Arzu Yay | Stem Cell Research | Best Researcher Award

Prof. Dr. Arzu Yay | Stem Cell Research | Best Researcher Award

Erciyes University | Turkey

Prof. Arzu Yay is a distinguished researcher in the Department of Histology and Embryology at Erciyes University, Turkey. Her work focuses on cellular and molecular mechanisms underlying tissue development, injury, and repair, with emphasis on immunohistochemical and ultrastructural analyses. Her M.Sc. research examined E-cadherin expression during renal development in the prenatal period, contributing to the understanding of epithelial differentiation in organogenesis. Her Ph.D. focused on nestin expression across different grades of meningiomas and glioblastomas, highlighting neural stem cell marker dynamics in tumor progression. She has conducted significant studies on oxidative stress, neurobiology, and tissue damage, including investigations into the effects of melatonin and vitamin C on alcohol-induced lung injury and nitric oxide synthase immunoreactivity. Her research has also explored tissue-level alterations in diabetes and the histological impacts of hormonal and anesthetic agents. Prof. Yay’s postdoctoral work at the University of Lübeck, Germany, further advanced her expertise in dermatological histopathology. Her contributions have been recognized through multiple national and international awards for excellence in experimental and translational research, particularly in antioxidant mechanisms and radioprotection. Her body of work reflects a strong integration of histological, molecular, and ultrastructural approaches in biomedical sciences.

Profiles: Google Scholar | Scopus

Featured Publications:

Yıldız, K., Efesoy, S. N., Ozdamar, S., Yay, A., Bicer, C., Aksu, R., & Kılıc, E. (2011). Myotoxic effects of levobupivacaine, bupivacaine and ropivacaine in a rat model. Clinical Investigation in Medicine, 34(5), 273–280.

Sarıozkan, S., Bucak, M. N., Canturk, F., Ozdamar, S., Yay, A., Tuncer, P. B., Ozcan, S., Sorgucu, N., & Caner, Y. (2012). The effects of different sugars on motility, morphology and DNA damage during the liquid storage of rat epididymal sperm at 4°C. Cryobiology, 65(2), 93–97.

Sarıozkan, S., Canturk, F., Yay, A., & Akçay, A. (2012). The effect of different storage temperature on sperm parameters and DNA damage in liquid stored New Zealand rabbit spermatozoa. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(3), 475–480.*

Yay, A., Ozdamar, S., Canoz, O., Tucer, B., & Baran, M. (2013). Nestin expression in meningiomas of different grades. Journal of Neurological Sciences (Turkish), 30, 532–540.

Sarıozkan, S., Türk, G., Canturk, F., Yay, A., Eken, A., & Akçay, A. (2013). The effect of bovine serum albumin and fetal calf serum on sperm quality, DNA fragmentation and lipid peroxidation of liquid stored rabbit semen. Cryobiology, 67(1), 1–6.*

Ernst, N., Yay, A., Bíró, T., Tiede, S., Humphries, M., Paus, R., & Kloepper, J. E. (2013). β1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PLoS ONE, 8(12), e84356.*

Yay, A., Ozdamar, S., Canoz, O., Baran, M., Tucer, B., & Sonmez, M. F. (2014). Intermediate filament protein nestin is expressed in developing meninges. Bratislava Medical Journal, 115(11), 718–722.*

Kavosh Zandsalimi | Skin Regeneration | Best Researcher Award

Dr. Kavosh Zandsalimi | Skin Regeneration | Best Researcher Award

Medical Laser Research Center, Yara Institute, ACECR, Tehran | Iran

Dr. Kavosh Zandsalimi is a biomedical engineer specializing in biomaterials and tissue repair technologies, with extensive expertise in the design, synthesis, and characterization of advanced biomaterials for biomedical applications. His research focuses on hydrogels, sponges, films, and micro/nanofibers, with particular emphasis on drug delivery systems, including hydrogels, nanofibers, microspheres, and metal-organic frameworks (MOFs). He has developed and optimized strategies for evaluating biomaterials in vitro, including cytotoxicity assessment, and antibacterial and anti-inflammatory efficacy. Dr. Zandsalimi’s work integrates nanomaterials synthesis with biomedical applications, aiming to enhance wound healing and tissue repair outcomes. He has successfully led projects that bridge fundamental research with translational applications, securing competitive research funding and mentoring teams in national and international innovation competitions. His research contributions extend to the development of protocols aligned with Good Laboratory Practice (GLP) and cleanroom standards, ensuring high-quality, reproducible results. Additionally, he has contributed to training programs on laboratory safety, biomaterials handling, and regulatory standards, reflecting his commitment to advancing both scientific knowledge and professional expertise in the biomedical engineering field.

Profiles: Google Scholar | Scopus

Featured Publications:

Heidari, B., Shams, S., Akbari, N., & Zandsalimi, K. (2025). Three-dimensionally decellularized human amniotic membrane scaffold: Structure, processing, and biological properties. Cell and Tissue Banking, 19(2), 2–47.

Karimi, M., Heidari, B., Jafary, H., & Zandsalimi, K. (2025). The quality and quantity of nanoparticles extracted from human adipose tissue derived-mesenchymal stem cells. Avicenna Journal of Medical Biotechnology, 17(3), 186–195.

Khorsandi, K., Hosseinzadeh, R., Esfahani, H., Zandsalimi, K., Shahidi, F. K., & Abrahamse, H. (2022). Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflammation and Regeneration, 42(1), 40.

Talabani, R. M., Garib, B. T., Masaeli, R., Zandsalimi, K., & Ketabat, F. (2021). Biomineralization of three calcium silicate-based cements after implantation in rat subcutaneous tissue. Restorative Dentistry & Endodontics, 46(1).

Zandsalimi, K., & Akbari, B. (2021). Improving the mechanical properties of polyetheretherketone (PEEK) using organophilic montmorillonite for the manufacture of orthopedic and dental implants. In National Conference of Modern Materials (pp. 1–8).

