Arzu Yay | Stem Cell Research | Best Researcher Award

Prof. Dr. Arzu Yay | Stem Cell Research | Best Researcher Award

Erciyes University | Turkey

Prof. Arzu Yay is a distinguished researcher in the Department of Histology and Embryology at Erciyes University, Turkey. Her work focuses on cellular and molecular mechanisms underlying tissue development, injury, and repair, with emphasis on immunohistochemical and ultrastructural analyses. Her M.Sc. research examined E-cadherin expression during renal development in the prenatal period, contributing to the understanding of epithelial differentiation in organogenesis. Her Ph.D. focused on nestin expression across different grades of meningiomas and glioblastomas, highlighting neural stem cell marker dynamics in tumor progression. She has conducted significant studies on oxidative stress, neurobiology, and tissue damage, including investigations into the effects of melatonin and vitamin C on alcohol-induced lung injury and nitric oxide synthase immunoreactivity. Her research has also explored tissue-level alterations in diabetes and the histological impacts of hormonal and anesthetic agents. Prof. Yay’s postdoctoral work at the University of Lübeck, Germany, further advanced her expertise in dermatological histopathology. Her contributions have been recognized through multiple national and international awards for excellence in experimental and translational research, particularly in antioxidant mechanisms and radioprotection. Her body of work reflects a strong integration of histological, molecular, and ultrastructural approaches in biomedical sciences.

Profiles: Google Scholar | Scopus

Featured Publications:

Yıldız, K., Efesoy, S. N., Ozdamar, S., Yay, A., Bicer, C., Aksu, R., & Kılıc, E. (2011). Myotoxic effects of levobupivacaine, bupivacaine and ropivacaine in a rat model. Clinical Investigation in Medicine, 34(5), 273–280.

Sarıozkan, S., Bucak, M. N., Canturk, F., Ozdamar, S., Yay, A., Tuncer, P. B., Ozcan, S., Sorgucu, N., & Caner, Y. (2012). The effects of different sugars on motility, morphology and DNA damage during the liquid storage of rat epididymal sperm at 4°C. Cryobiology, 65(2), 93–97.

Sarıozkan, S., Canturk, F., Yay, A., & Akçay, A. (2012). The effect of different storage temperature on sperm parameters and DNA damage in liquid stored New Zealand rabbit spermatozoa. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(3), 475–480.*

Yay, A., Ozdamar, S., Canoz, O., Tucer, B., & Baran, M. (2013). Nestin expression in meningiomas of different grades. Journal of Neurological Sciences (Turkish), 30, 532–540.

Sarıozkan, S., Türk, G., Canturk, F., Yay, A., Eken, A., & Akçay, A. (2013). The effect of bovine serum albumin and fetal calf serum on sperm quality, DNA fragmentation and lipid peroxidation of liquid stored rabbit semen. Cryobiology, 67(1), 1–6.*

Ernst, N., Yay, A., Bíró, T., Tiede, S., Humphries, M., Paus, R., & Kloepper, J. E. (2013). β1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PLoS ONE, 8(12), e84356.*

Yay, A., Ozdamar, S., Canoz, O., Baran, M., Tucer, B., & Sonmez, M. F. (2014). Intermediate filament protein nestin is expressed in developing meninges. Bratislava Medical Journal, 115(11), 718–722.*

Kelly Bosak | Stem Cell Research | Best Researcher Award

Dr. Kelly Bosak | Stem Cell Research | Best Researcher Award

University of Kansas Medical Center | United States

Dr. Kelly A. Bosak, PhD, APRN, ANP-BC, FHFSA, is a tenured Associate Professor at the University of Kansas Medical Center and a nationally recognized expert in heart failure care, nursing science, and implementation research. With a strong background in advanced practice nursing and nursing administration, Dr. Bosak has made significant contributions to interdisciplinary research focused on improving clinical outcomes in cardiology, rural health, and chronic disease management. Her peer-reviewed work spans high-impact journals such as The Journal of Cardiac Failure, Implementation Science, and The Journal for Nurse Practitioners, reflecting her leadership in both clinical practice and academic scholarship. Dr. Bosak has authored or co-authored over 30 peer-reviewed publications, with a Scopus h-index of 10, over 450 citations, and 32 documents indexed in major databases. She has played a pivotal role in national reports from the Heart Failure Society of America and led multiple implementation science projects aimed at integrating evidence-based interventions into routine care. Her current research emphasizes digital health innovation and workforce development in underserved communities. Dr. Bosak’s interdisciplinary collaborations and translational research continue to shape evidence-based practice and policy in cardiovascular nursing and advanced practice nursing education.

Profiles: Google Scholar | Scopus

Featured Publications:

  • “Return on Investment of a Nurse Practitioner Fellowship Program”

  • “Interprofessional Education for Improving Workforce Capacity to Treat COPD and Long COVID in Rural Communities”

  • “Shared Decision Making for the Pulmonary Artery Monitoring Device for Patients with Heart Failure”

  • “Implementation of a SmartPhrase for Exercise in the Electronic Health Record for Individuals with Heart Failure”

  • “Implementing a Standardized Workflow for Early Detection of Steroid-Induced Hyperglycemia in Allogeneic Stem Cell Transplant Recipients: A Quality Improvement Project”

  • “Team Science”

  • “Ceramides as Novel Biomarkers of Cardiometabolic Conditions”

  • “Heart Failure Epidemiology and Outcomes Statistics An Updated 2024 Report from the Heart Failure Society of America”

  • “Heart Failure Epidemiology and Outcomes Statistics, A Report of the Heart Failure Society of America”

  • “Implementation Mapping and Concept Mapping to Explore Guideline Implementation in the Heart Failure Clinic”

  • “Coordinating Resources for a Hybrid Effectiveness and Implementation Trial Across an Integrated Digital Network for Heart Failure”

  • “Creating a Standardized Approach to Program Evaluation in a Magnet Recognized Pediatric Hospital System”

 

 

 

Emine Mine Soylu | Plant Pathology | Best Researcher Award

Prof. Dr. Emine Mine Soylu | Plant Pathology | Best Researcher Award

Hatay Mustafa Kemal University | Turkey

Prof. Dr. Emine Mine Soylu is a prominent academic in the field of plant pathology, with a career spanning over three decades dedicated to plant protection, host-pathogen interactions, and disease management strategies in crops. She began her professional journey as a Research Assistant at Akdeniz University and has since contributed significantly to scientific research through both experimental studies and scholarly publications. Her work is widely recognized, with a particular focus on the identification and control of fungal and bacterial diseases in economically important plants. Prof. Soylu has published 54 scientific documents in internationally refereed journals and has amassed a total of 3,749 citations, reflecting the substantial impact of her work in the field. Her h-index is 25, indicating consistent and high-quality contributions to science over the years. Her research includes first reports of various plant diseases in Türkiye and in-depth studies on disease resistance mechanisms and biochemical plant responses. Prof. Soylu’s contributions continue to shape the future of sustainable agriculture and plant health, and her collaborations extend across national and international scientific communities. Her scholarly output and citation metrics demonstrate her strong influence in the field of phytopathology and plant-microbe interactions.

