Rahul Kumar | Pharmaceutical Chemistry | Research Excellence Award

Mr. Rahul Kumar | Pharmaceutical Chemistry | Research Excellence Award

Vidya University, Meerut | India

A dedicated academic and research-oriented professional in pharmaceutical sciences with specialization in Computer-Aided Drug Design (CADD) and Pharmaceutical Chemistry. Possesses strong expertise in drug discovery workflows, molecular modeling, QSAR analysis, molecular dynamics simulations, and computational approaches to rational drug design. Actively engaged in teaching and mentoring at the undergraduate and postgraduate levels, with a commitment to innovative pedagogy and outcome-based education. Research interests align with interdisciplinary applications of computational chemistry to address challenges in modern healthcare and drug development. Demonstrated academic excellence through recognition at national and international research forums, including awards in health science research competitions. Actively participates in professional development through workshops and training programs focused on CADD, QSAR, molecular dynamics, and intellectual property awareness. Committed to advancing pharmaceutical education, fostering research culture, and contributing to translational science that bridges computational research with experimental and clinical applications.

Featured Publications


Designing Aptamers for Cancer Diagnosis Therapy

– Biosensors and Aptamers: A New Era in Cancer Diagnosis and Treatment, 2025 | Book Chapter

Integrating Small Molecules into Multimodal Treatment Strategies

– Small Molecules in Neurodegeneration, 2025 | Book Chapter

Recurrent Pregnancy Loss: Immunogenetic Factors, Clinical Implications, Diagnostic Approaches, and Future Perspectives

– Reproductive Immunogenetics: A Molecular and Clinical Overview, Vol. 3, 2025 | Book Chapter

Michel Aubanel | Molecular Mechanisms Signaling | Research Excellence Award

Mr. Michel Aubanel | Molecular Mechanisms Signaling | Research Excellence Award

Kerry | France

Michel Aubanel is a senior R&D and innovation leader with more than three decades of experience in the flavors, ingredients, and aroma chemicals industry. He has held global leadership roles across major multinational organizations, driving process development, natural extract innovation, flavor optimization, and analytical research. His expertise spans natural and nature-identical molecules, botanical extracts, taste technologies, and advanced flavor delivery systems, with strong involvement in intellectual property creation and patent development. He has led multidisciplinary teams across Europe and the United States and supported global technology deployment across Asia, Africa, and emerging markets, particularly for alcoholic beverages. A recognized contributor to the scientific community, he serves on international science and flavor boards and is an active member of multiple professional chemical societies. His work is reflected in peer-reviewed toxicological publications and granted patents, highlighting a strong commitment to safety, innovation, and sustainable flavor solutions.

Citation Metrics (Scopus)

100
75
50
25
10
0

Citations
59

Documents
7

h-index
3

Citations

Documents

h-index

Featured Publication

Ji Cao | Macrophage Biology | Research Excellence Award

Prof. Ji Cao | Macrophage Biology | Research Excellence Award

Zhejiang University | China

Ji Cao, Ph.D., is a leading scholar in tumor pharmacology and anticancer drug discovery, internationally recognized as a World’s Top 2% Scientist (Stanford ranking, 2023) and a National Young Top Talent of China. His research integrates tumor pharmacology, chemical biology, and artificial intelligence–driven drug design, with major contributions to targeted protein degradation (PROTACs), ferroptosis regulation, MYC oncoprotein inhibition, and cancer immunotherapy. He has published over 59 peer-reviewed articles in high-impact journals such as Cell Metabolism, Nature Communications, PNAS, and Science Advances, including multiple ESI highly cited papers, accumulating more than 4,000 citations with an h-index of 36. His work has translated into innovation through 18 Chinese patents and one international patent. He has led nationally and provincially funded projects exceeding ¥14 million and has received prestigious science and technology awards for outstanding contributions to biomedical research and translational pharmacology.

