originally from China, Dr. Wang holds dual graduate degrees in Public Health and Toxicology from Tongji Medical University and the University of Washington, respectively. His early career laid the foundation for pivotal research into environmental toxicants and gene-environment interactions. Dr. Wang has significantly contributed to the understanding of xenobiotic metabolism, DNA methylation, and the transgenerational effects of toxins and epigenetics. His leadership in molecular genetics research is reflected in numerous peer-reviewed publications and competitive grants. A passionate educator and mentor, Dr. Wang’s work bridges foundational science and clinical application, marking him as a strong contender for the Research for Distinguished Scientist Award.

Publication Profile: 

Socpus

Education:

Dr. Wang received his Ph.D. in Toxicology from the University of Washington, Seattle. His doctoral work focused on aflatoxin metabolism and liver glutathione S-transferases in nonhuman primates, mentored by Dr. David L. Eaton. Prior to that, he earned an MPH in Environmental Epidemiology from Tongji Medical University, China, where he developed a foundation in public health and environmental sciences. His dual training in toxicology and epidemiology provided a unique cross-disciplinary approach to health sciences. This strong academic background enables Dr. Wang to address critical questions regarding how environmental exposures affect human health, especially through epigenetic and genomic pathways. His educational path reflects a continuous pursuit of scientific excellence and translational impact, positioning him to bridge molecular discoveries with public health relevance—a crucial quality for a candidate of the Distinguished Scientist Award.

Experience:

Dr. Wang currently serves as Director and Tenured Professor at the Center for Genomics, School of Medicine, Loma Linda University (LLU), where he has led translational and mechanistic genomic research. His responsibilities span academic leadership, mentorship, and collaborative research within the Division of Molecular Genetics. Prior to this, he held the role of Associate Professor-Adjunct in Microbiology & Molecular Genetics at LLU. His earlier roles include postdoctoral and research scientist positions at institutions where he investigated environmental carcinogens, drug metabolism, and gene expression. Over three decades, Dr. Wang has built a multidisciplinary portfolio in toxicology, environmental health, and genomics. He is a leading voice in DNA methylation, epigenetic inheritance, and cancer biology. His integrative research style and administrative skills have allowed him to create impactful programs that foster innovation and interdisciplinary collaboration—an essential trait for any distinguished scientist.

Awards and Honors:

Dr. Wang’s academic journey has been decorated with prestigious accolades from the outset. He received the Excellent Medical Student Award  and Distinguished Graduate Student Award from Tongji Medical University. His pioneering research at the University of Washington earned him the First-Place Graduate Award for Research Excellence from the Society of Toxicology in New Orleans. He was awarded multiple Student Travel Awards from the University of Washington’s School of Public Health. These early recognitions underscore his long-standing commitment to scientific excellence and innovation. Dr. Wang’s later career has been marked by continuous success in publication, grant acquisition, and institutional leadership. These honors reflect both peer recognition and academic merit, reinforcing his status as a credible and outstanding candidate for the Research for Distinguished Scientist Award.

Research Focus:

Dr. Wang’s research focuses on environmental toxicology, genomics, and epigenetics, particularly in the context of transgenerational health effects. He investigates how toxicants such as cadmium, aflatoxin B1, and p,p’-DDE affect gene regulation through epigenetic reprogramming. His lab has pioneered work on DNA methylation, histone modifications, and miRNA signatures in diseases like cancer, neurodevelopmental disorders, and diabetes. Recent work has addressed the effects of e-cigarette exposure on neonatal brain methylomes and the epigenetic inheritance of addiction vulnerability. Dr. Wang also explores copy number variation and drug resistance mechanisms in oncology, using cutting-edge tools like single-cell RNA sequencing and patient-derived models. His integrative, multi-omics approach allows for deep mechanistic insights and clinical translation. His ability to lead multidisciplinary teams in high-impact research areas demonstrates both visionary thinking and the technical prowess necessary for distinguished scientific leadership.