Profiles: Google Scholar | ScopusOrcid

Featured Publications:

  • “Preliminary Characterization of Race-Specific Elicitors From Peronospora parasitica and Its Ability to Elicit Phenolic Accumulation in Arabidopsis”

  • “First Report of Downy Leaf Spot of Walnuts Caused by Microstroma juglandis in Turkey”

  • “Induction of Disease Resistance by the Plant Activator, Acibenzolar-S-methyl (ASM), Against Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) in Tomato Seedlings”

  • “First Report of Powdery Mildew Caused by Erysiphe heraclei on Dill (Anethum graveolens) in Turkey”

  • “Light and Electron Microscopy of the Compatible Interaction Between Arabidopsis and the Downy Mildew Pathogen Peronospora parasitica”

  • “Induction of Defence Related Enzymes and Resistance by the Plant Activator Acibenzolar-S-methyl in Tomato Seedlings Against Bacterial Canker Caused by Clavibacter michiganensis subsp. michiganensis”

  • “First Report of Cercospora Leaf Spot on Swiss Chard Caused by Cercospora beticola in Turkey”

  • “First Report of Phloeospora Leaf Spot on Mulberry Caused by Phloeospora maculans (=Cylindrosporium maculans) in the Eastern Mediterranean Region of Turkey”

  • “Induction of Disease Resistance and Antioxidant Enzymes by Acibenzolar-S-methyl Against Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) in Tomato”

  • “First Report of Powdery Mildew Caused by Podosphaera phaseoli (syn. Sphaerotheca phaseoli) on Cowpea (Vigna sinensis) in Turkey”

 

 

 

 

 

 

 

 

 

 

Long Yu | Biosensor | Best Researcher Award

Assoc. Prof. Dr. Long Yu | Biosensor | Best Researcher Award

Assoc. Prof. Dr. Long Yu | Wuhan University | China

Dr. Long Yu is a highly accomplished Han Chinese researcher, currently serving as a Postdoctoral Fellow in Clinical Medicine at Wuhan University. With a deep passion for pharmaceutical analysis, he has pioneered innovative approaches using lanthanide-based metal-organic frameworks (Ln-MOFs). His academic journey has been marked by excellence, including direct admission to a Ph.D. program and multiple national-level scholarships. Dr. Yu has published over 20 high-impact SCI papers, many in top-tier journals such as Advanced Materials, ACS Nano, and Analytical Chemistry. Recognized for his independent research capabilities, he has secured major national funding, including the NSFC Youth Project and China Postdoctoral Science Foundation grant. His work is shaping the future of biosensing and molecular diagnostics, especially in nucleic acid detection. Dr. Yu’s remarkable academic achievements, innovative research direction, and collaborative impact make him an outstanding candidate for the Best Researcher Award.

Publication Profile: 

Orcid

Education:

Dr. Long Yu’s educational background reflects a consistent trajectory of academic excellence. He completed his Bachelor of Science in Pharmacy at Shihezi University, where he graduated and was directly admitted to a Ph.D. program without an entrance exam. He pursued a Direct-Ph.D. in Pharmacy at Wuhan University, under the mentorship of Prof. Yuxiu Xiao. His doctoral research focused on the rational design and application of programmable lanthanide-based metal-organic frameworks (Ln-MOFs) in pharmaceutical analysis. Currently, he is a Postdoctoral Fellow in Clinical Medicine at Wuhan University, guided by Professors Gaosong Wu and Xiang Zhou. Through his academic journey, Dr. Yu has demonstrated strong interdisciplinary capabilities, combining pharmaceutical sciences, materials chemistry, and biosensing technology to advance the field of molecular diagnostics.

Experience:

Dr. Long Yu has cultivated deep expertise in biosensors and pharmaceutical analysis throughout his academic and research journey. He is currently a Postdoctoral Fellow in Clinical Medicine at Wuhan University, working on translational biosensing technologies with Professors Gaosong Wu and Xiang Zhou. He earned his Ph.D. in Pharmacy at Wuhan University under the supervision of Prof. Yuxiu Xiao, where he led several high-impact research projects on programmable metal-organic frameworks (MOFs). His undergraduate foundation was built at Shihezi University , where he graduated among the top of his class. Dr. Yu has served as the principal investigator for five competitive research grants, including prestigious national funding. His academic footprint includes 21 SCI-indexed publications and significant contributions to both theoretical research and practical biosensor development. He excels at multidisciplinary collaboration, combining chemistry, materials science, and clinical application—demonstrating both leadership and innovation in his research.

Awards and Honors:

Dr. Long Yu has received multiple accolades that highlight his academic and research excellence. During his Ph.D., he was awarded the National Scholarship for Graduate Students twice, a prestigious recognition of outstanding academic performance and research capabilities in China. He also received the 1st Prize for Oral Presentation at the National Academic Symposium for Pharmacy Postgraduates in , and the Excellent Poster Award at the 9th National Conference on Drug Analysis in the same year. In addition to academic awards, he has secured several competitive grants as the Principal Investigator, including the National Natural Science Foundation of China Youth Project, the China Postdoctoral Science Foundation General Program, and the Hubei Province Postdoctoral Innovation Talent Program. These achievements demonstrate both national-level recognition and institutional confidence in his independent research potential, marking him as one of the leading young scientists in his field.

Research Focus:

Dr. Long Yu’s research is centered on the rational design of programmable lanthanide-based metal-organic frameworks (Ln-MOFs) for pharmaceutical analysis and biosensing applications. His work bridges materials science and biomedical engineering, enabling high-performance detection platforms for nucleic acids, neurotransmitters, kinases, and epigenetic modifications. He has developed Ln-MOF-integrated systems with excellent selectivity, sensitivity, and biocompatibility for real-time monitoring and clinical diagnostics. A notable feature of his research is the integration of MOF materials with cutting-edge technologies such as CRISPR-Cas, nanozymes, and multivariate sensing platforms. His innovative designs contribute to amplification-free gene mutation detection, ultra-efficient nucleic acid extraction, and responsive ctDNA biosensors. Dr. Yu’s interdisciplinary approach not only expands the utility of MOFs in biomedicine but also paves the way for smart and customizable sensing systems. With 21 high-quality SCI publications and ongoing funded projects, his work is both academically significant and practically relevant in clinical diagnostics and precision medicine.

Publications Top Notes: 

  1.  Lanthanide MOF-Integrated CRISPR-Cas Technology for Amplification-Free Gene Mutation Assay

  2.  Customized Pyrophosphate Nanosensor Based on Lanthanide MOFs for Nucleic Acids Detection

  3.  Polarity Sensor Using Multivariate Lanthanide MOF for Biosensing Platforms

  4.  Levodopa Cascade Polymerization with MOF Nanozyme for Butyrylcholinesterase Dual-Mode Assay

  5.  Enhancing Kinase Detection via Programmable Lanthanide MOF with ATP-to-ADP Conversion

  6. Ultra-Efficient Nucleic Acids Extraction Using Programmable Lanthanide MOF

  7. Bioreaction-Compatible Bivariate Lanthanide MOF Sensor for ctDNA Detection

  8. Adaptable Cobalt MOF for DNA Epigenetic Modification Detection

  9. Trinity Strategy Using Perovskite Nanozyme for Biomarker Reporting

  10.  Nanoporous Crystalline Materials for Nucleic Acids Recognition

Conclusion:

In conclusion, Dr. Long Yu is highly suitable for the Best Researcher Award based on his exceptional research productivity, innovation in the design and application of Ln-MOFs, and substantial contributions to high-impact journals. His early career achievements, particularly as a postdoctoral fellow, show a promising trajectory that is well-aligned with the criteria of research excellence, originality, and potential societal impact. With continued international exposure, broader interdisciplinary collaboration, and efforts to translate research into clinical or industrial outcomes, Dr. Yu is not only deserving of the current award but is also poised to become a leading figure in his field in the years to come.