Citation Metrics (Scopus)

6000
4000
2000
200
100
50
0

Citations
5,725

Documents
149

h-index
44

Citations

Documents

h-index

Featured Publication

Ahmed Sobhy Abdelrahim Abdallah Darwish | Cell Biology | Research Excellence Award

Dr. Ahmed Sobhy Abdelrahim Abdallah Darwish | Cell Biology | Research Excellence Award

Zagazig University & Egyptian International Pharmaceutical Industries Company, EIPICO | Egypt

Ahmed Sobhy Abdelrahim Abdallah Darwish is a highly accomplished analytical chemist with extensive expertise in analytical methodologies and chemical research. His academic journey demonstrates a consistent commitment to scientific rigor, progressing from a strong foundation in chemistry and physics to advanced studies in analytical chemistry. He has completed a diploma in analytical chemistry with distinction, a pre-master qualification with outstanding performance, and a master’s degree in analytical chemistry. Currently pursuing a Ph.D. in the same field, his research is centered on the development, optimization, and validation of analytical techniques for pharmaceutical and industrial applications. His work emphasizes precision, reliability, and innovation in chemical analysis, including method development for complex matrices, quality control protocols, and instrumental analysis techniques. His contributions aim to enhance the accuracy and efficiency of laboratory workflows, ensuring robust and reproducible results in pharmaceutical and chemical research. Additionally, he demonstrates proficiency in data interpretation, statistical analysis, and experimental design, contributing to high-quality scientific outcomes. His ongoing research reflects a commitment to advancing analytical chemistry through both theoretical insights and practical applications, positioning him as a significant contributor to the field and a strong candidate for recognition in research excellence.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Ma, J. K., Darwish, A. S., Al Ali, A., Abdelazim, A. M., Darwish, W. S., Li, X., & Huang, X. C. (2025). An ecologically sound HPLC determination of LEVOMENOL in topical therapies using a certified reference material with green properties. Results in Chemistry, 13, 102338.

Alenezi, S. S., Gouda, A. A., El Sheikh, R., Badahdah, N. A., Alzuhiri, M. E., & others. (2025). Environmental sustainability profiles assessment of HPLC stability indicating method for quantitation of piracetam and vincamine in pharmaceutical medications. Talanta Open, 11, 100407.

Darwish, A. S., Zaki, M. S. A., Salih, A. G. K. A., Ellatif, M. A., Patel, A. A., Mallick, A. K., & others. (2025). A simple eco‐friendly stability‐indicating HPLC method for determination of NETILMICIN in bulk and ophthalmic solution. Biomedical Chromatography, 39(8), e70152.

Gouda, A. A., Elsheikh, R., Eldien, A. S., & Darwish, A. S. (2025). Development and validation of stability indicating RP-HPLC method for simultaneous determination of simvastatin and fenofibrate in bulk and dosage form. Bulletin of Faculty of Science, Zagazig University, 2025(3), 134–146.

Huang, X. C., Darwish, A. S., Darwish, W. S., Chen, R. M., & Ma, J. K. (2025). Green rapid HPLC method for testing retinol and tocopherol in ophthalmic gels. Talanta Open, 100538.

Darwish, A. S., Gouda, A. A., & Eldien, A. S. (2025). Simple validated approach to quantify valsartan and sacubitril in medications using liquid chromatography. Bulletin of Faculty of Science, Zagazig University, 2025(3), 216–229.

Darwish, W. S. D., Zaki, M. S. A., Salih, A. G. K. A., & others. (2025). Developing a sensitive, ecological, and economic HPLC method for the concurrent quantification of KOLCHICINE and KHELLIN, used in bulk and sachet pharmaceuticals. Microchemical Journal, 114716.

Ma, J. K., Chen, X. Y., Zhang, N., Darwish, A. S., Gouda, A. A., El Sheikh, R., & others. (2025). A straightforward HPLC approach to testing butylated hydroxytoluene, an antioxidant, in pure and topical anti-burn gels; evaluation of greenness, blueness, and whiteness grades. Talanta Open, 100565.

Huang, X. C., Darwish, A. S., Darwish, W. S., Zaki, M. S. A., Lin, Y. T., Liang, N. L., & Ma, J. K. (2025). Ecologically conscious profiles assessments for economic, and concurrent HPLC detection of chlordiazepoxide and clidinium bromide in bulk and tablets solid dosage form. Results in Chemistry, 1, 102739.