Mozafar Khazaei | Tissue Engineering Regeneration | Best Researcher Award

Prof. Mozafar Khazaei | Tissue Engineering Regeneration | Best Researcher Award

Prof. Mozafar Khazaei | Fertility and Infertility Research Center, Health Technology Research Institute, Kermanshah University of Medical Sciences, Kermanshah | Iran

Prof. Mozafar Khazaei is a distinguished Professor of Histology and Embryology at Kermanshah University of Medical Sciences (KUMS), Iran. With over 30 years of academic experience, he has been a pivotal figure in developing the fields of anatomical sciences and reproductive medicine in Iran. As the Head of the Fertility & Infertility Research Center (FIRC) and Tissue Engineering Department, Prof. Khazaei has led major educational and research advancements, including establishing M.Sc. and Ph.D. programs and state-of-the-art laboratories. He completed a fellowship in Cell & Tissue Culture at the University of Toronto, Canada, and has published extensively in leading journals. With an h-index of 31 and over 3700 citations (Scopus), he is globally recognized for his contributions to oxidative stress, fertility, stem cell biology, and tissue engineering. His interdisciplinary expertise, leadership, and dedication make him a standout candidate for the Best Researcher Award.

Publication Profiles: 

Google Scholar
Scopus
Orcid

Education:

Prof. Khazaei holds a Ph.D. in Anatomical Sciences (Histology & Embryology) from Isfahan University of Medical Sciences, where he was a distinguished graduate. He also completed his M.Sc. in Medical Histology from the same university, securing the 1st rank in his cohort. He earned his B.Sc. in Biology from Razi University, Iran. Demonstrating a commitment to advanced biomedical sciences, he completed a prestigious fellowship in Cell & Tissue Culture at Mount Sinai Hospital, University of Toronto, Canada. His continuous education in ART techniques, histological methodologies, and tissue engineering has laid the foundation for his extensive academic and research success. His academic path reflects a consistent record of excellence, innovation, and dedication to medical science education and development.

Experience:

Prof. Khazaei has served as a faculty member at KUMS, contributing extensively to education, research, and academic leadership. He has held key roles including Associate Dean for Basic Sciences, Head of FIRC, and Head of Tissue Engineering Department. His leadership led to the establishment of advanced M.Sc. and Ph.D. programs, labs, and research infrastructures. He played a pivotal role in national educational policy as a board member for the Ministry of Health’s Evaluation Committees. He has also been actively involved in journal editorial boards and was Editor-in-Chief of the Educational Research in Medical Sciences journal. His broad teaching portfolio spans undergraduate to doctoral levels, covering histology, embryology, stem cell biology, tissue engineering, and more. His cross-disciplinary experience, national policy contributions, and lab development initiatives reflect his comprehensive impact on Iran’s medical academic ecosystem.

Awards & Honors:

Prof. Khazaei has received several prestigious recognitions throughout his career. He ranked 1st in his M.Sc. program and was honored as a Distinguished Graduate in his Ph.D. program. His work was awarded Best Clinical Research Paper by the Canadian Fertility & Andrology Society, showcasing international acknowledgment of his research impact. His academic excellence also earned him editorial roles in renowned journals, including Section Editor and Board Member for the International Journal of Fertility & Sterility and Dental Hypotheses Journal. Under his leadership, multiple research and academic programs were established, reflecting his role as a trailblazer in Iranian medical science. These accolades underscore his scientific leadership, innovation, and dedication to advancing education and research on both national and international levels.

Research Focus:

Prof. Khazaei’s research is centered around oxidative stress, stem cell biology, tissue engineering, fertility, and histopathology. He has significantly contributed to understanding the role of reactive oxygen species (ROS) in reproductive and cancer biology, including the Nrf2 pathway. His work explores the use of antioxidants, natural compounds, and nanotechnology in improving tissue health, fertility outcomes, and regenerative medicine applications. Notably, he has investigated the protective roles of Royal Jelly, Falcaria vulgaris, and other herbal extracts in diabetic and oxidative stress-related conditions. His interdisciplinary studies have bridged cellular biology with clinical implications, contributing to both basic science and applied medicine. With over 3700 citations, Prof. Khazaei’s research has influenced fertility science, stem cell therapy, and cancer pharmacology, making him a respected voice in biomedical research globally.

Publications Top Notes: 

  1. Oxidative stress and cancer: the role of Nrf2

  2. Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes

  3. Protective effect of Falcaria vulgaris extract on ethanol induced gastric ulcer in rat

  4. New findings on breast cancer stem cells: a review

  5. Antioxidant and protective effects of Royal jelly on histopathological changes in testis of diabetic rats

  6. New findings on biological actions and clinical applications of royal jelly: a review

  7. Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats

  8. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers

  9. Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity

  10.  Study of Foeniculum vulgare effect on folliculogenesis in female mice

Conclusion:

In conclusion, Professor Mozafar Khazaei is a distinguished academic and prolific researcher whose contributions have profoundly shaped the fields of histology, embryology, fertility sciences, and tissue engineering in Iran and beyond. His scholarly depth, mentorship of graduate and doctoral students, and institutional leadership make him a highly deserving candidate for the Best Researcher Award. His lifelong commitment to advancing biomedical sciences, combined with his outstanding research output and capacity-building initiatives, firmly align with the core criteria of this prestigious recognition. With continued strategic outreach and cross-disciplinary collaboration, his future impact promises to be even more transformative.

Suchit Sarin | Tissue Engineering Regeneration | Best Researcher Award

Dr. Suchit Sarin | Tissue Engineering Regeneration | Best Researcher Award

Dr. Suchit Sarin | University of Nebraska Lincoln | United States

Dr. Suchit Sarin is an accomplished materials engineering researcher with over 12 years of academic and research experience in microstructural analysis, materials characterization, and process development. With a passion for advancing materials science, he has contributed extensively through his Ph.D. work at the University of Nebraska-Lincoln, where he has excelled in the use of advanced instrumentation like SEM/FIB, TEM, STEM, and XRD. Suchit has trained over 50 users on high-precision tools and worked with cross-functional teams from academia and industry. He has authored/co-authored more than 15 peer-reviewed publications in high-impact journals and conference proceedings. His research in laser surface engineering, thin films, nanostructures, and thermal materials showcases his interdisciplinary strengths. Suchit’s commitment to scientific rigor, hands-on technical expertise, and collaborative spirit make him a strong candidate for recognition as a leading researcher in his field.

Publication Profiles: 

Google Scholar
Scopus

Education:

Suchit Sarin holds a Ph.D. in Materials Engineering from the University of Nebraska-Lincoln, where he specialized in laser-material interactions, advanced microscopy, and functional surface design. Prior to this, he earned his Master of Science by Research in Metallurgical Engineering and Materials Science from the Indian Institute of Technology Bombay. His graduate and doctoral studies have involved rigorous experimental and theoretical work, particularly in nano/micro-structuring, thermophysical properties, and magnetic materials. Throughout his academic journey, Suchit demonstrated academic excellence, technical leadership, and strong communication skills. His education provided a solid foundation in both fundamental and applied aspects of materials science, further strengthened by his exposure to interdisciplinary collaborations, hands-on equipment management, and industrial partnerships. This unique academic profile has positioned him at the forefront of innovation in functional materials and energy-efficient surface technologies.