Sola Ogunmodede | Host-Pathogen Interactions | Best Researcher Award

Mr. Sola Ogunmodede | Host-Pathogen Interactions | Best Researcher Award

Mr. Sola Ogunmodede, Helix Biogen Institute, Nigeria

Olusola Peter Ogunmodede is a microbiologist and researcher at Helix Biogen Institute, Ogbomoso, Nigeria, specializing in medical mycology, fungal genomics, and bioinformatics diagnostics. He earned his MSc in Microbiology from the University of Lagos, where he investigated Neurospora crassa’s growth and mating patterns, and a B.Tech from LAUTECH, where he focused on bioactive fungal metabolites. He is passionate about addressing global health threats through innovative, cost-effective diagnostic tools, especially in resource-limited settings. Olusola has co-authored several peer-reviewed publications, including studies on peptide-based diagnostics for cholera and Crimean-Congo hemorrhagic fever, and has led or contributed to antimicrobial and genomic research projects. In addition to his research, he teaches bioinformatics and molecular biology techniques to students and professionals. Through community outreach on Neglected Tropical Diseases (NTDs) and youth mentorship, he combines scientific excellence with civic engagement, making him a rising star in biomedical research.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Extensive Research Contributions: With published works in Biotechnology and Applied Biochemistry, Tropical Journal of Natural Product Research, and In Silico Research in Biomedicine, Mr. Ogunmodede has co-authored impactful studies in infectious disease diagnostics, fungal bioactive compounds, and computational biology.

  2. Interdisciplinary Research: His projects span medical mycology, bioinformatics, environmental microbiology, and biotechnology, showing adaptability and scientific depth.

  3. Leadership Experience: Progressed from Assistant Project Manager to Project Manager at Helix Biogen Institute, evidencing strong organizational and scientific leadership capabilities.

  4. Community and Teaching Involvement: Demonstrated commitment to science communication, mentorship, and community service—notably in NTD awareness and prison outreach.

  5. Technical Expertise: Competent in bioinformatics, NGS, GC-MS, PCR, and fungal metabolite extraction—skills relevant to modern microbiological research.

⚠️ Areas for Improvement:

  1. Independent Research Leadership: While collaborative efforts are commendable, initiating and leading first-author research or grant-funded projects would further strengthen his academic identity.

  2. Global Collaborations: Expanding international partnerships or postdoctoral research exposure could enhance visibility and diversify methodologies.

  3. Data Science Fluency: Building advanced skills in AI-based diagnostics, big data genomics, or machine learning would broaden his research scope.

  4. Publication Frequency: While the quality of his publications is notable, maintaining consistency in publication output across more years would support a long-term scholarly trajectory.

🎓 Education:

Olusola Peter Ogunmodede holds an MSc in Microbiology from the University of Lagos, where he explored carbon utilization and genetic typing of Neurospora crassa. His B.Tech in Microbiology was awarded by Ladoke Akintola University of Technology (LAUTECH), where his research focused on endophytic fungal metabolites and their bioactive compounds using GC-MS. His academic path began with a National Diploma (ND) in Science Laboratory Technology from Federal Polytechnic Bida, with an applied project on aquaculture pond development. Each stage of his education has built a layered expertise in microbial physiology, antimicrobial studies, and bioanalytical techniques. His academic work has consistently integrated field relevance with lab-based precision, culminating in strong publications and practical applications in diagnostics, antimicrobial discovery, and environmental sustainability. His diverse educational background underpins a research philosophy rooted in innovation, interdisciplinary knowledge, and public health impact.

💼 Experience:

Olusola Peter Ogunmodede is currently a Project Manager at Helix Biogen Institute, where he leads diagnostic development projects for cholera, CCHF, and H5N1, manages timelines, trains researchers in bioinformatics, and oversees biodegradability studies. Previously, he served as an Assistant Project Manager, executing similar responsibilities. He also has a background in secondary school teaching, where he taught Biology, Agricultural Science, and Technical Drawing, reflecting his ability to engage at all levels of education. His research experience includes peptide-centric diagnostic design, fungal metabolite analysis, biogas generation, and environmental biodegradation testing. He’s proficient in both traditional microbiology techniques and modern molecular tools like PCR, sequencing, and in silico modeling. Additionally, he’s an Instructor at Helix Biogen, teaching NGS, Sanger sequencing, and basic bioinformatics. His strong balance of project leadership, lab research, and academic teaching makes him a versatile and highly effective researcher.

🔬 Research Focus:

Olusola Peter Ogunmodede’s research centers around the bioactive potential of fungi, molecular diagnostics, and antimicrobial resistance. He is especially interested in the use of fungal metabolites as alternatives to synthetic antimicrobials, and the genetic and physiological profiling of fungi in relation to infectious diseases. His work bridges wet-lab and computational techniques, applying bioinformatics for designing peptide-based diagnostics for diseasesvsuch as cholera, Crimean-Congo hemorrhagic fever, and yaws. He also investigates the biodegradability of medical materials, promoting sustainability in biomedical innovation. Olusola’s MSc work on Neurospora crassa and undergraduate research on endophytic fungi laid the foundation for his continued exploration into fungal biodiversity and its applications. His recent projects employ computational tools to develop point-of-care diagnostic kits, targeting low-resource environments where fast, accurate diagnostics are critical. His goal is to integrate genomic science and public health interventions for disease surveillance and control in tropical regions.

📚 Publications Top Notes:

  1. 🧬 Computational Modeling and Validation of Predicted Diagnostic Peptides for Crimean–Congo’s DiseaseBiotechnol Appl Biochem, 2025

  2. 🧪 Innovative Biomarker Design for Cholera Diagnosis through Bioinformatics AnalysisIn Silico Research in Biomedicine, 2025

  3. 🍄 Synthesis of Endophytic Fungi Metabolites, Antimicrobial Potentials, and Detection of their Bioactive Molecules Using GC-MSTropical Journal of Natural Product Research, 2022

  4. 🦠 Molecular Characterization, Antimicrobial and Larvicidal Potentials of Fungi from Soil Samples of LAUTECH Botanical GardenArchive of Science & Technology, 2020

🧾 Conclusion:

Olusola Peter Ogunmodede is highly suitable for the Best Researcher Award in view of his technical versatility, impactful publications, leadership in diagnostic tool development, and community engagement. With further investment in independent research leadership and global exposure, he stands out as a promising and emerging scholar in medical microbiology and bioinformatics.