Meenakshi | Signal Transduction Networks | Research Excellence Award

Assoc. Prof. Dr. Meenakshi | Signal Transduction Networks | Research Excellence Award

Chandigarh University | India

Dr. Meenakshi Munjal is an active researcher in the field of wireless communication, contributing extensively to advancements in emerging communication technologies. Over the past several years, she has maintained a strong research trajectory, completing one funded research project and producing a substantial body of scholarly work. Her research output includes more than 30 Scopus-indexed publications and a total citation count of 100, reflecting the growing impact of her contributions within the scientific community. She has authored one book with an ISBN and has two patents published or under process, demonstrating her commitment to innovation and applied research in communication systems. In addition to her publications, she has published eight peer-reviewed journal articles across SCI and Scopus-indexed platforms, strengthening the scientific understanding of wireless networks, signal processing, and communication technologies. Her work aligns with contemporary challenges in wireless systems, contributing to enhanced network performance, reliability, and efficiency. She also holds three professional memberships, supporting collaborative engagement within the research ecosystem. Overall, her research contributions highlight a sustained focus on innovation, scholarly excellence, and the advancement of wireless communication technologies

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Munjal, M., & Singh, N. P. (2018). Utility aware network selection in small cell. Wireless Networks, 1–14.

Munjal, M., & Singh, N. P. (2019). Group mobility by cooperative communication for high speed railway. Wireless Networks, 25(7), 3857–3866.

Gupta, S. (2014). A review and comprehensive comparison of image denoising techniques. Proceedings of the International Conference on Computing for Sustainable Global Development, 1–6.

Munjal, M., & Singh, N. P. (2019). QoS and cost-aware protocol selection for next generation wireless network. Journal of Network and Systems Management, 27(2), 327–350.

Munjal, M., & Singh, N. P. (2017). Improved network selection for multimedia applications. Transactions on Emerging Telecommunications Technologies, 28(5), e3121.

Munjal, M., & Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. Computational Techniques in Information and Communication Technologies Conference Proceedings, 1–5.

Meenakshi, G., & Gupta, S. (2014). Advanced level cyclic gray codes with application. International Journal of Electronics Communication and Computer Technology, 1–6.

Munjal, M., & Singh, N. P. (2020). Low cost communication for high speed railway. Wireless Personal Communications, 111(1), 163–178.

Munjal, M. (2024). A comprehensive review of wireless body area network in medical applications. AIP Conference Proceedings, 3100(1), 040013.

Munjal, M., & Dev, S. (2021). Utility based handoff decision for Internet of Everything (IoE). Photonics & Electromagnetics Research Symposium (PIERS) Proceedings, 1396–1405.

Singh, I., & Munjal, M. (2025). Intelligent network selection mechanisms in the Internet of Everything system. IEEE Access.

Munjal, M., Kaistha, K., Gupta, P., Sardana, L., Verma, R., & Verma, S. (2024). Handoff management using RSS in a heterogeneous system. AIP Conference Proceedings, 3072(1), 030003.

Junning Ma | Cell Surface Receptors | Best Research Article Award

Dr. Junning Ma | Cell Surface Receptors | Best Research Article Award

Zhejiang University | China

Dr. Junning Ma has developed a multidisciplinary portfolio spanning neurosurgery, neural engineering, biomaterials, and nanomedicine. Their work integrates neural stem cell biology, targeted drug delivery, and tumor microenvironment modulation to create innovative therapeutic strategies for brain diseases. They have conducted advanced postdoctoral and doctoral research at major institutions, contributing to National Natural Science Foundation of China (NSFC) Youth Fund projects and multiple US-funded NIH and AHA grants. Their research focuses on biomimetic nanocarriers, including cell membrane-coated nanoparticles, PLGA-based delivery systems, and fusion-membrane technologies designed for precision therapy of glioma, pituitary adenoma, and ischemic stroke.

Key projects include engineered neural stem cell membrane-coated nanoparticles for stroke targeting, biomimetic nanoplatforms for cancer immunotherapy, and tumor microenvironment–responsive delivery systems. They have also contributed to studies on neuromodulation, neurotrophic factor-based therapy, neural stem cell transplantation, and photothrombotic stroke models. Their publication record includes high-impact journals such as Materials Today Bio, Biomaterials, Nano Letters, Small, and Cell Reports Physical Science, covering topics like vascular-targeting nanoclusters, polyphenol nanoparticles, and membrane-engineered carriers.