Experience:

Suchit Sarin served as the Instrument Manager for the FEI Helios NanoLab 660 DualBeam SEM/FIB at the Nano-Engineering Research Core Facility in Lincoln, NE. He conducted over 50 training sessions and ensured operational excellence through regular maintenance and calibration. He prepared advanced samples, including electron-transparent foils, nano-slits, and nanopillars, and characterized a wide range of materials—from semiconductors to geological specimens. His collaboration extended beyond academia to industrial partners such as Li-Cor Biosciences and Monolith. His earlier academic research involved synthesis, oxidation behavior, and coatings in high-temperature materials. Suchit is proficient with TEM, STEM, XRD, DSC, and simulation tools like CALPHAD (ThermoCalc), positioning him as a multidisciplinary researcher with both technical depth and cross-functional experience. His leadership in instrumentation and collaboration makes him an integral contributor to both the research ecosystem and industry-relevant innovation.

Research Focus:

Suchit Sarin’s research focuses on surface functionalization, micro/nanostructuring, and advanced materials characterization. A central theme in his work is understanding and engineering the interaction of ultrashort laser pulses with various materials to develop structures with enhanced thermal, magnetic, and catalytic properties. He has significantly contributed to the development of self-organized nano/microstructures on metals and semiconductors using femtosecond laser processing. His research has implications in energy transfer, heat dissipation, catalysis, and spintronics. He employs advanced tools like SEM/FIB, TEM/STEM, XRD, and DSC to understand structure-property relationships at multiple length scales. Additionally, he has worked on plasma-assisted catalysis and magnetic thin films, contributing to innovations in clean energy and electronics. His multidisciplinary approach integrates experimental analysis with industrial problem-solving, offering practical solutions grounded in fundamental science. With over 15 high-impact publications, Suchit’s research stands out for both its novelty and real-world applicability.

Publications Top Notes: 

  1. Growth mechanisms of micro/nano-structures from ultrashort laser ablation on copperApplied Surface Science

  2. Graph theory to quantify femtosecond laser-processed copper surfacesSurfaces and Interfaces

  3. Laser-induced quasi-periodic surface structures for enhanced vapor chamber coolingAdvanced Functional Materials

  4. Logarithmic trends in microstructures on femtosecond-lasered siliconSPIE Proceedings

  5. Spin-wave propagation in thulium iron garnet thin filmsAdvanced Electronic Materials

  6. Plasma-assisted methanol synthesis via CO₂ hydrogenationChemSusChem

  7. Room-temperature magnetic skyrmions in CoPt thin filmsACS Nano

  8. Copper surface functionalization via femtosecond laser processingSPIE Proceedings

  9. Pool boiling enhancement using femtosecond-processed aluminumIEEE ITherm

  10.  Dual-channel boiling heat transfer on laser-processed steelIEEE ITherm

Conclusion:

In conclusion, Dr. Suchit Sarin is a highly deserving candidate for the Best Researcher Award. His exceptional contributions to the field of materials science, especially in surface functionalization, electron microscopy, and energy-related applications, make him a standout nominee. With a proven track record of impactful publications, collaborative spirit, and commitment to mentorship and instrumentation excellence, he embodies the qualities of a researcher who not only pushes the boundaries of knowledge but also fosters the growth of the scientific community. With continued development in leadership and broader dissemination, he is well-poised to become a leading figure in the global materials research landscape.

 

 

Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Zhejiang University | China

Dr. Yuxin Peng is a distinguished researcher and educator in the field of biomedical and exercise science engineering. Currently serving as a ZJU 100 Young Professor at Zhejiang University, China, he has made significant strides in developing flexible sensors, smart wearable systems, and human–machine interaction technologies. With a Ph.D. and postdoctoral training at the National University of Singapore, his research integrates cutting-edge materials science, biomechanics, and AI-driven health monitoring systems. His work has been consistently published in high-impact journals like Science Advances, Advanced Science, IEEE Transactions, and Soft Robotics, reflecting both depth and innovation. Dr. Peng’s contributions are not only academic but also practical, with several of his innovations applied in rehabilitation, sports science, and robotics. His dedication and cross-disciplinary expertise make him a strong candidate for recognition such as the Best Researcher Award.

Publication Profiles: 

Orcid
Scopus

Education:

Dr. Yuxin Peng received his doctoral degree (Ph.D.) in an engineering-related discipline, laying a strong foundation in biomedical engineering, biomechanics, and sensor technologies. His early academic pursuits were rooted in multidisciplinary innovation, merging engineering principles with human physiology and robotics. To further deepen his scientific understanding, he pursued postdoctoral research at the prestigious National University of Singapore, focusing on biomedical systems and smart rehabilitation. During his academic training, Dr. Peng built expertise in wearable sensors, motion tracking systems, and soft robotics—technologies that play a crucial role in personalized healthcare and intelligent rehabilitation. His education trajectory demonstrates both depth and diversity, preparing him to address complex biomedical challenges with integrated, high-tech solutions. It also laid the groundwork for his future leadership roles and impactful research career at Zhejiang University, where he now mentors young researchers and leads innovation in health engineering.

Experience:

Dr. Yuxin Peng has built an impressive academic and research career spanning over a decade. He has been a ZJU 100 Young Professor at Zhejiang University, affiliated with the Institute of Exercise Science and Health Engineering. In this role, he leads interdisciplinary research projects in wearable technology, flexible sensors, and human motion analysis. Prior to this, he served as a Research Fellow at the Department of Biomedical Engineering, National University of Singapore, where he focused on intelligent health systems and rehabilitation technologies. His hands-on experience in global, high-tech research environments has allowed him to develop collaborations with experts in robotics, materials science, and medical engineering. He has supervised numerous projects and students, while continuously publishing in high-impact journals. His experience demonstrates a rare blend of academic rigor and real-world application, making him a leader in human-centered biomedical innovation and smart rehabilitation systems.