Publications Top Notes:

  1. Cadmium-induced negative calcium balance in multiparous birth women

  2. Effect of cadmium on bone calcium in nonpregnant mice: Direct evidence on bone

  3. Cadmium’s impact on bone calcium in mouse dams: Itai-Itai-like syndrome model

  4. Induction of drug-metabolizing enzymes by BHA, ethoxyquin, and oltipraz

  5. Diquat and ciprofibrate effects on hepatic enzyme expression

  6. Mu-class GSTs mediate aflatoxin B1 epoxide conjugation in Macaca liver

  7. CYP1B1 expression analyzed in human tissues via hybridization techniques

  8. Cloning and characterization of alpha-class GSTs from Macaca liver

  9. Proteomic comparison of hepatocyte preparation methods

  10.  CYP3A41B polymorphism linked to puberty onset and breast cancer risk*

Conclusion:

In conclusion, Dr. Wang’s long-standing academic excellence, innovative research in toxicogenomics, and his leadership in advancing our understanding of environmental and epigenetic factors in disease clearly distinguish him as an outstanding scientist. His achievements fulfill and surpass the expectations for the Research for Distinguished Scientist Award. His profile reflects not only a deep commitment to rigorous science but also a visionary approach to public health and molecular research. With minor expansion in global engagement and translational outreach, Dr. Wang’s impact could be even more far-reaching. He is highly recommended for this honor.

Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Zhejiang University | China

Dr. Yuxin Peng is a distinguished researcher and educator in the field of biomedical and exercise science engineering. Currently serving as a ZJU 100 Young Professor at Zhejiang University, China, he has made significant strides in developing flexible sensors, smart wearable systems, and human–machine interaction technologies. With a Ph.D. and postdoctoral training at the National University of Singapore, his research integrates cutting-edge materials science, biomechanics, and AI-driven health monitoring systems. His work has been consistently published in high-impact journals like Science Advances, Advanced Science, IEEE Transactions, and Soft Robotics, reflecting both depth and innovation. Dr. Peng’s contributions are not only academic but also practical, with several of his innovations applied in rehabilitation, sports science, and robotics. His dedication and cross-disciplinary expertise make him a strong candidate for recognition such as the Best Researcher Award.

Publication Profiles: 

Orcid
Scopus

Education:

Dr. Yuxin Peng received his doctoral degree (Ph.D.) in an engineering-related discipline, laying a strong foundation in biomedical engineering, biomechanics, and sensor technologies. His early academic pursuits were rooted in multidisciplinary innovation, merging engineering principles with human physiology and robotics. To further deepen his scientific understanding, he pursued postdoctoral research at the prestigious National University of Singapore, focusing on biomedical systems and smart rehabilitation. During his academic training, Dr. Peng built expertise in wearable sensors, motion tracking systems, and soft robotics—technologies that play a crucial role in personalized healthcare and intelligent rehabilitation. His education trajectory demonstrates both depth and diversity, preparing him to address complex biomedical challenges with integrated, high-tech solutions. It also laid the groundwork for his future leadership roles and impactful research career at Zhejiang University, where he now mentors young researchers and leads innovation in health engineering.

Experience:

Dr. Yuxin Peng has built an impressive academic and research career spanning over a decade. He has been a ZJU 100 Young Professor at Zhejiang University, affiliated with the Institute of Exercise Science and Health Engineering. In this role, he leads interdisciplinary research projects in wearable technology, flexible sensors, and human motion analysis. Prior to this, he served as a Research Fellow at the Department of Biomedical Engineering, National University of Singapore, where he focused on intelligent health systems and rehabilitation technologies. His hands-on experience in global, high-tech research environments has allowed him to develop collaborations with experts in robotics, materials science, and medical engineering. He has supervised numerous projects and students, while continuously publishing in high-impact journals. His experience demonstrates a rare blend of academic rigor and real-world application, making him a leader in human-centered biomedical innovation and smart rehabilitation systems.