Overall, their research advances translational nanomedicine and regenerative neuroscience, with an emphasis on targeted therapies capable of overcoming the challenges of brain tumor heterogeneity, the blood–brain barrier, and ischemic neural injury.

Profiles: Scopus | Orcid

Featured Publications: 

Ma, J., Win, Y., Xiaojian, Z., et al. (2023). Enhanced EPR effects by folliculostellate cell membrane–coated nanoparticles on invasive pituitary adenoma. Materials Today Bio.

Ma, J., Dai, L., Jianbo, Y., et al. (2023). Tumor microenvironment targeting system for glioma treatment via fusion cell membrane coating nanotechnology. Biomaterials.

Ma, J., Liu, F., Wendy, C., et al. (2020). Co-presentation of tumor antigens with costimulation via biomimetic nanoparticles for effective cancer immunotherapy. Nano Letters.

Ma, J., Zhang, S., Jun, L., et al. (2019). Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membranes of engineered neural stem cells. Small.

Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Dr. Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Bahauddin Zakariya Univeristy |Pakistan

Dr. Muhammad Junaid Anwar is a rising scholar in Food Science & Technology whose work spans bioactive compounds, dairy protein‐based nanoencapsulation, food safety, and nutraceutical applications. According to Google Scholar, he has authored over 20 peer-reviewed articles and accumulated more than 270 citations to date, reflecting an h-index of 8.  His research includes investigations into olive oil polyphenols for cancer prevention, development of casein-based nanoencapsulation for managing cow’s milk allergy, optimization of ultrasonication pre-treatments for microbial reduction in fresh produce, and exploration of isoflavones and resveratrol in anticancer contexts. Through a blend of experimental and review work, he advances both the applied and mechanistic understanding of functional foods and health-promoting ingredients.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Anwar, M. J., Anwar, M. H., Imran, M., Noman, A. M., Hussain, M., Raza, H., … & Selim, S. (2025). Olive oil polyphenols: A promising approach for cancer prevention and therapy. Food Science & Nutrition, 13(9), e70976.

Anwar, M. J., Hameed, A., Khan, M. U., Mazhar, A., & Manzoor, H. M. I. (2025). Development and exploration of casein-based nano-encapsulation of mangiferin for cow milk allergy management and immunomodulation. Food Bioscience, 66, 106278.

Javed, M. S., Nawaz, H., Filza, F., Anwar, M. J., Shah, F. U. H., Ali, U., … & Nayik, G. A. (2025). Optimization of calcium chloride and ultrasonication pre-treatment to mitigate the microbial load on fresh carrots using response surface methodology. Ultrasonics Sonochemistry, 116, 107311.

Ul Hassan, M. H., Shahbaz, M., Imran, M., Momal, U., Naeem, H., Mujtaba, A., Hussain, M., Anwar, M. J., Alsagaby, S. A., Al Abdulmonem, W., Yehuala, T. F., & Mostafa, E. M. (2025). Isoflavones: Promising natural agent for cancer prevention and treatment. Food Science & Nutrition, 13(3), e70091.

Hameed, A., Ashraf, F., Anwar, M. J., Amjad, A., Hussain, M., Imran, M., … & Jbawi, E. A. (2024). α-Amylase enzyme inhibition relevant to type II diabetes by using functional yogurt with Cinnamomum verum and Stevia rebaudiana. Food and Agricultural Immunology, 35(1), 2389091.

Khalid, M. U., Sultan, M. T., Khan, W. A., Israr, M., Zafar, N., Noman, A. M., Imtiaz, S., Younis, M., Anwar, M. J., Nayyar, A., Orabi, A. A., & Khalil, N. A. (2024). Nutritional and physico-chemical profiling of Tribulus terristris and its nutraceuticals application. Journal of Population Therapeutics & Clinical Pharmacology, 31(9), 1230–1241.

Faisal, Z., Irfan, R., Akram, N., Manzoor, H. M. I., Aabdi, M. A., Anwar, M. J., … & Desta, D. T. (2024). The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Science & Nutrition, 12(4), 2294–2310.