Athok Maarif | SARS-CoV-2 Infection | Best Researcher Award

Mr. Athok Maarif | SARS-CoV-2 Infection | Best Researcher Award

Mr. Athok Maarif, Tottori University, Japan

Athok Shofiudin Maarif is an emerging infectious disease researcher currently pursuing a PhD at the Graduate School of Medical Sciences, Tottori University, Japan. With a foundational background in medicine from Sebelas Maret University, Indonesia, Athok has developed a unique blend of clinical insight and advanced research capabilities. His work spans virology, immunology, microbiology, and antimicrobial resistance. He has co-authored several high-impact publications addressing timely global health challenges, particularly related to COVID-19. Athok is skilled in next-generation sequencing, viral culture, qRT-PCR, and flow cytometry, and he has hands-on experience in BSL-3 environments. He is recognized for his ability to bridge research with public health, earning multiple accolades and fellowships for his contributions to infectious disease control. His cross-cultural collaborations and commitment to translational research mark him as a promising leader in global health research.

Publication Profile: 

Orcid

Scopus

Strengths for the Award:

  1. High-Impact Research Publications:

    • Athok has authored and co-authored peer-reviewed papers in reputable journals such as Frontiers in Immunology, International Journal of Molecular Sciences, Yonago Acta Medica, and Journal of Infection and Chemotherapy.

    • His work is cutting-edge, addressing SARS-CoV-2 viral persistence, immune dynamics during Omicron, and microbiome analysis using next-generation sequencing.

  2. Technical Proficiency:

    • Mastery in NGS, qRT-PCR, flow cytometry, BSL-3 practices, and microbial DNA/RNA extraction.

    • Conducts complex lab work involving viral assays, PBMC isolation, and genomic studies, giving him versatility in laboratory-based infectious disease research.

  3. Strong International and Interdisciplinary Experience:

    • Research assistant roles in both Indonesia and Japan, combining clinical data, molecular science, and public health.

    • Recognized through fellowships and awards by USAID, INDOHUN, and international programs in Vietnam, Thailand, and Japan.

  4. Public Health & Global Health Perspective:

    • Active in One Health programs and waterborne disease prevention, showing ability to translate science into community impact.

    • Leads projects bridging microbiological research with real-world health policy and outreach.

⚙️ Areas for Improvement:

  1. Principal Investigator Role & Independent Research:

    • While he is a key contributor to multiple projects, Athok should aim to lead projects independently (e.g., as first or corresponding author in more papers).

    • Gaining competitive research grants or funding independently would strengthen his research autonomy.

  2. Broaden Beyond SARS-CoV-2:

    • His current research is primarily focused on COVID-19 and related microbiota studies.

    • Expanding into other emerging infectious diseases or antimicrobial resistance pathogens could widen his impact and relevance long-term.

  3. Increase Public and Policy Engagement Outputs:

    • While his research connects to public health, policy briefs, community health publications, or open-access science communication pieces would enhance visibility.

🎓 Education:

Athok Shofiudin Maarif is a PhD candidate in the Infectious Disease Department at the Faculty of Medicine, Tottori University, Japan, where he is expected to graduate in September 2025. His doctoral research focuses on the host-virus interface and antimicrobial resistance, utilizing cutting-edge genomic technologies. He previously earned his medical degree from Sebelas Maret University, Surakarta, Indonesia, graduating in April 2019. His education has emphasized both clinical medicine and research methodology, enabling him to tackle real-world infectious disease issues with scientific rigor. His early exposure to international academic programs, such as internships and short courses in Japan, Vietnam, and Thailand, enriched his global perspective and research aptitude. This educational foundation supports his current success in producing high-impact publications and executing interdisciplinary projects within both clinical and laboratory settings, further validating his dedication to global infectious disease control and scientific discovery.

💼 Professional Experience:

Athok Shofiudin Maarif has diverse experience in both research and field-based public health programs. Since 2021, he has worked as a Research Assistant in the Infectious Disease Department at Tottori University, Japan, where he manages experimental protocols, clinical sample data, and lab logistics involving pathogens at BSL-2/BSL-3 levels. His contributions include data analysis, coordination of laboratory workflow, and execution of molecular diagnostics such as qRT-PCR and viral assays. From 2018 to 2020, he served as a Research Assistant in the Public Health Department at Sebelas Maret University, organizing collaborative projects with government and health organizations in Indonesia. His interdisciplinary roles bridge laboratory and community-based research, underlining his capacity to integrate policy, education, and science in infectious disease management. This hybrid skillset enables him to effectively contribute to global health innovations and strengthens his candidacy for international research honors.

🏅 Awards & Honors:

Athok has received numerous prestigious awards that reflect both his scientific aptitude and social leadership. In 2019, he was named Best Participant in the International Short Course on Ecosystem One-Health in Thailand. He interned at Tottori University’s Infectious Disease Department in 2018 and earned the Best Project Award from USAID-INDOHUN for a community-based waterborne disease initiative. His cross-border engagements include a project on HIV/AIDS awareness for youth in Vietnam and a Research Fellowship under Sebelas Maret University’s Global Challenge Program. Earlier, in 2016, he was awarded Best Oral Presenter at a national HIV-AIDS educational program and recognized in a USAID disease outbreak preparedness course. These accolades showcase his leadership, international collaboration, and dedication to health innovation. His capacity to deliver results in both academic and field environments reflects his strength as a well-rounded researcher and strong candidate for the Best Researcher Award.

🔬 Research Focus:

Athok’s research centers on infectious diseases, particularly at the intersection of virology, immunology, and antimicrobial resistance. His PhD explores host–virus interactions in persistent SARS-CoV-2 infections, including viral evolution and gene expression profiling. He is also investigating the dynamics of natural killer cells during the Omicron phase, providing insights into immune responses. His broader work encompasses the impact of antibiotics like lascufloxacin on gut microbiota, development of rapid PCR diagnostics for COVID-19, and a systematic meta-analysis of antimicrobial resistance trends in Indonesia (2000–2023). He is also comparing resistant bacteria’s genetic profiles between Japan and Indonesia. Athok applies advanced technologies such as next-generation sequencing, flow cytometry, and BSL-3 viral culture techniques to tackle complex microbiological questions. His interdisciplinary, cross-national research approach aims to contribute practical solutions for infectious disease diagnostics, treatment, and public health strategy.

📚 Publications Top Notes:

  1. 🦠 Host–Virus Interface in Persistent SARS-CoV-2 Infections: Viral Characteristic Evolution and Gene Expression Profiling Analysis

  2. 🧪 Distinct Immunity Dynamics of Natural Killer Cells in Mild and Moderate COVID-19 Cases During the Omicron Variant Phase

  3. 🧬 Temporal Effects of Lascufloxacin on Human Gut and Salivary Microbiota: Analysis Using Next-Generation Sequencing Method

  4. 🧫 An Optimal Transport Medium for SARS-CoV-2 Detection in the Direct Method of Rapid Microfluidic PCR System

  5. 💊 Antimicrobial Resistance Trends in Indonesia (2000–2023): A Systematic Review and Meta-Analysis of Bacterial Resistance Across Antibiotic Classes (under review)

  6. 🧻 Comparison of Antimicrobial Resistance Characteristics and Genetic Profiles of Resistant Bacteria in Japan and Indonesia (ongoing)

📝 Conclusion:

Athok Shofiudin Maarif is an exceptionally promising early-career researcher in the field of infectious diseases. His strong international publication record, lab proficiency, and engagement in One Health initiatives make him highly suitable for the Best Researcher Award. His trajectory demonstrates significant leadership potential in translational virology and public health. With further development in grant leadership and broader disease focus, he will continue to emerge as a top-tier researcher in global infectious diseases.