Research Focus:

Dr. Yuxin Peng’s research focuses on wearable systems, smart sensors, soft robotics, and biomedical signal processing for human motion monitoring and rehabilitation. His work addresses real-world problems such as gait analysis, joint motion detection, force sensing, and rehabilitation assistance. By integrating AI, flexible electronics, and biocompatible materials, he develops high-performance sensors and intelligent exosuits for applications in sports science, elderly care, and physical therapy. Notable innovations include graphene-based aerogels, hydrogel biosensors, and multi-feature neural networks for gesture recognition. His lab has also contributed to optical waveguide sensors, virtual reality rehabilitation, and MI-controlled exoskeletons. The overarching goal of his work is to enable non-invasive, real-time, and personalized health monitoring through smart technology. By pushing the boundaries of soft, adaptive, and human-interactive systems, Dr. Peng’s research is at the forefront of the next generation of intelligent biomedical engineering solutions.

Publications Top Notes:

  1. Hydroplastic Foaming of Graphene Aerogels and AI Tactile SensorsScience Advances

  2. Underwater Instant Adhesive Hydrogel Interfaces for Robust BiosensingAdvanced Science

  3. Flexible Segmented Assemblable Fiber Optic Sensor for Multi-Joint MonitoringSoft Robotics (Accepted)

  4. Calibration-Free Optical Waveguide Bending Sensor for Soft RobotsSoft Science

  5. Distributed Plantar 3D Force Measurement SystemSensors and Actuators A

  6. Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign LanguageSmall

  7. Omnidirectional Soft Bending Sensor for Joint MonitoringIEEE TIE

  8. Shank-RIO: Ranging-Inertial Odometry for Gait and PositioningIEEE TIM

  9. Exosuit with Bidirectional Hand Support via Gesture RecognitionIEEE TNSRE

  10.  Advances in Flexible Bending Sensors and ApplicationsIJ Smart & Nano Materials

Conclusion:

In conclusion, Dr. Yuxin Peng exhibits all the qualities of a top-tier, award-worthy researcher. His work is characterized by scientific rigor, high-impact publication, and a vision for solving real-world healthcare challenges using cutting-edge sensor and robotics technologies. As a respected academic at Zhejiang University with a solid international research background, Dr. Peng has already contributed significantly to wearable health tech and rehabilitation sciences. His ability to combine soft material innovation, artificial intelligence, and biomechanics into novel human-machine interaction systems places him at the forefront of biomedical engineering research. While there is room for growth in the areas of commercialization and global academic engagement, his career trajectory, research excellence, and societal relevance of his innovations make him a highly deserving candidate for the Best Researcher Award.

Shuxin Han | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Shuxin Han | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Shuxin Han | Xinjiang University | China

Dr. Shuxin Han is a distinguished molecular biologist and professor at Xinjiang University, widely recognized for his pioneering work in hepatobiliary and metabolic biology. With a research career spanning over two decades, Dr. Han has made major contributions to understanding how Kruppel-like factors, especially KLF15, regulate endobiotic and xenobiotic metabolism, impacting drug detoxification and metabolic disease mechanisms. He earned his Ph.D. from Kent State University and has held prestigious positions at Harvard Medical School and Case Western Reserve University. His groundbreaking studies have been published in high-impact journals like Nature Metabolism and Nature Communications, with several articles naming him as first or corresponding author. In addition to research, Dr. Han serves as a reviewer for top-tier journals in pharmacology, hepatology, and clinical science. He is also an academic leader, currently shaping the next generation of scientific talent and metabolic disease research in China.

Publication Profile: 

Scopus

Education:

Dr. Shuxin Han began his academic journey in Animal Sciences, earning a bachelor’s degree from Anhui Agricultural University (1994–1998). He advanced to a research assistant role at Peking University (1999–2000), where he deepened his scientific foundation. He then moved to the U.S. to pursue a Master’s in Biology at Temple University (2000–2003), followed by a Ph.D. in Molecular Biology from Kent State University (2004–2009), focusing on metabolic biology and gene regulation. This progression from general animal sciences to highly specialized molecular biology reflects a systematic and deep commitment to biomedical research. His strong academic preparation laid the foundation for a research career investigating how transcriptional regulators impact health and disease. Dr. Han’s training spans world-class institutions across both China and the United States, equipping him with diverse scientific perspectives and techniques.