Javed, M. S., Alvi, S. Q., Amjad, A., Sardar, H., Anwar, M. J., Javid, A., … & AbdElgawad, H. (2024). Protein extracted from Moringa oleifera Lam. leaves: Bio-evaluation and characterization as suitable plant-based meat-protein alternative. Regulatory Toxicology and Pharmacology, 146, 105536.

Anwar, M. J., Altaf, A., Imran, M., Amir, M., Alsagaby, S. A., Al Abdulmonem, W., Mujtaba, A., El-Ghorab, A. H., Ghoneim, M. M., Hussain, M., Al Jbawi, E., Shaker, M. E., & Abdelgawad, M. A. (2023). Anti-cancer perspectives of resveratrol: A comprehensive review. Food and Agricultural Immunology, 34(1).

Hameed, A., Anwar, M. J., Khan, M. I., Tarar, O. M., Ali, S. W., Faraz, A., … & Kashif, A. S. (2023). Assessing the impact of camel breed and their grazing habits on the nutritional profile of milk. Pakistan Journal of Agricultural Sciences, 60(2).

Yavuz Tekelioğlu | Cancer Cell Biology | Best Academic Researcher Award

Prof. Dr. Yavuz Tekelioğlu | Cancer Cell Biology | Best Academic Researcher Award

Prof. Dr. Yavuz Tekelioğlu | Karadeniz Technical University | Turkey

Prof. Dr. Yavuz Tekelioğlu is a distinguished professor at Karadeniz Technical University’s Faculty of Medicine, specializing in histology, embryology, and toxicology. He has built a prolific academic career focused on cellular and tissue analysis using advanced methods like flow cytometry. Since beginning as a research assistant, he has steadily advanced through academic ranks, culminating in a full professorship. He has supervised numerous theses, contributing significantly to training future scientists. His research emphasizes the protective effects of antioxidants and stem cell therapies on tissue toxicity, with over 100 peer-reviewed publications. Active in professional societies, he also provides comprehensive educational instruction in medicine and dentistry. Prof. Tekelioğlu is committed to advancing biomedical research, particularly in reproductive and hepatic toxicology, through innovative experimental approaches.

Publication Profile:

Scopus

Education:

Prof. Dr. Yavuz Tekelioğlu completed his higher education at Karadeniz Technical University, where he earned his PhD after serving as a research assistant. His academic foundation is firmly rooted in medical sciences, with a focus on histology and embryology. During his doctoral studies, he developed expertise in experimental toxicology and cellular biology, particularly utilizing flow cytometry for immunophenotyping. His training includes specialized certifications in scientific research ethics, flow cytometry techniques, and institutional educational management. These credentials equip him to conduct rigorous, ethical research and provide effective academic leadership. Continuous participation in national and international workshops and symposiums reflects his commitment to staying current with cutting-edge methodologies and ethical standards in biomedical research.

Experience:

Starting as a research assistant, Prof. Tekelioğlu quickly advanced to PhD research assistant, assistant professor, associate professor, and finally full professor at Karadeniz Technical University. Over more than three decades, he has taught histology and embryology to medical, dental, and graduate students while supervising numerous theses on tissue toxicity and protective agents. He has led multiple TÜBİTAK and university-funded projects focusing on mesenchymal stem cells and toxicological evaluations using flow cytometry and histopathology. His academic service extends to practical flow cytometry training, contributing to capacity building in biomedical research. His administrative roles include coordinating research ethics training and educational management. He is a member of prominent scientific societies, contributing to Turkey’s scientific community. His career demonstrates dedication to both research and education.

Research Focus:

Prof. Dr. Tekelioğlu’s research primarily focuses on the histopathological and immunological effects of toxic agents on reproductive and hepatic tissues. His work extensively explores the protective roles of antioxidants like vitamin E, lycopene, beta-glucan, and Coenzyme Q10 against methotrexate-induced toxicity. Employing flow cytometry, histology, and biochemical assays, his studies provide mechanistic insights into cellular apoptosis, oxidative stress, and tissue regeneration. He investigates mesenchymal stem cells for their therapeutic potential in tissue repair and immunomodulation. His experimental models often include rats and mice, enabling controlled studies of drug-induced organ damage and protective interventions. By bridging toxicology with cellular analysis, his research contributes to safer clinical drug use and novel treatment strategies. Additionally, his recent work on ovarian and cardiac protection highlights translational relevance. His interdisciplinary approach combines toxicology, reproductive biology, and flow cytometry, establishing him as a leader in biomedical research.