Yang Liu | Cell Migration Studies | Best Researcher Award

Prof. Dr. Yang Liu | Cell Migration Studies | Best Researcher Award

Prof. Dr. Yang Liu, Taiyuan University of Technology Institute of Biomedical Engineering CHINA, China

Dr. Yang Liu is an Associate Professor at the Institute of Biomedical Engineering, Taiyuan University of Technology, China. Since joining in 2013, Dr. Liu has focused on biomechanics, particularly the mechanical mechanisms involved in skin tissue damage and healing processes during traumatic events like burns and radiotherapy. Her interdisciplinary work bridges molecular, cellular, and tissue-level studies to better understand the interplay between mechanical factors and skin regeneration. Her research also extends into the development and structural optimization of biomedical materials such as tissue-engineered skins and advanced dressings. Dr. Liu has led several research and teaching reform projects, obtained a patent transformation, and contributed to national and provincial-level scientific investigations. Her innovative work in tissue engineering and skin trauma treatment continues to contribute significantly to biomedical science and material engineering.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Specialized Expertise
    Dr. Liu focuses on biomechanics in disease development, particularly related to cutaneous trauma (e.g., burns, radiotherapy), a niche but critical area in biomedical engineering.

  2. Material Innovation
    Her work in developing tissue-engineered skin and antibacterial dressings demonstrates applied innovation with potential clinical relevance.

  3. Project Leadership
    Successfully led and participated in multiple competitive research projects funded by national and provincial bodies, indicating trust in her scientific vision and capabilities.

  4. Research Productivity
    Though early in recognition, Dr. Liu has already co-authored several peer-reviewed journal articles in reputable publications like Scientific Reports and Placenta, which reflect growing academic contribution.

  5. Translational Research
    Her involvement in a patent achievement transformation shows a commitment to moving research beyond the lab into real-world applications.

🔧 Areas for Improvement:

  1. Citation Impact and Indexing
    The provided articles currently have 0 citations, and there is no citation index or h-index reported. Increasing publication visibility and citation impact should be a future focus.

  2. Global Recognition and Collaboration
    There is no mention of international collaboration, editorial roles, or professional memberships, which would enhance credibility and reach.

  3. Documented Industry Linkages
    Despite some project engagement with enterprises, more evidence of sustained industry partnerships or commercialization success would strengthen the application.

  4. Books, Patents, and Conferences
    Absence of published books, patents in process, or keynote roles in international conferences limits the academic portfolio breadth.

🎓 Education:

Although specific degree details are not listed, Dr. Yang Liu has built a strong academic foundation that supports her expertise in biomedical engineering and biomechanics. Her academic journey is closely aligned with her professional role at Taiyuan University of Technology, which is known for its technical research capabilities. Dr. Liu’s knowledge spans skin tissue biology, mechanical trauma, and biomedical materials science, indicating a background that likely includes degrees in biomedical engineering, bioengineering, or a related field. Her educational experience has equipped her with the skills necessary to conduct high-level research in skin regeneration, materials science, and tissue biomechanics. Additionally, her active participation in national scientific projects and her leadership in academic innovation at the university level point to rigorous formal training and ongoing academic development.

🧪 Experience:

Dr. Yang Liu has over a decade of professional experience in biomedical research since joining the Taiyuan University of Technology in 2013. Her work has revolved around exploring the mechanical and biological factors involved in traumatic skin injury and healing. She has successfully led and contributed to multiple projects, including those funded by the National Natural Science Foundation of China and enterprise collaborations. In addition to her scientific contributions, she has also directed teaching reform projects and a patent transformation, highlighting her dual commitment to both research and education. Her experience includes a strong focus on interdisciplinary collaboration across biology, materials science, and mechanical engineering. This breadth of experience has allowed her to develop innovative biomedical materials, such as tissue-engineered skin and functional skin dressings, aimed at improving clinical treatment outcomes for burn injuries and other trauma-related skin conditions.

🔬 Research Focus:

Dr. Yang Liu’s research centers on the biomechanics of skin tissue damage and healing, with an emphasis on cutaneous trauma from burns and radiotherapy. Her work investigates how mechanical forces impact skin at multiple biological levels—molecular, cellular, tissue, and animal models. A major portion of her research explores biomedical material innovation, particularly tissue-engineered skin, skin dressings, and antibacterial materials. She is particularly focused on understanding how structural and mechanical properties of these materials can improve therapeutic outcomes. Dr. Liu also studies oxidative stress, cell migration, and protein responses under mechanical pressure, making her work crucial to trauma therapy and regenerative medicine. With a patent transformation and multiple research projects to her credit, her research is positioned at the intersection of engineering innovation and clinical application, aiming to reduce complications in skin trauma treatment and enhance recovery efficiency through scientifically engineered materials.

📚 Publications Top Notes:

  1. 🧴🧬 Preparation and characterization of nano-silver/graphene oxide antibacterial skin dressingScientific Reports, 2025

  2. 🔬⛽ Experimental study on liquid products and pore structure characteristics of anthracite saturated by supercritical CO₂Gas Science and Engineering, 2025

  3. 🧠💥 The regulatory role of the nuclear scaffold protein Emerin on the migration of amniotic epithelial cells and oxidative stress in a pressure environmentPlacenta, 2025

  4. 🛠️🔥 Annealing Response of Cold-rolled Ti₂AlNb Based Alloy Foil in Different Phase RegionsTezhong Zhuzao Ji Youse Hejin (Special Casting and Nonferrous Alloys), 2025

📝 Conclusion:

Dr. Yang Liu shows significant promise as a biomedical researcher, with a clear, focused research trajectory, practical outputs (materials for skin regeneration), and consistent project engagement at institutional and national levels. While her global visibility and citation metrics are currently limited, her research has high translational potential in trauma medicine and biomedical materials, making her a strong emerging contender for the Best Researcher Award—especially under a category recognizing early- to mid-career researchers with impactful applied science work.

Mahedi Hasan | Plasma Medicine | Young Researcher Award

Mr. Mahedi Hasan | Plasma Medicine | Young Researcher Award

Mr. Mahedi Hasan, Shizuoka University, Japan

Mahedi Hasan is a promising Bangladeshi researcher with a strong academic and research foundation in genetic engineering and nanostructured optoelectronics. Currently pursuing his PhD at Shizuoka University, Japan, his work bridges plasma science with biomedical applications, focusing on cold atmospheric microplasma for drug delivery and cellular modulation. Previously, Mahedi completed his BS and MS in Genetic Engineering and Biotechnology from the University of Rajshahi with excellent academic distinction. He has published extensively in international peer-reviewed journals, collaborating with multinational research teams in Japan and Bangladesh. His passion lies in innovative, interdisciplinary approaches to solving complex biomedical problems, with a vision to improve targeted therapeutics. Mahedi has demonstrated remarkable dedication, from assisting in molecular biology labs to leading pioneering plasma-based biomedical research. With an emerging global presence and deep scientific curiosity, Mahedi Hasan is an ideal candidate for the Young Researcher Award.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Robust Academic Foundation

    • Strong academic performance in both undergraduate (CGPA 3.63) and postgraduate (CGPA 3.87) studies in Genetic Engineering & Biotechnology.

    • Currently pursuing a PhD in Optoelectronics and Nanostructure Science at a reputable Japanese institution (Shizuoka University), indicating a cross-disciplinary research approach.