Research Focus:

Dr. Yuxin Peng’s research focuses on wearable systems, smart sensors, soft robotics, and biomedical signal processing for human motion monitoring and rehabilitation. His work addresses real-world problems such as gait analysis, joint motion detection, force sensing, and rehabilitation assistance. By integrating AI, flexible electronics, and biocompatible materials, he develops high-performance sensors and intelligent exosuits for applications in sports science, elderly care, and physical therapy. Notable innovations include graphene-based aerogels, hydrogel biosensors, and multi-feature neural networks for gesture recognition. His lab has also contributed to optical waveguide sensors, virtual reality rehabilitation, and MI-controlled exoskeletons. The overarching goal of his work is to enable non-invasive, real-time, and personalized health monitoring through smart technology. By pushing the boundaries of soft, adaptive, and human-interactive systems, Dr. Peng’s research is at the forefront of the next generation of intelligent biomedical engineering solutions.

Publications Top Notes:

  1. Hydroplastic Foaming of Graphene Aerogels and AI Tactile SensorsScience Advances

  2. Underwater Instant Adhesive Hydrogel Interfaces for Robust BiosensingAdvanced Science

  3. Flexible Segmented Assemblable Fiber Optic Sensor for Multi-Joint MonitoringSoft Robotics (Accepted)

  4. Calibration-Free Optical Waveguide Bending Sensor for Soft RobotsSoft Science

  5. Distributed Plantar 3D Force Measurement SystemSensors and Actuators A

  6. Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign LanguageSmall

  7. Omnidirectional Soft Bending Sensor for Joint MonitoringIEEE TIE

  8. Shank-RIO: Ranging-Inertial Odometry for Gait and PositioningIEEE TIM

  9. Exosuit with Bidirectional Hand Support via Gesture RecognitionIEEE TNSRE

  10.  Advances in Flexible Bending Sensors and ApplicationsIJ Smart & Nano Materials

Conclusion:

In conclusion, Dr. Yuxin Peng exhibits all the qualities of a top-tier, award-worthy researcher. His work is characterized by scientific rigor, high-impact publication, and a vision for solving real-world healthcare challenges using cutting-edge sensor and robotics technologies. As a respected academic at Zhejiang University with a solid international research background, Dr. Peng has already contributed significantly to wearable health tech and rehabilitation sciences. His ability to combine soft material innovation, artificial intelligence, and biomechanics into novel human-machine interaction systems places him at the forefront of biomedical engineering research. While there is room for growth in the areas of commercialization and global academic engagement, his career trajectory, research excellence, and societal relevance of his innovations make him a highly deserving candidate for the Best Researcher Award.

Zhaowei Feng | Stem Cell Research | Best Researcher Award

Dr. Zhaowei Feng | Stem Cell Research | Best Researcher Award

Dr. Zhaowei Feng, The Second Affiliated Hospital of Xuzhou Medical University, China

Zhaowei Feng is a dedicated biomedical researcher specializing in neurobiology and pharmacology, currently serving as an Assistant Researcher at The Second Affiliated Hospital of Xuzhou Medical University. With a solid academic foundation and a passion for neuroscience, Feng has made significant contributions to understanding mechanisms of neuroprotection and demyelination. His research spans neurodegenerative disease models such as multiple sclerosis and neonatal hypoxia-ischemia, utilizing molecular and cellular biology tools. Known for his collaborative nature and scientific rigor, Feng has co-authored multiple peer-reviewed articles in prestigious journals and has played pivotal roles in various national and municipal-level research projects. He is particularly recognized for co-first authorship in several studies, reflecting leadership in experimental design and data analysis. His growing influence in the field is further supported by ongoing funded projects and a research trajectory aimed at translational outcomes. Feng is committed to continuing impactful research that bridges bench science with clinical applications.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Strong Research Focus in Neurobiology 🧠
    Zhaowei Feng has a consistent and impactful research portfolio in neurobiology, particularly in myelination, ischemia-reperfusion injury, and glutamate signaling. His work is highly relevant in addressing diseases like multiple sclerosis and neonatal hypoxia-ischemia encephalopathy.

  2. Publications in High-Impact Journals 📚
    He has co-authored several peer-reviewed journal articles in reputable journals such as Phytomedicine, Pharmacology, Oncology Reports, and Frontiers. His contributions as co-first author in multiple papers reflect significant involvement in study design and experimentation.

  3. Independent Researcher Role 🧪
    He currently serves as a Principal Investigator for a municipal-level research project funded by the Xuzhou Health Commission, demonstrating trust in his leadership and research direction.

  4. Multidisciplinary Expertise 🔬
    His research integrates pharmacology, molecular biology, and neuroscience, covering diverse mechanisms like PPARγ signaling, SUMOylation, and ferroptosis, which enhances translational potential.

  5. Rapid Academic Growth 🚀
    Transitioning quickly from a Master’s student (2019–2022) to Assistant Researcher and PI (since 2022) shows a fast-tracked academic trajectory.

⚠️ Areas for Improvement:

  1. Need for More First-Author and Corresponding-Author Papers ✍️
    While co-first authorship is commendable, a stronger emphasis on sole first or corresponding authorship in future publications would establish more scientific independence.

  2. Limited Recognition at National Level 🏅
    Most current funding and achievements are at the municipal level. Applying for national or international grants (e.g., NSFC, NIH) would elevate his research profile.

  3. Postdoctoral Training or Collaboration Abroad 🌍
    Gaining international experience or collaborating with global research centers could broaden perspectives and techniques, increasing citation impact and networking.

  4. More Diversified Research Outputs 📊
    Exploring patents, clinical trials, or translational research outcomes could further demonstrate innovation and application potential.

🎓 Education:

Zhaowei Feng began his academic journey in the biological sciences at Xuzhou Medical University, where he earned his Bachelor’s degree between 2014 and 2018. He further pursued a Master’s degree in Neurobiology at the same institution from September 2019 to July 2022. His graduate studies were marked by an intensive focus on neurodegenerative mechanisms, including demyelination and neuroinflammation, with particular attention to cuprizone-induced and ischemia-reperfusion mouse models. His research also explored glutamate transport regulation, the PPARγ pathway, and oligodendrocyte differentiation. His educational foundation not only provided him with technical proficiency in experimental neuroscience but also cultivated a strong understanding of translational biomedical research. Through rigorous coursework, laboratory experience, and thesis writing, Feng developed a robust academic profile that seamlessly transitioned into his research career. His educational journey reflects consistent dedication and a clear trajectory towards clinical and experimental neurobiology.