Publication Top Notes: 

  • Coenzyme Q10 may protect ovarian tissue against methotrexate-induced gonadotoxicity: a biochemical, flow cytometric, and histopathological study

  • A Comparison of the Flow Cytometric Analysis Results of Benign and Malignant Serous Tumors of the Ovary

  • Should combined MTX and CoQ10 use be reconsidered in terms of steatosis? A biochemical, flow cytometry, histopathological experimental study

  • Histological and flow cytometric evaluation of astaxanthin’s effects against cyclophosphamide induced heart injury in rats

  •  Melamine exposure during the weaning period negatively affects ovarian reserve

Conclusion:

Prof. Dr. Yavuz Tekelioğlu is well-qualified and highly suitable for the Best Academic Researcher Award based on his extensive career, strong research leadership, significant scholarly contributions, and educational impact. His focused expertise on toxicology, histology, and cellular analysis is both relevant and impactful.

With strategic enhancements in international collaborations and visibility, he can further solidify his standing as a leading academic researcher. Nonetheless, his current achievements and dedication clearly merit recognition at this level.

Charles Wang | Epigenomics | Distinguished Scientist Award

Prof. Charles Wang | Epigenomics | Distinguished Scientist Award

Prof. Charles Wang | Loma Linda University Center for Genomics | United States

Dr. Changhong Wang (now known as Dr. C. Wang), a U.S. citizen, is a distinguished molecular toxicologist and genomic scientist currently serving as Director and Tenured Professor at the Center for Genomics, Loma Linda University. Originally from China, Dr. Wang holds dual graduate degrees in Public Health and Toxicology from Tongji Medical University and the University of Washington, respectively. His early career laid the foundation for pivotal research into environmental toxicants and gene-environment interactions. Dr. Wang has significantly contributed to the understanding of xenobiotic metabolism, DNA methylation, and the transgenerational effects of toxins and epigenetics. His leadership in molecular genetics research is reflected in numerous peer-reviewed publications and competitive grants. A passionate educator and mentor, Dr. Wang’s work bridges foundational science and clinical application, marking him as a strong contender for the Research for Distinguished Scientist Award.

Publication Profile: 

Socpus

Education:

Dr. Wang received his Ph.D. in Toxicology from the University of Washington, Seattle. His doctoral work focused on aflatoxin metabolism and liver glutathione S-transferases in nonhuman primates, mentored by Dr. David L. Eaton. Prior to that, he earned an MPH in Environmental Epidemiology from Tongji Medical University, China, where he developed a foundation in public health and environmental sciences. His dual training in toxicology and epidemiology provided a unique cross-disciplinary approach to health sciences. This strong academic background enables Dr. Wang to address critical questions regarding how environmental exposures affect human health, especially through epigenetic and genomic pathways. His educational path reflects a continuous pursuit of scientific excellence and translational impact, positioning him to bridge molecular discoveries with public health relevance—a crucial quality for a candidate of the Distinguished Scientist Award.

Experience:

Dr. Wang currently serves as Director and Tenured Professor at the Center for Genomics, School of Medicine, Loma Linda University (LLU), where he has led translational and mechanistic genomic research. His responsibilities span academic leadership, mentorship, and collaborative research within the Division of Molecular Genetics. Prior to this, he held the role of Associate Professor-Adjunct in Microbiology & Molecular Genetics at LLU. His earlier roles include postdoctoral and research scientist positions at institutions where he investigated environmental carcinogens, drug metabolism, and gene expression. Over three decades, Dr. Wang has built a multidisciplinary portfolio in toxicology, environmental health, and genomics. He is a leading voice in DNA methylation, epigenetic inheritance, and cancer biology. His integrative research style and administrative skills have allowed him to create impactful programs that foster innovation and interdisciplinary collaboration—an essential trait for any distinguished scientist.