Experience:

Dr. Shuxin Han has accumulated rich research and academic experience over nearly 30 years. His early career included a pivotal research assistant role at Peking University, followed by advanced training in biology and molecular biology at Temple and Kent State Universities. He completed prestigious postdoctoral training at Harvard Medical School (2009–2012) and Case Western Reserve University (2012–2015), where he later became a Senior Research Associate (2015–2019). He returned to China in 2019 as a Researcher at the University of Science and Technology of China First Affiliated Hospital, simultaneously engaging in academic duties at the university until 2023. Currently, he serves as a Professor and Academic Leader at Xinjiang University. Throughout his career, Dr. Han has built strong international collaborations, led research groups, and guided innovative projects in metabolic biology, demonstrating his leadership, research excellence, and academic mentorship capabilities.

Research Focus:

Dr. Shuxin Han’s research centers on the molecular regulation of metabolism, particularly focusing on the hepatobiliary and gastrointestinal systems. His work has elucidated the critical role of the Kruppel-like factor (KLF) family, especially KLF15, in controlling endobiotic and xenobiotic metabolism (EXM). These pathways govern how the body metabolizes both internal compounds and external substances like drugs. Dr. Han’s studies have shown that KLF15 acts as a master regulator, influencing drug resistance, liver injury, and metabolic homeostasis. His discoveries offer new insight into personalized medicine and treatment for metabolic disorders and drug-related toxicities. With numerous first-author and corresponding-author publications in journals such as Nature Metabolism, Nature Communications, and Drug Metabolism and Disposition, his work has significantly impacted both fundamental science and clinical applications. He is also active in peer-reviewing for top-tier journals and is recognized for his leadership in translational research.

Publications Top Notes:

  1. Unveiling KLF15 as the Key Regulator of Cyclosporine A Metabolism and Adverse EffectsDrug Metabolism and Disposition, 2025

  2. Distribution and Functional Significance of KLF15 in Mouse CerebellumMolecular Brain, 2025

  3. Personalized Statin Therapy: Targeting Metabolic ProcessesHeliyon, 2025

  4. Current Status and New Directions for Hepatocellular Carcinoma DiagnosisLiver Research, 2024

  5. KLF15-Cyp3a11 Axis Regulates Rifampicin-Induced Liver InjuryDrug Metabolism and Disposition, 2024

  6. Advancing Drug Delivery and Bioengineering in Liver ResearchBioengineering and Translational Medicine, 2024

  7. Advances in IL-7 Research on Tumor TherapyPharmaceuticals, 2024 (Co-author)

  8. Pathogenic Mechanisms in Alcoholic Liver DiseaseJournal of Translational Medicine, 2023

  9. Beta-Hydroxybutyrate Effects on iPSC-Derived Cardiac MyocytesBiomolecules, 2022

  10. Interactions Between Intestinal Flora and Bile AcidsInternational Journal of Molecular Sciences, 2022 (Corresponding author)

Conclusion:

In conclusion, Dr. Shuxin Han is a highly deserving candidate for the Best Researcher Award. His pioneering work on KLF15 and metabolic regulation has reshaped fundamental understanding in the field of hepatobiliary biology and pharmacology. His academic background, research productivity, international experience, and editorial service all reflect a well-rounded and impactful scientist. While there is room to increase clinical translation and international engagement, the depth, originality, and consistency of his research make him a strong contender for this recognition. Honoring Dr. Han with this award would acknowledge a career dedicated to scientific advancement with substantial implications for human health and drug therapy.

ALINE TAKEJIMA | Tissue engineering | Women Researcher Award

Dr. ALINE TAKEJIMA | tissue engineering | Women Researcher Award

Dr. ALINE TAKEJIMA, pontificia universidade catolica do parana, Brazil

Dr. Aline Luri Takejima is a physician-scientist from Brazil, specializing in regenerative medicine and wound healing. She holds an MD and a PhD in Health Sciences from the Pontifical Catholic University of Paraná (PUCPR), where she currently conducts postdoctoral research. With a focus on biological therapies involving the amniotic membrane, Wharton’s jelly, and mononuclear stem cells, Dr. Takejima has published in multiple high-impact scientific journals. Her research aims to develop novel regenerative strategies to treat complex wounds and enhance tissue repair. As an active member of PUCPR’s Wound Healing Research Group and the Brazilian Society of Plastic Surgery, she combines scientific rigor with clinical insight to bridge bench-to-bedside innovation. Her academic contributions are guided by a translational approach, offering promising avenues for future clinical applications in tissue engineering.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Focused Research Excellence:
    Dr. Takejima’s work on biological scaffolds and stem cells in wound healing is both innovative and clinically relevant. Her studies using amniotic membrane, Wharton’s jelly, and bone marrow mononuclear cells show promising regenerative outcomes in preclinical models.