🧪 Experience:

Since September 2022, Zhaowei Feng has been working as an Assistant Researcher at The Second Affiliated Hospital of Xuzhou Medical University. His role involves leading preclinical studies, managing collaborative projects, and mentoring junior researchers. Feng has also served as Principal Investigator on a municipal-level research grant focusing on blood-brain barrier damage post-transplantation. He actively participates in multiple interdisciplinary studies involving neurodevelopment, myelination, and pharmacological interventions. Prior to his current role, his Master’s research provided hands-on experience with animal models, molecular techniques, and data analysis in neurobiology. Feng has authored or co-authored numerous research papers, some as co-first author, contributing significantly to study design and execution. He is also involved in translational research projects that aim to bridge laboratory findings with clinical therapies. His work ethic, attention to detail, and innovative approach make him a valuable contributor to the field of neurobiological research.

🏅 Awards and Honors:

Zhaowei Feng has been recognized for his scientific contributions through both academic and research-oriented accolades. Notably, he is the recipient of a research grant from the Xuzhou Municipal Health Commission (Project No. XWKYHT20230029), focusing on cerebral ischemia-reperfusion and blood-brain barrier injury. Though early in his professional career, his selection as Principal Investigator on this project signifies trust in his leadership and expertise. Several of his publications in high-impact journals list him as co-first author—an honor that highlights his equal contribution in rigorous experimental work. While he has yet to receive national awards such as from the Natural Science Foundation, his steady academic output and funded research projects mark a strong trajectory. His growing publication record and role in significant studies position him as a rising talent in the biomedical field. Future honors are likely as his research continues to address key questions in neuroscience and pharmacology.

🔬 Research Focus:

Zhaowei Feng’s research centers on neuroprotection, demyelination, and neuroinflammation, with a particular focus on the mechanisms underlying multiple sclerosis, ischemic brain injury, and neonatal encephalopathy. His studies often employ animal models such as cuprizone-induced demyelination and hypoxia-ischemia to explore therapeutic targets. Feng is particularly interested in the regulation of oligodendrocyte differentiation and the role of glutamate transporters, signaling molecules like PPARγ, and pathways involving Wnt/β-catenin and SUMOylation. Additionally, he has investigated compounds such as diosgenin and alpha-asaronol for their neuroprotective and remyelination-promoting effects. His work also extends into cancer biology, with studies on ferroptosis and protein regulation in squamous cell carcinoma. By integrating molecular biology, pharmacology, and neurodevelopmental research, Feng aims to contribute to the discovery of new treatments for central nervous system disorders. His current and future research is geared toward translational medicine that bridges laboratory science with clinical applications.

📚 Publication Top Notes:

  1. 🧠 Alpha-Asaronol Alleviates Dysmyelination by Enhancing Glutamate Transport via PPARγ-GLT-1 Signaling in Neonatal Hypoxia-Ischemia (Pharmacology, 2022)

  2. 🧬 C1q Inhibits Differentiation of Oligodendrocyte Progenitor Cells via Wnt/β-Catenin Signaling (Biomedicine & Pharmacotherapy, 2023)

  3. 🧪 Alpha-Asaronol Promoted OPC Differentiation and Improved Myelination as a PPARγ Activator (Frontiers, 2023)

  4. 🧫 Diosgenin Promoted OPC Differentiation by Blocking GLUR2/GAPDH Interaction in Pilocarpine-Induced Epilepsy Rats (Phytomedicine, 2025)

  5. 🧬 Netrin-4 Mediates Piezo1 Inactivation and YAP Signaling Alleviation in Cerebral Ischemia-Reperfusion (Oncology Reports)

  6. 🔬 SENP1 Inhibits Ferroptosis and Promotes Head and Neck Squamous Cell Carcinoma by Regulating ACSL4 Protein (Molecular Oncology, 2023)

  7. 🧪 SUMO1-Mediated Stabilization Enhances Protein Function in Neuroinflammatory Models (Unspecified Journal)

  8. 🧠 Signaling Activation in a Cuprizone-Induced Mouse Model of Multiple Sclerosis (Unspecified Journal)

📌 Conclusion:

Zhaowei Feng is a highly promising early-career researcher with a clear scientific focus, a growing publication record, and demonstrated ability to lead independent research. His work addresses critical challenges in neurobiology and pharmacology, making a tangible impact in both experimental and translational medicine. With continued progression—especially toward national-level recognition and senior authorship—he has the potential to become a leader in his field.

ALINE TAKEJIMA | Tissue engineering | Women Researcher Award

Dr. ALINE TAKEJIMA | tissue engineering | Women Researcher Award

Dr. ALINE TAKEJIMA, pontificia universidade catolica do parana, Brazil

Dr. Aline Luri Takejima is a physician-scientist from Brazil, specializing in regenerative medicine and wound healing. She holds an MD and a PhD in Health Sciences from the Pontifical Catholic University of Paraná (PUCPR), where she currently conducts postdoctoral research. With a focus on biological therapies involving the amniotic membrane, Wharton’s jelly, and mononuclear stem cells, Dr. Takejima has published in multiple high-impact scientific journals. Her research aims to develop novel regenerative strategies to treat complex wounds and enhance tissue repair. As an active member of PUCPR’s Wound Healing Research Group and the Brazilian Society of Plastic Surgery, she combines scientific rigor with clinical insight to bridge bench-to-bedside innovation. Her academic contributions are guided by a translational approach, offering promising avenues for future clinical applications in tissue engineering.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Focused Research Excellence:
    Dr. Takejima’s work on biological scaffolds and stem cells in wound healing is both innovative and clinically relevant. Her studies using amniotic membrane, Wharton’s jelly, and bone marrow mononuclear cells show promising regenerative outcomes in preclinical models.

  2. Research Productivity:
    With 9 peer-reviewed journal articles in high-quality platforms (e.g., Biomedicines, Tissue Barriers, Annals of Biomedical Engineering), she demonstrates consistent academic output in her field.

  3. Translational Impact:
    Her research bridges basic science and clinical practice, aiming to provide regenerative solutions for patients with chronic wounds and cardiac damage.

  4. Collaborative Engagement:
    Active participation in a multidisciplinary wound healing research group, contributing to cross-functional scientific advancements.

  5. Recognition Potential:
    As a young, emerging woman researcher in biomedical sciences, she stands as a role model for future female scientists in Latin America and beyond.

🔧 Areas for Improvement:

  1. Intellectual Property & Innovation:
    No patents filed yet; transitioning her research into patentable therapies or commercial applications would increase its societal and economic impact.

  2. Leadership Roles:
    While active in research, taking on editorial or scientific leadership positions would enhance her academic visibility and influence.

  3. Internationalization:
    She would benefit from developing international collaborations or fellowships to diversify her research scope and increase global reach.