Awards and Honors:

Dr. Wang’s academic journey has been decorated with prestigious accolades from the outset. He received the Excellent Medical Student Award  and Distinguished Graduate Student Award from Tongji Medical University. His pioneering research at the University of Washington earned him the First-Place Graduate Award for Research Excellence from the Society of Toxicology in New Orleans. He was awarded multiple Student Travel Awards from the University of Washington’s School of Public Health. These early recognitions underscore his long-standing commitment to scientific excellence and innovation. Dr. Wang’s later career has been marked by continuous success in publication, grant acquisition, and institutional leadership. These honors reflect both peer recognition and academic merit, reinforcing his status as a credible and outstanding candidate for the Research for Distinguished Scientist Award.

Research Focus:

Dr. Wang’s research focuses on environmental toxicology, genomics, and epigenetics, particularly in the context of transgenerational health effects. He investigates how toxicants such as cadmium, aflatoxin B1, and p,p’-DDE affect gene regulation through epigenetic reprogramming. His lab has pioneered work on DNA methylation, histone modifications, and miRNA signatures in diseases like cancer, neurodevelopmental disorders, and diabetes. Recent work has addressed the effects of e-cigarette exposure on neonatal brain methylomes and the epigenetic inheritance of addiction vulnerability. Dr. Wang also explores copy number variation and drug resistance mechanisms in oncology, using cutting-edge tools like single-cell RNA sequencing and patient-derived models. His integrative, multi-omics approach allows for deep mechanistic insights and clinical translation. His ability to lead multidisciplinary teams in high-impact research areas demonstrates both visionary thinking and the technical prowess necessary for distinguished scientific leadership.

Publications Top Notes:

  1. Cadmium-induced negative calcium balance in multiparous birth women

  2. Effect of cadmium on bone calcium in nonpregnant mice: Direct evidence on bone

  3. Cadmium’s impact on bone calcium in mouse dams: Itai-Itai-like syndrome model

  4. Induction of drug-metabolizing enzymes by BHA, ethoxyquin, and oltipraz

  5. Diquat and ciprofibrate effects on hepatic enzyme expression

  6. Mu-class GSTs mediate aflatoxin B1 epoxide conjugation in Macaca liver

  7. CYP1B1 expression analyzed in human tissues via hybridization techniques

  8. Cloning and characterization of alpha-class GSTs from Macaca liver

  9. Proteomic comparison of hepatocyte preparation methods

  10.  CYP3A41B polymorphism linked to puberty onset and breast cancer risk*

Conclusion:

In conclusion, Dr. Wang’s long-standing academic excellence, innovative research in toxicogenomics, and his leadership in advancing our understanding of environmental and epigenetic factors in disease clearly distinguish him as an outstanding scientist. His achievements fulfill and surpass the expectations for the Research for Distinguished Scientist Award. His profile reflects not only a deep commitment to rigorous science but also a visionary approach to public health and molecular research. With minor expansion in global engagement and translational outreach, Dr. Wang’s impact could be even more far-reaching. He is highly recommended for this honor.

Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Zhejiang University | China

Dr. Yuxin Peng is a distinguished researcher and educator in the field of biomedical and exercise science engineering. Currently serving as a ZJU 100 Young Professor at Zhejiang University, China, he has made significant strides in developing flexible sensors, smart wearable systems, and human–machine interaction technologies. With a Ph.D. and postdoctoral training at the National University of Singapore, his research integrates cutting-edge materials science, biomechanics, and AI-driven health monitoring systems. His work has been consistently published in high-impact journals like Science Advances, Advanced Science, IEEE Transactions, and Soft Robotics, reflecting both depth and innovation. Dr. Peng’s contributions are not only academic but also practical, with several of his innovations applied in rehabilitation, sports science, and robotics. His dedication and cross-disciplinary expertise make him a strong candidate for recognition such as the Best Researcher Award.