  2. Research Productivity:
    With 9 peer-reviewed journal articles in high-quality platforms (e.g., Biomedicines, Tissue Barriers, Annals of Biomedical Engineering), she demonstrates consistent academic output in her field.

  3. Translational Impact:
    Her research bridges basic science and clinical practice, aiming to provide regenerative solutions for patients with chronic wounds and cardiac damage.

  4. Collaborative Engagement:
    Active participation in a multidisciplinary wound healing research group, contributing to cross-functional scientific advancements.

  5. Recognition Potential:
    As a young, emerging woman researcher in biomedical sciences, she stands as a role model for future female scientists in Latin America and beyond.

🔧 Areas for Improvement:

  1. Intellectual Property & Innovation:
    No patents filed yet; transitioning her research into patentable therapies or commercial applications would increase its societal and economic impact.

  2. Leadership Roles:
    While active in research, taking on editorial or scientific leadership positions would enhance her academic visibility and influence.

  3. Internationalization:
    She would benefit from developing international collaborations or fellowships to diversify her research scope and increase global reach.

  4. Industry Engagement:
    Engaging in consultancy or biotech partnerships can further the translational impact of her regenerative strategies.

🎓 Education:

Dr. Takejima’s educational journey began with a Doctor of Medicine (MD) degree from the Pontifical Catholic University of Paraná (PUCPR), Brazil. Her passion for research led her to pursue a Doctorate (PhD) in Health Sciences/Medicine, also at PUCPR. Her doctoral thesis focused on the use of biologically active materials such as the amniotic membrane and stem cells to enhance wound healing. Throughout her academic training, she demonstrated a strong commitment to translational medicine by integrating basic science with clinical practice. During her PhD, she engaged in experimental models involving stem cell therapy and tissue engineering, which laid the groundwork for her current postdoctoral research. Her educational path reflects both depth and specialization in the biomedical sciences, particularly in regenerative medicine and cellular therapies.

💼 Experience:

Dr. Aline Takejima has over a decade of experience in medical and scientific fields, balancing her role as a physician with that of a postdoctoral researcher. Her clinical background informs her research, particularly in areas of wound healing and regenerative medicine. At PUCPR, she contributes to the Wound Healing Research Group, where she is involved in designing and conducting animal model studies to test the effects of biomaterials and stem cells. Her multidisciplinary research integrates immunology, histopathology, and molecular biology. With nine peer-reviewed publications and participation in collaborative research, she has become a respected contributor to the field. Though early in her research career, her trajectory shows a steady rise, marked by evidence-based outcomes and a commitment to innovation. Her goal is to bridge clinical challenges with regenerative solutions that can be implemented in real-world medical practice.

🔬 Research Focus:

Dr. Takejima’s research focuses on regenerative strategies for wound healing, utilizing biomaterials and stem cells. Her work primarily explores the application of amniotic membrane, Wharton’s jelly, and bone marrow-derived mononuclear stem cells in treating complex or chronic skin wounds. Using experimental models in rats and rabbits, she evaluates histological recovery, inflammation modulation, and tissue regeneration. A significant aspect of her research is understanding how these materials promote healing through paracrine effects rather than direct integration, offering a safer and scalable pathway to clinical application. Additionally, her work extends to cardiac and tracheal tissue repair, emphasizing the versatility of these regenerative approaches. The translational nature of her research bridges laboratory discoveries with potential bedside applications, positioning her at the forefront of cellular therapy and biomaterials science.