  4. Industry Engagement:
    Engaging in consultancy or biotech partnerships can further the translational impact of her regenerative strategies.

🎓 Education:

Dr. Takejima’s educational journey began with a Doctor of Medicine (MD) degree from the Pontifical Catholic University of Paraná (PUCPR), Brazil. Her passion for research led her to pursue a Doctorate (PhD) in Health Sciences/Medicine, also at PUCPR. Her doctoral thesis focused on the use of biologically active materials such as the amniotic membrane and stem cells to enhance wound healing. Throughout her academic training, she demonstrated a strong commitment to translational medicine by integrating basic science with clinical practice. During her PhD, she engaged in experimental models involving stem cell therapy and tissue engineering, which laid the groundwork for her current postdoctoral research. Her educational path reflects both depth and specialization in the biomedical sciences, particularly in regenerative medicine and cellular therapies.

💼 Experience:

Dr. Aline Takejima has over a decade of experience in medical and scientific fields, balancing her role as a physician with that of a postdoctoral researcher. Her clinical background informs her research, particularly in areas of wound healing and regenerative medicine. At PUCPR, she contributes to the Wound Healing Research Group, where she is involved in designing and conducting animal model studies to test the effects of biomaterials and stem cells. Her multidisciplinary research integrates immunology, histopathology, and molecular biology. With nine peer-reviewed publications and participation in collaborative research, she has become a respected contributor to the field. Though early in her research career, her trajectory shows a steady rise, marked by evidence-based outcomes and a commitment to innovation. Her goal is to bridge clinical challenges with regenerative solutions that can be implemented in real-world medical practice.

🔬 Research Focus:

Dr. Takejima’s research focuses on regenerative strategies for wound healing, utilizing biomaterials and stem cells. Her work primarily explores the application of amniotic membrane, Wharton’s jelly, and bone marrow-derived mononuclear stem cells in treating complex or chronic skin wounds. Using experimental models in rats and rabbits, she evaluates histological recovery, inflammation modulation, and tissue regeneration. A significant aspect of her research is understanding how these materials promote healing through paracrine effects rather than direct integration, offering a safer and scalable pathway to clinical application. Additionally, her work extends to cardiac and tracheal tissue repair, emphasizing the versatility of these regenerative approaches. The translational nature of her research bridges laboratory discoveries with potential bedside applications, positioning her at the forefront of cellular therapy and biomaterials science.

📚 Publications Top Notes:

  1. 🧠 Wharton’s Jelly Bioscaffolds Improve Cardiac Repair with Bone Marrow Mononuclear Stem Cells in RatsJournal of Functional Biomaterials, 2025

  2. 🧫 The effects of decellularized amniotic membrane and Wharton’s jelly on the healing of experimental skin wounds in ratsTissue Barriers, 2025

  3. ❤️ Bone-marrow mononuclear cells and acellular human amniotic membrane improve global cardiac function…Anais da Academia Brasileira de Ciências, 2024

  4. 🫁 Tracheal regeneration with acellular human amniotic membrane and 15d-PGJ2 nanoparticles in rabbitsAnais da Academia Brasileira de Ciências, 2023

  5. 🧬 Acellular Biomaterials + Autologous Stem Cells Improve Wound Healing via Paracrine EffectsBiomedicines, 2023

  6. 💉 Decellularized Amniotic Membrane Solubilized with Hyaluronic Acid in Wound HealingAnnals of Biomedical Engineering, 2022

  7. 🧪 Role of Mononuclear Stem Cells and Decellularized Amniotic Membrane in Skin WoundsTissue Barriers, 2022

  8. 🏥 Trauma hepático: epidemiologia de cinco anos…Revista do Colégio Brasileiro de Cirurgiões, 2008

🧾 Conclusion:

Dr. Aline Luri Takejima is an outstanding candidate for the Women Researcher Award. Her academic profile demonstrates a strong foundation in regenerative medicine with significant contributions to wound healing research. Her commitment to applying biological therapies in clinical contexts shows both depth and innovation. As a woman scientist in a competitive field, she exemplifies leadership, dedication, and potential. With further growth in global engagement and innovation strategy, Dr. Takejima is poised to become a future leader in regenerative biomedical research.

Rodrigo Navarro | Tissue Engineering | Tissue Engineering Award

Dr. Rodrigo Navarro | Tissue Engineering | Tissue Engineering Award

Dr. Rodrigo Navarro, Institute of Polymer Science and Technology, Spain

Dr. Rodrigo Navarro Crespo is a Tenured Scientist at the Spanish National Research Council (CSIC), specializing in polymer science and materials chemistry. With a solid foundation in chemistry and an internationally-recognized research profile, he has contributed significantly to the development of advanced polymeric materials with environmental and biomedical applications. His scientific work focuses on sustainable materials, plasticizer migration suppression, polymer surface modification, and chemical recycling. Dr. Navarro has published extensively in high-impact journals and collaborated with researchers across Europe. His ability to innovate in polymer processing, particularly through green chemistry and circular economy principles, positions him at the forefront of modern materials science. In 2020, he was awarded the Best Paper Award by the European Membrane Society. Dr. Navarro’s experience, interdisciplinary mindset, and research excellence make him a strong candidate for recognition in fields like tissue engineering, where advanced and sustainable polymer design is increasingly critical.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. Interdisciplinary Expertise: Dr. Navarro’s research integrates polymer chemistry, materials science, and green chemistry, which are highly relevant for tissue engineering. His expertise in designing bio-inspired polyurethanes and non-migrating plasticized polymers aligns with the need for biocompatible, durable, and safe scaffolding materials in regenerative medicine.

  2. Innovation in Polymer Modification: His work on PVC modification, covalent plasticizer bonding, and functional surface-attached polymer layers demonstrates strong potential for developing customized materials with controlled biodegradability and mechanical properties suitable for tissue scaffolds.

  3. Environmental Sustainability Focus: His award-winning contributions to the circular economy, especially the upcycling of PET and membrane recycling, show leadership in sustainable material innovation — a growing priority in biomedical applications.

  4. Publication Impact & Recognition: With highly cited publications in Macromolecules, Langmuir, and Journal of Membrane Science, and the 2020 Best Paper Award, he is a well-recognized expert in polymer systems, which strengthens his academic profile for any prestigious research award.

📌 Areas for Improvement:

  1. Direct Application to Tissue Engineering: While his research strongly supports materials design, there’s limited direct evidence of his work being applied in biological systems such as cell culture, in vivo testing, or tissue integration studies. Expanding collaborations with biomedical researchers or publishing in biomedical journals could solidify his relevance in tissue engineering.