  2. High-Impact Research Contributions

    • Authored 10+ peer-reviewed publications, several in Q1 journals, addressing cutting-edge topics such as cold atmospheric plasma (CAP), drug delivery, and cellular senescence.

    • Demonstrated innovation in plasma-assisted biomedical applications, including nose-to-brain delivery systems and BBB penetration strategies.

  3. International Collaboration and Experience

    • Collaborates with an international team across Bangladesh and Japan, engaging in complex projects with global relevance.

    • Ongoing research in Japan exposes him to high-end lab infrastructure and interdisciplinary training.

  4. Recognitions and Scholarships

    • Winner of the National Science and Technology (NST) Fellowship – 2019, a significant national-level endorsement of research potential.

    • Recipient of the Graduate Board Scholarship – 2019 for academic excellence.

  5. Consistent Research Focus

    • Maintains a clear research trajectory from plant plasma applications to nanotechnology and plasma-driven biomedical interventions, showcasing a deepening specialization.

🧩 Areas for Improvement:

  1. Independent Project Leadership

    • Most publications are collaborative; demonstrating leadership in principal investigator (PI)-style roles or initiating independent proposals would further establish his research autonomy.

  2. Wider Conference Participation

    • Engaging more frequently in international conferences and symposiums (oral/poster presentations) would enhance visibility and networking.

  3. Diversification of Funding Sources

    • Beyond national scholarships, pursuing international research fellowships (e.g., JSPS, DAAD, Marie Skłodowska-Curie) would show strategic initiative and grant-writing skills.

  4. Industrial/Clinical Relevance Expansion

    • Potential to link his plasma-based research with real-world medical or commercial applications through translational or industry-collaborative projects.

📘 Education:

Mahedi Hasan’s academic journey showcases consistent excellence. He is currently pursuing a Ph.D. in Optoelectronics and Nanostructure Science at Shizuoka University, Japan (2023–ongoing), where his research focuses on cold plasma-mediated drug delivery systems. He holds both Bachelor’s (2018) and Master’s (2019) degrees in Genetic Engineering and Biotechnology from the University of Rajshahi, Bangladesh. Despite delays in examination schedules, he graduated with distinction, securing a CGPA of 3.87/4.00 in MS and 3.63/4.00 in BSc. His academic records demonstrate a strong foundation in life sciences, biotechnology, and interdisciplinary research. Through his studies, he developed expertise in molecular biology, protein science, and advanced biomedical technologies. His transition into nanostructured optoelectronics further highlights his adaptability and commitment to advancing next-generation therapeutic technologies. Mahedi’s education reflects not only academic brilliance but also his progressive shift toward impactful, translational science.

🧪 Experience:

Mahedi Hasan has garnered substantial research experience across molecular biology and plasma-based therapeutics. He served as a Research Assistant at the

Apply now for the Plasma Medicine Research for Young Researcher Award—honoring early-career scientists advancing plasma technology in medicine. Open to researchers under 35. Submit your abstract and supporting documents today!

& Protein Science Lab in the Department of Genetic Engineering & Biotechnology, University of Rajshahi, from May 2019 to September 2023. His role included evaluating the effects of low-pressure dielectric barrier discharge (LPDBD) plasma on the growth, physiology, and nutritional properties of crops like wheat and maize. Prior to that, he completed a Research Internship in the same lab, where he explored the impact of LFGD plasma on agronomic and nutritional traits. His current Ph.D. research continues this trajectory, now exploring cold atmospheric microplasma for improved drug absorption across the blood-brain barrier and in cancer cells. Mahedi’s experience demonstrates a unique blend of plant and human model systems, bench-to-bedside translation, and strong interdisciplinary collaboration in both Bangladeshi and Japanese labs.

🏅 Awards and Honors:

Mahedi Hasan’s research potential has been recognized with several prestigious awards. In 2019, he received the National Science and Technology (NST) Fellowship from the Ministry of Science and Technology, Government of Bangladesh, a competitive award supporting emerging scientific talent. That same year, he was honored with the Graduate Board Scholarship by the University of Rajshahi, granted for his academic excellence during his Master’s studies. These accolades highlight his academic brilliance and commitment to impactful research. His continuous involvement in high-impact international collaborations and publications in reputable journals further solidify his reputation as a dedicated young scientist. As a Ph.D. candidate in Japan, he continues to contribute to frontier biomedical applications of microplasma technology. These honors, coupled with his impressive research output and global collaborations, make him an outstanding contender for any young researcher recognition.

🔬 Research Focus:

Mahedi Hasan’s research uniquely bridges biotechnology, plasma physics, and nanomedicine. His core focus is on the application of cold atmospheric microplasma in enhancing drug delivery, especially across complex barriers like the blood-brain barrier and into cancerous cells. His work explores microplasma-assisted nose-to-brain delivery systems, cellular senescence modulation, and targeted uptake of hydrophilic compounds. His research employs both cellular (in vitro) and animal (in vivo) models to study absorption efficiency, molecular interaction, and bioavailability of therapeutic agents. In his early work, he investigated plasma’s role in altering the physiology and nutritional value of crops. Now, through cutting-edge interdisciplinary collaborations at Shizuoka University, he is working at the frontier of plasma-assisted biomedical innovation, opening new doors for non-invasive drug delivery systems. This fusion of bioscience with physical sciences represents a novel, transformative approach, making his research both timely and globally significant.

📚 Publications Top Notes:

  1. 📄 Microplasma-Mediated Enhancement of FD-150 Uptake in HL-60 Cells

  2. 🧠 Absorption of FD-150 in Brain Endothelial Cells by Cold Atmospheric Microplasma

  3. 🧬 Exploring the Role of Microplasma for Controlling Cellular Senescence in Saccharomyces cerevisiae

  4. Voltage Dependent Effect of Spiral Wound Plasma Discharge on DBC1.2 Cellular Integrity

  5. 🧪 Enhancing Galantamine Distribution in Rat Brain Using Microplasma-Assisted Nose-to-Brain Drug Delivery

  6. 🧫 Absorption of FD-150 into White Blood Cells by Microplasma

  7. 🚧 In Vitro Drug Delivery through the Blood–Brain Barrier Using Cold Atmospheric Plasma

  8. 🧼 Lipidomics of Microplasma-Irradiated Cells at Optimized Discharge Conditions for Absorption of High-Molecule Drug

  9. 🐍 Toxins Profiles and Histological Impact of Trimeresurus erythrurus Venom: In Vitro and In Vivo Study

  10. 🧯 Evaluation of Bungarus caeruleus Venom and Antivenom Efficacy Used in Bangladesh

📝 Conclusion:

Mahedi Hasan emerges as a highly promising young researcher with a multidisciplinary profile rooted in biotechnology, plasma science, and nanostructure-based drug delivery systems. His solid academic background, commendable publication record, and international research involvement make him a strong contender for the Young Researcher Award. While he could benefit from taking on greater research leadership and wider dissemination of his work, his achievements to date clearly indicate excellent potential for impactful scientific contributions in the coming years.

yu chen | Molecular Mechanisms Signaling | Best Researcher Award

Prof. yu chen | Molecular Mechanisms Signaling | Best Researcher Award

Prof. yu chen , Chengdu University of Technology , China

Prof. Yu Chen is a leading researcher in the field of perovskite solar cells, with a particular emphasis on interfacial engineering and charge transport materials. He is currently a Principal Investigator at the Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering. His academic journey spans top institutions in China, culminating in a Ph.D. from Nanjing University of Science and Technology under the guidance of Prof. Shenli Zhang and Prof. Wenhua Zhang. Prof. Chen has co-authored numerous high-impact journal articles, including in Nature Communications, Advanced Materials, and Chemical Engineering Journal, significantly contributing to the field of renewable energy. His innovative approaches to improving stability and efficiency in perovskite photovoltaics have earned him national recognition. Prof. Chen’s work blends academic rigor with practical innovation, aiming to push the boundaries of solar cell technologies toward commercial viability and sustainability.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  • High-impact Publications: Prof. Chen has published extensively in top-tier journals such as Nature Communications, Advanced Materials, Angewandte Chemie, and Advanced Functional Materials, indicating global recognition and scientific rigor.