📚 Publications Top Notes:

  1. 🧠 Wharton’s Jelly Bioscaffolds Improve Cardiac Repair with Bone Marrow Mononuclear Stem Cells in RatsJournal of Functional Biomaterials, 2025

  2. 🧫 The effects of decellularized amniotic membrane and Wharton’s jelly on the healing of experimental skin wounds in ratsTissue Barriers, 2025

  3. ❤️ Bone-marrow mononuclear cells and acellular human amniotic membrane improve global cardiac function…Anais da Academia Brasileira de Ciências, 2024

  4. 🫁 Tracheal regeneration with acellular human amniotic membrane and 15d-PGJ2 nanoparticles in rabbitsAnais da Academia Brasileira de Ciências, 2023

  5. 🧬 Acellular Biomaterials + Autologous Stem Cells Improve Wound Healing via Paracrine EffectsBiomedicines, 2023

  6. 💉 Decellularized Amniotic Membrane Solubilized with Hyaluronic Acid in Wound HealingAnnals of Biomedical Engineering, 2022

  7. 🧪 Role of Mononuclear Stem Cells and Decellularized Amniotic Membrane in Skin WoundsTissue Barriers, 2022

  8. 🏥 Trauma hepático: epidemiologia de cinco anos…Revista do Colégio Brasileiro de Cirurgiões, 2008

🧾 Conclusion:

Dr. Aline Luri Takejima is an outstanding candidate for the Women Researcher Award. Her academic profile demonstrates a strong foundation in regenerative medicine with significant contributions to wound healing research. Her commitment to applying biological therapies in clinical contexts shows both depth and innovation. As a woman scientist in a competitive field, she exemplifies leadership, dedication, and potential. With further growth in global engagement and innovation strategy, Dr. Takejima is poised to become a future leader in regenerative biomedical research.

Madeha Awad | Intracellular Transport Systems | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad | Intracellular Transport Systems | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad, Sohag university, Egypt

Dr. Madeha Ahmed Aboelfadl Awad is an accomplished Associate Professor in the Physics Department, Faculty of Science, Sohag University, Egypt. Born on January 27, 1979, she has established herself as a leading researcher in the field of nanomaterials physics, with a focus on the synthesis and characterization of metal, metal oxide, and oxysulfide nanostructures. Fluent in Arabic, English, and French, Dr. Awad has contributed extensively to sustainable material applications, including photocatalysis, photodetectors, and smart coatings. Her passion for scientific inquiry and dedication to environmental and energy-related innovations have positioned her as a significant academic voice in Egypt and internationally. Married and residing in Sohag, she continues to inspire through both her teaching and prolific research publications, contributing to over 10 international journal articles and conference presentations. Dr. Awad’s interdisciplinary approach bridges materials science with real-world industrial and environmental applications.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Innovative Research Focus:
    Dr. Awad has demonstrated consistent innovation in synthesizing and characterizing advanced nanostructured systems (metal oxides, oxysulfides, and thin films), with real-world applications in environmental remediation, energy conversion, and optoelectronics.

  2. Publication Record:
    She has published 10+ articles in reputable international journals such as Physica Scripta and Journal of Materials Science: Materials in Electronics. Many of these works address pressing global challenges, including pollution control, clean energy, and smart coatings.

  3. Multidisciplinary Impact:
    Her work intersects physics, materials science, and environmental engineering, creating sustainable technologies like photocatalysts, hydrogen generation systems, and photodetectors.

  4. Active Conference Participation:
    Dr. Awad has presented at national and international scientific conferences, sharing her findings on SnO₂ thin films and transparent conductors, reflecting leadership in academic dissemination.

  5. Academic Development:
    She has completed multiple training courses in competitive research, digital transformation, and teaching methodologies, ensuring continuous growth and contribution to higher education quality.

🧩 Areas for Improvement:

  1. International Collaborations:
    While Dr. Awad is actively publishing, there is potential for expanding collaborations with global research institutes and industrial sectors to enhance the scope and visibility of her work.

  2. Research Funding Diversification:
    Engaging in international grant applications or large-scale collaborative projects would further strengthen her research sustainability and resource access.