  2. Translational Research Output: Most contributions are fundamental or materials-based; showcasing functional prototypes, patents, or clinical collaborations would boost his impact in the translational science domain where tissue engineering advances often occur.

  3. Broader International Leadership: While experienced and internationally trained, more visibility in international tissue engineering consortia, symposia, or editorial roles in biomedical journals could help affirm his leadership in this interdisciplinary field.

🎓 Education:

Rodrigo Navarro Crespo began his academic career with a BSc in Chemistry from the University of Valladolid (Spain) in 2004, earning distinction. He then pursued a PhD in Chemistry at the Complutense University of Madrid, completing it in 2009, also with distinction. His doctoral research focused on developing functional polymers, laying the groundwork for a research career centered on advanced polymer chemistry and materials science. Dr. Navarro has consistently aimed to integrate fundamental chemistry with applied research, which is evident from his later involvement in high-level research projects in Germany and Spain. His educational path reflects a strong commitment to academic excellence and international collaboration. The combination of chemical synthesis, polymer engineering, and sustainable materials has equipped him with a versatile and interdisciplinary academic foundation, ideally suited for innovation in tissue engineering and biomaterials science.

💼 Experience:

Dr. Navarro’s professional journey started as a PhD student at the Instituto de Ciencia y Tecnología de Polímeros (CSIC) from 2004 to 2008. Post-PhD, he worked in Germany at the Institut für Mikrosystemtechnik (IMTEK) (2009–2010), gaining international experience in microsystems and surface modification. Since 2024, he holds a Tenured Scientist position at CSIC, where he leads innovative projects in polymer chemistry. Over his career, he has developed and characterized novel polymeric materials with diverse applications — from biocompatible films and recyclable polymers to smart functional materials. His multidisciplinary experience spans academic research, applied polymer development, and international cooperation. Dr. Navarro’s blend of theoretical knowledge and hands-on research excellence has made him a key figure in advancing sustainable polymer solutions for real-world challenges, aligning well with emerging areas like tissue engineering.

🏅 Awards and Honors:

  • 🎓 Distinction in Chemistry Degree – University of Valladolid, 2002

  • 🎓 Distinction in PhD Chemistry – Complutense University of Madrid, 2009

  • 🏆 Best Paper Award (2020) – European Membrane Society for a publication in Journal of Membrane Science on circular economy and membrane recycling
    Dr. Navarro’s academic distinctions highlight his strong foundational capabilities in chemistry, and his Best Paper Award demonstrates peer-recognized innovation in sustainability-focused research. His scholarly impact is further emphasized by the high citation count of multiple papers, especially in areas like polymer plasticizers and membrane technologies. These recognitions underscore his dedication to impactful, high-quality research — a key qualification for awards in cutting-edge fields such as tissue engineering.

🔬 Research Focus:

Dr. Rodrigo Navarro Crespo’s research centers on advanced polymeric materials with sustainable, functional, and biomedical properties. A core focus has been the modification of PVC and polyurethanes to reduce plasticizer migration — a significant health and environmental issue. He has also developed novel bio-inspired materials, recyclable membranes, and upcycled polyesters, contributing to the circular economy. His work emphasizes green chemistry, high-performance coatings, and functional surfaces, employing photochemical and thermal methods to tailor polymer properties. His recent research aligns with key tissue engineering needs: biocompatibility, controlled degradation, and mechanical robustness. Through collaborative projects, interdisciplinary innovation, and a publication portfolio spanning membrane science, degradation stability, and polymer nanocomposites, Dr. Navarro addresses global challenges like plastic waste and biomedical material safety. His expertise is well-suited to tissue engineering applications where materials science, sustainability, and biofunctionality converge.

📚 Publications Top Notes:

  1. 📄 Phthalate plasticizers covalently bound to PVC: plasticization with suppressed migration – Macromolecules, 2010

  2. 📄 Preparation of surface-attached polymer layers by thermal or photochemical activation of α-diazoester moieties – Langmuir, 2013

  3. 📄 Highly flexible PVC materials without plasticizer migration via trichlorotriazine chemistry – Macromolecules, 2016

  4. 📄 New routes to difunctional macroglycols using ethylene carbonate – Polymer Degradation and Stability, 2017

  5. 📄 Design and synthesis of bio-inspired polyurethane films with high performance – Polymers, 2020

  6. 📄 Coumarins into polyurethanes for smart and functional materials – Polymers, 2020

  7. 🏆 Circular economy in membrane technology: Recycling end-of-life reverse osmosis modules – Journal of Membrane Science, 2020

  8. 📄 Preparation of high molecular weight poly(urethane-urea)s bearing deactivated diamines – Polymers, 2021

  9. 📄 Properties of polyurethanes from poly(diethylene glycol terephthalate) – European Polymer Journal, 2021

  10. 🔄 Chemical upcycling of PET waste: Moving to a circular model – Journal of Polymer Science, 2022

🧾 Conclusion:

Dr. Rodrigo Navarro Crespo is a highly qualified and promising candidate for a Research for Tissue Engineering Award, particularly from the materials development and sustainability angle. His original contributions in polymer chemistry, especially in bio-inspired and functional polymers, offer real value to regenerative medicine through safer, smarter, and more environmentally responsible biomaterials.

Song He | Tissue Engineering Regeneration | Best Researcher Award

Dr. Song He | Tissue Engineering Regeneration | Best Researcher Award

Dr. Song He, Hunan University of Humanities, Science and Technology, China

Dr. Song He is a dedicated researcher and lecturer at the School of Energy and Mechanical Engineering, Hunan University of Humanities, Science and Technology. With a strong background in civil materials and energy systems, Dr. He has made impactful contributions in the field of nanoporous aluminum substrates, heat transfer mechanisms, and condensation processes. His research bridges fundamental science and engineering applications, particularly in energy efficiency and materials performance. As a first author on multiple high-impact publications and an inventor on several patents, he has demonstrated both technical depth and innovation. Dr. He’s work is recognized for addressing real-world challenges in sustainable cooling and energy systems. His career path reflects consistent academic growth from undergraduate studies through to a PhD, followed by impactful research and teaching contributions. Passionate about material science and thermal dynamics, Dr. He exemplifies the qualities of a next-generation scientific leader.

Publication  Profile:

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record (First Author & Peer-Reviewed)

    • Multiple first-author journal articles in internationally recognized journals like Materials, Applied Sciences, Energies, and Journal of Materials Research and Technology.