  • Cutting-edge Research Focus: His work on perovskite solar cells, especially on buried interface engineering, inorganic transport layers, and molecular self-assembly, addresses fundamental and applied challenges in next-generation photovoltaic technologies.

  • Innovation & Application: Techniques like guanylation reaction for MACl removal and ion compensation strategies demonstrate a deep understanding of material-device interplay and have direct implications for industrial application.

  • Leadership & Funding: As a Principal Investigator at Chengdu University of Technology, leading national-level projects (e.g., Qomolangma Talent Program), Prof. Chen has proven both scientific leadership and funding competitiveness.

  • International Collaboration: His co-authorship with global leaders such as Prof. Shengzhong Liu and Prof. Wenhua Zhang strengthens his international research presence.

⚠️ Areas for Improvement:

  • Broader Research Diversification: While his specialization in perovskites is a clear strength, expanding into hybrid systems (e.g., tandem solar cells with silicon or organic-inorganic integration) could elevate his interdisciplinary impact.

  • Industry Partnership: Greater collaboration with industrial partners or startups could accelerate the commercial translation of his innovations.

  • International Fellowships or Visiting Positions: Engaging in international academic exchanges or fellowships (e.g., Marie Curie, Humboldt) could further enhance global visibility.

🎓 Education:

Prof. Yu Chen completed his Ph.D. in Materials Science from Nanjing University of Science and Technology (2019–2023) under the supervision of Prof. Shenli Zhang and Prof. Wenhua Zhang. During this period, he focused on advanced interfacial design and ion migration in perovskite solar cells. He earned his M.Eng. in Chemical Engineering from Changzhou University (2016–2019), mentored by Prof. Ningyi Yuan and Prof. Wenhua Zhang, where he laid the foundation for his research on inorganic materials. His academic journey began with a B.Eng. in Materials Science from Pujiang University (2012–2016), under the supervision of Prof. Jian Huang. This strong and progressive academic background empowered Prof. Chen with a multi-scale understanding of materials synthesis, structural engineering, and device-level optimization — skills now central to his research on high-efficiency photovoltaic technologies.

💼 Experience:

Since 2023, Prof. Yu Chen has been serving as a Principal Investigator at Chengdu University of Technology’s College of Materials and Chemistry & Chemical Engineering. He leads a research group focused on developing next-generation perovskite solar cells, emphasizing stable, efficient, and scalable photovoltaic systems. Prof. Chen has developed several novel techniques involving inorganic hole/electron transport layers and interfacial dipole engineering. His experience spans fundamental research, technology translation, and academic collaboration with prestigious researchers such as Prof. Shengzhong Liu and Prof. Yihui Wu. He is also the recipient and presiding investigator of projects like the “Qomolangma Talent Introduction Program” and the Youth Foundation of Sichuan Natural Science Foundation. His role combines leadership, mentorship, and high-level experimental research, making him an influential figure in China’s renewable energy academic landscape.

🏅 Awards and Honors:

Prof. Yu Chen has received several prestigious accolades for his outstanding contributions to solar cell research. In 2019, he was honored with the “Excellent Wall Poster Award” at the China Material Conference, recognizing his innovative visualization of research. In 2023, he earned the title of “Outstanding Graduate” from the China Academy of Engineering Physics, showcasing both his academic excellence and research impact. As the Principal Investigator of prominent research programs such as the Qomolangma Talent Introduction Program, he has demonstrated leadership and vision. His work has been continuously supported by competitive grants, including the Youth Foundation of the Sichuan Natural Science Foundation. These honors reflect not only Prof. Chen’s personal achievements but also his potential to lead transformative advancements in solar energy technologies, particularly in high-efficiency, stable, and scalable perovskite solar cells.

🔬 Research Focus:

Prof. Yu Chen’s research focuses on the design and development of highly efficient and stable perovskite solar cells, with specific expertise in buried interface engineering, inorganic charge transport materials, and defect passivation strategies. His work emphasizes inverted perovskite solar architectures, which promise better long-term stability and commercial adaptability. A key aspect of his research is understanding how molecular self-assembly and interfacial dipole regulation can enhance charge extraction and minimize recombination losses. He has developed novel methods to remove residuals, such as MACl, and form stable 2D perovskite structures in situ, improving device performance. By integrating materials chemistry, device physics, and advanced fabrication, Prof. Chen addresses critical bottlenecks in the field. His research not only advances academic understanding but also aligns with industrial needs for reliable and sustainable photovoltaic technologies.

📚 Publication Top Notes:

  1. 🧪 Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cellsNature Communications, 2025

  2. ⚗️ High‐Efficiency Perovskite Solar Cells Enabled by Guanylation Reaction for Removing MACl ResidualAngewandte Chemie Int. Ed., 2025

  3. 🧬 Tailoring Buried Interface and Minimizing Energy Loss by Aluminum Glycinate MoleculesAdvanced Materials, 2025

  4. 🧫 A regulation strategy of self-assembly molecules for achieving efficient inverted perovskite solar cellsPCCP, 2024

  5. 🧠 A Comprehensive Review of Organic Hole‐Transporting Materials for Inverted Perovskite Solar CellsAdvanced Functional Materials, 2024

  6. 🔍 Elimination of Buried Interface Defects for Efficient Wide-Bandgap Perovskite Solar CellsChinese Journal of Chemical Physics, 2023

  7. 🧱 Research Progress of Inorganic Hole Transport Materials in Perovskite Solar CellsJournal of Inorganic Materials, 2023

  8. 🔋 Ion Compensation of Buried Interface Enables Efficient MA‐Free Perovskite Solar CellsAdvanced Functional Materials, 2022

  9. 💊 Defect mitigation using d-penicillamine for stable MA-free perovskite solar cellsChemical Science, 2021

  10. ⚙️ Reducing carrier transport barrier in anode interface enables stable inverted mesoscopic perovskite solar cellsChemical Engineering Journal, 2021

🔚 Conclusion:

Prof. Yu Chen stands out as a highly promising and already accomplished materials scientist. His strong academic record, innovative research on energy materials, leadership in national research programs, and consistent output in prestigious journals make him exceptionally qualified for the Best Researcher Award. While early in his career, his trajectory shows the hallmark of a future leader in clean energy research. With minor expansions in scope and outreach, Prof. Chen is poised to become a central figure in advancing sustainable photovoltaic technologies.