Publication Profiles: 

Orcid
Scopus

Education:

Dr. Yuxin Peng received his doctoral degree (Ph.D.) in an engineering-related discipline, laying a strong foundation in biomedical engineering, biomechanics, and sensor technologies. His early academic pursuits were rooted in multidisciplinary innovation, merging engineering principles with human physiology and robotics. To further deepen his scientific understanding, he pursued postdoctoral research at the prestigious National University of Singapore, focusing on biomedical systems and smart rehabilitation. During his academic training, Dr. Peng built expertise in wearable sensors, motion tracking systems, and soft robotics—technologies that play a crucial role in personalized healthcare and intelligent rehabilitation. His education trajectory demonstrates both depth and diversity, preparing him to address complex biomedical challenges with integrated, high-tech solutions. It also laid the groundwork for his future leadership roles and impactful research career at Zhejiang University, where he now mentors young researchers and leads innovation in health engineering.

Experience:

Dr. Yuxin Peng has built an impressive academic and research career spanning over a decade. He has been a ZJU 100 Young Professor at Zhejiang University, affiliated with the Institute of Exercise Science and Health Engineering. In this role, he leads interdisciplinary research projects in wearable technology, flexible sensors, and human motion analysis. Prior to this, he served as a Research Fellow at the Department of Biomedical Engineering, National University of Singapore, where he focused on intelligent health systems and rehabilitation technologies. His hands-on experience in global, high-tech research environments has allowed him to develop collaborations with experts in robotics, materials science, and medical engineering. He has supervised numerous projects and students, while continuously publishing in high-impact journals. His experience demonstrates a rare blend of academic rigor and real-world application, making him a leader in human-centered biomedical innovation and smart rehabilitation systems.

Research Focus:

Dr. Yuxin Peng’s research focuses on wearable systems, smart sensors, soft robotics, and biomedical signal processing for human motion monitoring and rehabilitation. His work addresses real-world problems such as gait analysis, joint motion detection, force sensing, and rehabilitation assistance. By integrating AI, flexible electronics, and biocompatible materials, he develops high-performance sensors and intelligent exosuits for applications in sports science, elderly care, and physical therapy. Notable innovations include graphene-based aerogels, hydrogel biosensors, and multi-feature neural networks for gesture recognition. His lab has also contributed to optical waveguide sensors, virtual reality rehabilitation, and MI-controlled exoskeletons. The overarching goal of his work is to enable non-invasive, real-time, and personalized health monitoring through smart technology. By pushing the boundaries of soft, adaptive, and human-interactive systems, Dr. Peng’s research is at the forefront of the next generation of intelligent biomedical engineering solutions.

Publications Top Notes:

  1. Hydroplastic Foaming of Graphene Aerogels and AI Tactile SensorsScience Advances

  2. Underwater Instant Adhesive Hydrogel Interfaces for Robust BiosensingAdvanced Science

  3. Flexible Segmented Assemblable Fiber Optic Sensor for Multi-Joint MonitoringSoft Robotics (Accepted)

  4. Calibration-Free Optical Waveguide Bending Sensor for Soft RobotsSoft Science

  5. Distributed Plantar 3D Force Measurement SystemSensors and Actuators A

  6. Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign LanguageSmall

  7. Omnidirectional Soft Bending Sensor for Joint MonitoringIEEE TIE

  8. Shank-RIO: Ranging-Inertial Odometry for Gait and PositioningIEEE TIM

  9. Exosuit with Bidirectional Hand Support via Gesture RecognitionIEEE TNSRE

  10.  Advances in Flexible Bending Sensors and ApplicationsIJ Smart & Nano Materials

Conclusion:

In conclusion, Dr. Yuxin Peng exhibits all the qualities of a top-tier, award-worthy researcher. His work is characterized by scientific rigor, high-impact publication, and a vision for solving real-world healthcare challenges using cutting-edge sensor and robotics technologies. As a respected academic at Zhejiang University with a solid international research background, Dr. Peng has already contributed significantly to wearable health tech and rehabilitation sciences. His ability to combine soft material innovation, artificial intelligence, and biomechanics into novel human-machine interaction systems places him at the forefront of biomedical engineering research. While there is room for growth in the areas of commercialization and global academic engagement, his career trajectory, research excellence, and societal relevance of his innovations make him a highly deserving candidate for the Best Researcher Award.