  3. Visibility in High-Impact Conferences:
    Increasing participation in high-impact global conferences or symposiums (e.g., MRS, APS) could amplify her academic footprint and foster more research exchange.

🎓 Education:

Dr. Awad earned her B.Sc. in Physics with a very good degree from Sohag University in 2003. She pursued her M.Sc. in Solid State Physics (2008), focusing on the structural, electrical, and optical properties of Sn-Sb-Se compounds. In 2015, she received her Ph.D. in Nanomaterials Physics for her pioneering work on ZnO-based nanomaterials. Her Ph.D. research emphasized growth and characterization techniques vital for optoelectronic applications. In October 2020, she became an Associate Professor, having specialized in the synthesis and analysis of nanostructured systems, including metal oxides and oxysulfides, with targeted industrial uses. Her academic path reflects a deep commitment to solid-state physics, materials engineering, and nanotechnology. She has also enhanced her academic competencies with digital transformation, student assessment, and competitive research training, aligning her education with modern interdisciplinary needs and research innovations.

🧪 Professional Experience:

Dr. Awad began her academic journey as an Assistant Lecturer in 2013 at Sohag University’s Physics Department. Following the completion of her Ph.D. in 2015, she was promoted to Lecturer, contributing to undergraduate and postgraduate instruction while intensifying her research. In 2020, she was appointed Associate Professor in Materials Science. Over the years, Dr. Awad has participated in international conferences, served as a research mentor, and collaborated with national and international scholars. Her expertise in synthesizing thin films and evaluating their optical, structural, and electrical characteristics has enabled her to lead multiple applied research projects. In addition to teaching and supervision, she has completed various training programs on student assessment, digital transformation, and competitive research funding. Her holistic academic profile blends high-impact research with educational excellence, making her a valuable contributor to Egypt’s scientific and academic landscape.

🔬 Research Focus:

Dr. Madeha Awad’s research focuses on the synthesis, characterization, and application of nanostructured materials, particularly metal and metal oxide thin films. Her work addresses real-world challenges through environmentally friendly solutions such as photocatalysis for pollutant degradation, hydrogen generation from seawater, and smart coatings for self-cleaning surfaces. She is also active in developing photodetectors for environmental sensing. Her interdisciplinary approach integrates solid-state physics, material science, and environmental engineering. Her recent projects involve advanced nanocomposites like In2O3/CuO and TiO2-based systems, with optimized optoelectronic and wettability properties for diverse industrial applications. By modifying surface and structural properties of nano-films, Dr. Awad aims to enhance energy efficiency, sustainability, and environmental remediation technologies. She is a strong advocate for applied research and often collaborates on global research initiatives that promote clean energy and green technologies. Her vision merges innovation with impact.

📚 Publications Top Notes:

  1. 🔬 Photocatalytic characteristics of indium oxide, copper oxide and indium oxide/copper oxide thin films on plastic waste substrates for organic pollutants degradation

  2. 🔍 Influence of oxygen flow rates on the optoelectronic properties SnO2 thin films

  3. 🌿 A comparison between the effect of zinc oxide and zinc oxide nanoparticles on the growth and metabolic processes of Cosmarium sp

  4. 🌞 Highly sensitive TiO2 based photodetector for environmental sensing applications

  5. 🔦 Optoelectronic characteristics of In2O3/CuO thin films for enhanced visible-light photodetector

  6. 🧼 Photocatalysis, wettability and optical properties of N-doped Cu2O/CuO thin films for smart coating applications

  7. 💧 Surface wettability and photocatalytic activities of ZrOxNy/Au/TeO2 trilayers for antifogging coatings

  8. Some characteristics of Cu/Cu2O/CuO nanostructure heterojunctions and their applications in hydrogen generation from seawater

  9. 🌐 WNxOy prepared by oxidation of tungsten nitride as alternative photocatalyst to N-doped WO3

📝 Conclusion:

Dr. Madeha Ahmed Aboelfadl Awad exemplifies the qualities of a modern researcher who blends academic rigor with real-world impact. Her research in nanomaterials for environmental and energy applications is both timely and significant. With a strong foundation in materials science and a clear trajectory of impactful publications, she is an excellent candidate for the Best Researcher Award.