Mona Soliman | Microbial Cell Biology | Best Researcher Award

Prof. Mona Soliman | Microbial Cell Biology | Best Researcher Awards

Prof. Mona Soliman , Taibah University , Saudi Arabia

Dr. Mona Hassan Soliman Hussein is an Associate Professor in the Biology Department, Plant Physiology Division at Taibah University, Yanbu, Saudi Arabia, and holds a permanent position as Associate Professor at Cairo University, Egypt. She was born on October 19, 1968, in Maadi, Cairo, Egypt. Dr. Hussein holds a PhD in Plant Physiology and Biochemistry from Cairo University, where she specializes in natural products and biochemical plant ecology. She has extensive experience in plant stress physiology, especially in the context of allelopathy, stress alleviation, and the use of bio-stimulants and natural compounds to improve plant productivity. Dr. Hussein has published numerous research papers and book chapters and is actively involved in academic committees and research initiatives in both Egypt and Saudi Arabia.

Publication Profile: 

Orcid

Strengths for the Award:

  1. Academic and Professional Background:
    • Dr. Soliman holds advanced degrees in Plant Physiology and Biochemistry, including a Master’s and a Ph.D. from Cairo University, with a focus on biochemical plant ecology and allelopathic potential in plants. This deep scientific expertise in both the theoretical and applied aspects of plant physiology makes her a leader in the field.
    • She has held prominent positions at various institutions, including Associate Professor in both Taibah University (KSA) and Cairo University (Egypt), along with leadership roles such as Dean of Academic Affairs and Head of Exam Committees.
  2. Research Contributions:
    • Dr. Soliman has an impressive research portfolio, with multiple journal articles and book chapters on plant stress tolerance, bio-stimulants, and allelopathy. Her studies focus on innovative methods to enhance crop resilience to abiotic stresses such as drought, salinity, and heavy metals.
    • She has contributed to high-impact journals, with a diverse research output that addresses both theoretical and applied scientific issues, offering practical solutions for crop improvement.
    • Her research also bridges plant physiology with practical agricultural solutions, such as improving soil quality with biochar or enhancing plant tolerance to environmental stresses, which is highly relevant for sustainable agriculture.
  3. Global Recognition:
    • Dr. Soliman has global recognition through her profiles on platforms like Google Scholar, Scopus, ResearchGate, and ORCID, reflecting her international presence and collaboration. Her research has been cited in multiple studies, suggesting that her work is widely acknowledged by peers in the field.
  4. Leadership and Collaboration:
    • As an active collaborator in multiple projects and publications, she has demonstrated strong leadership in managing interdisciplinary research teams, which is crucial for large-scale research initiatives. Her involvement in various academic committees further emphasizes her leadership skills.

Areas for Improvement:

  1. Research Visibility and Outreach:
    • While Dr. Soliman has a strong publication record, increasing the visibility of her research through more frequent presentations at international conferences and public outreach could help in disseminating her findings to a broader audience, particularly in regions that face the environmental challenges her research addresses.
  2. Interdisciplinary Collaborations:
    • Although her research spans across plant physiology, biochemistry, and applied agricultural sciences, fostering collaborations with industries and organizations working on sustainable agricultural technologies could enhance the practical impact of her research.
  3. Innovation in Research Focus:
    • Dr. Soliman could consider expanding her research to include cutting-edge technologies such as genomics, plant-based biotechnology, or climate change mitigation strategies in agriculture, which would enhance the novelty and potential impact of her future studies.

Education:

Dr. Mona Hussein’s educational journey includes a Bachelor’s degree in Botany with Honors from Cairo University in 1990, followed by a Master’s degree in Biochemical Plant Ecology from Cairo University in 1996. Her Master’s thesis focused on “Allelopathic Potential of Lupinus termis Seeds,” exploring the use of secondary metabolites for enhancing plant production. She earned her PhD in Plant Physiology and Biochemistry in 2003, specializing in the allelopathic effects of sunflower residues on wild oat and wheat. Throughout her academic career, Dr. Hussein has excelled in her studies and research, contributing significantly to the fields of plant stress physiology and natural product chemistry.

Experience:

Dr. Mona Hussein has over three decades of experience in plant physiology and biochemistry. She began her career as an Instructor at Cairo University, later progressing to Assistant Lecturer, Lecturer, and Associate Professor. In addition to her work in Egypt, Dr. Hussein has served in leadership roles at Taibah University, Saudi Arabia, including Dean of Academic Affairs, Head of Exam Committees, and Coordinator of the Biology Department. Her administrative and academic leadership has contributed to enhancing educational programs and research. She has also coordinated academic guidance and played a key role in shaping scientific committees. Throughout her career, she has supervised graduate students, collaborated on numerous research projects, and made substantial contributions to improving agricultural practices and plant stress resilience.

Awards and Honors:

Dr. Mona Hussein has received several recognitions for her academic and research contributions. She has been acknowledged for her pioneering work in plant physiology, particularly in understanding the biochemical and physiological responses of plants under abiotic stresses such as drought and salinity. Her research on using natural compounds like allelopathic agents has earned her acclaim in the scientific community. Dr. Hussein has been a recipient of multiple grants and awards for research excellence and innovation. Additionally, her leadership roles in academic committees, including the Faculty of Science and various universities in both Egypt and Saudi Arabia, have earned her recognition for outstanding service in higher education. Her contribution to environmental sustainability and agricultural development has also been celebrated by professional societies in the field of botany and plant physiology.

Research Focus:

Dr. Mona Hussein’s research focus lies at the intersection of plant physiology, biochemistry, and stress biology. Her work investigates the role of natural compounds and secondary metabolites in enhancing plant resilience to environmental stress, such as drought, salinity, and other abiotic factors. She is particularly interested in allelopathy and how plants produce chemicals that can control weeds and enhance crop productivity. Her research involves exploring bio-stimulants and natural products, including alkaloids, phenolics, flavonoids, and terpenoids, to improve plant growth and health. Dr. Hussein’s recent studies have explored the use of biochar and bio-stimulants in mitigating the effects of stress on crops like soybeans, sunflower, and wheat. She also investigates the molecular and biochemical pathways underlying stress tolerance, aiming to develop sustainable agricultural practices that promote higher crop yields in challenging environments.

Publications Top Notes:

  • “Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in Phaseolus vulgaris under drought stress” 🌱
  • “Eco-Physiological and Morphological Adaptive Mechanisms Induced by Melatonin and Hydrogen Sulphide Under Abiotic Stresses in Plants” 🌿
  • “Mentha piperita and Stressful Conditions” 🌿
  • “Role of Ascorbic Acid in Alleviating Abiotic Stress in Crop Plants” 🍊
  • “Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants” 🌱
  • “Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat” 🌾
  • “Alleviation of copper phytotoxicity by acetylsalicylic acid and nitric oxide application in mung bean” 🌿
  • “Exogenous Myo-Inositol Alleviates Salt Stress by Enhancing Antioxidants and Membrane Stability” 🍃

Conclusion:

Dr. Mona Hassan Soliman Hussein is undoubtedly a deserving candidate for the Best Researcher Award. She has demonstrated consistent excellence in research, contributing valuable insights into plant physiology, biochemistry, and their applications in agricultural sciences. Her leadership roles, vast publication record, and international collaborations further strengthen her case for the award. With continued growth in research visibility and engagement in cutting-edge collaborations, Dr. Soliman could make even greater strides in the field of plant science and agricultural sustainability.