    • Research is focused on high-impact, emerging areas like nanoporous aluminum substrates, solar thermal applications, and frosting mechanisms.

  2. Innovation and Practical Contribution

    • Holder of three patents related to testing devices for heat transfer and solar radiation absorption of aluminum materials, showing real-world application of research.

  3. Specialization in Sustainability and Energy Efficiency

    • Research closely aligns with modern needs for sustainable cities, renewable energy, and climate-adaptive cooling technologies.

    • Topics such as interface condensation, solar absorption, and surface coatings are directly relevant to global energy challenges.

  4. Long-Term Academic and Research Dedication

    • Strong academic background (BEng + PhD) and a consistent career trajectory.

    • Lecturer since 2020, actively involved in both teaching and applied research.

🔧 Areas for Improvement:

  1. Broader International Engagement Needed

    • Limited visibility in international conferences, workshops, and global collaborative projects.

    • Increasing participation in international academic communities would enhance both recognition and impact.

  2. Publication Impact and Journal Tier

    • While the journals are respectable, publishing in top-tier (Q1) journals like Advanced Materials, Nano Energy, or Energy & Environmental Science could elevate the scientific profile.

  3. Postdoctoral or International Fellowships

    • No postdoctoral experience or overseas academic training mentioned.

    • Pursuing a global postdoctoral opportunity would enhance expertise and network.

🎓 Education:

Dr. Song He holds a Ph.D. in Civil Materials and Engineering from Guangdong University of Technology (2015–2020), where his research focused on advanced thermal interface materials and nanoporous substrates. Prior to this, he completed his Bachelor’s degree in Building Environment and Equipment Engineering at Hunan University of Technology (2011–2015), laying the foundation for his interest in energy systems and materials performance. His academic training included interdisciplinary exposure to heat exchange technologies, solar energy applications, and environmental materials, combining theory with hands-on experimentation. Through his doctoral studies, Dr. He developed expertise in micro/nanoporous materials, surface treatments, and condensation properties critical to energy efficiency systems. His strong academic record and progression reflect his commitment to high-impact research and continuous learning. Dr. He’s educational background has prepared him to lead and innovate in the domains of thermal sciences, sustainable technologies, and energy-efficient materials.

💼 Experience:

Since December 2020, Dr. Song He has been a lecturer at the School of Energy and Mechanical Engineering, Hunan University of Humanities, Science and Technology. His teaching and research focus on material science, energy engineering, and surface phenomena. Prior to this, he completed his Ph.D. at Guangdong University of Technology, where he was actively involved in national and regional research projects. Dr. He has collaborated with notable researchers, contributed to interdisciplinary research teams, and co-authored several scientific papers. His hands-on experience includes the development and testing of novel nanoporous aluminum sheets for thermal applications. He has also contributed to the design and patenting of specialized testing devices for thermal and frosting properties. With a blend of academic and experimental work, Dr. He has developed deep knowledge in sustainable materials and surface engineering. His career showcases a balance of scientific inquiry, practical innovation, and educational contribution.

🔬 Research Focus:

Dr. Song He’s research centers on the thermal and surface properties of nanoporous aluminum materials and their applications in energy-efficient systems. His work explores the interface effects, condensation characteristics, solar absorption, and frosting mechanisms of micro/nanostructured materials. A significant part of his research focuses on improving heat exchanger efficiency, air-conditioning performance, and solar thermal energy capture through material innovation. He has studied the role of hygroscopic coatings and nanoporous substrates in enhancing thermal transfer and minimizing frost formation. Dr. He also investigates material-environment interactions, including moisture absorption and radiation management, to support sustainable building technologies. His patented devices offer novel methods for testing aluminum sheets under various environmental conditions. His work bridges fundamental surface physics with real-world energy applications, addressing critical needs in sustainable cities, green energy systems, and advanced thermal technologies. His focus positions him at the intersection of materials innovation and energy efficiency.

📚 Publications Top Notes:

  1. 📘 Investigation of the Interface Characteristics and Frosting Properties of the Nanoporous Alumina SheetsJournal of Materials Research and Technology, 2025

  2. 🔬 Review of Hygroscopic Coating on Aluminum Fin Surface of Air Conditioning Heat ExchangerApplied Sciences, 2021

  3. 🌞 Investigation on the Solar Absorption Property of the Nanoporous Alumina Sheet for Solar ApplicationMaterials, 2019

  4. ❄️ Effects and Frosting Mechanism of Nanoporous Alumina SheetsEnergies, 2023

  5. 🧪 Investigation of the Interface Effects and Condensation Properties of the Micro/Nanoporous Aluminum PlatesSustainable Cities and Society, (Date unspecified)

📌 Conclusion:

Dr. Song He is a highly promising candidate for the Best Researcher Award, especially for his contributions to nanomaterials, surface engineering, and sustainable energy applications. He brings a combination of academic rigor, innovation, and application-driven research that addresses critical energy and environmental challenges.

Hongliang Xin | Tissue Engineering Regeneration | Best Researcher Award

Prof. Dr. Hongliang Xin | Tissue Engineering Regeneration | Best Researcher Award

Prof. Dr. Hongliang Xin, Nanjing Medical University, China

Professor Hongliang Xin is a distinguished pharmaceutical scientist at Nanjing Medical University, China. After earning his PhD from Fudan University in 2011, he joined Nanjing Medical University and rapidly rose through academic ranks, becoming a full professor by 2020. His international experience includes a research fellowship at North Carolina State University (2015–2016), enriching his global academic outlook. Professor Xin has made significant contributions in drug delivery, particularly for brain disorders and cancer. His work on biomimetic nanoparticles and dual-targeting systems has been widely recognized, with several of his publications cited hundreds of times. He is a recipient of the Jiangsu Outstanding Research Award and has contributed to translational science through interdisciplinary collaboration. Committed to innovation in intelligent drug delivery, Professor Xin continues to push boundaries in nanomedicine. His dedication and impactful research make him a strong candidate for the Best Researcher Award.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Innovative Research in Drug Delivery
    Prof. Xin has led pioneering work in cellular biomimetic drug delivery systems and brain-targeted therapies, particularly utilizing Angiopep-conjugated and ROS-responsive nanoparticles. His research shows deep innovation in crossing the blood-brain barrier — a major challenge in neuroscience and oncology.

  2. Strong Publication Record
    He has authored multiple high-impact publications in top-tier journals such as Biomaterials, ACS Nano, and Advanced Materials. Several of these works have citations exceeding 300–400, indicating significant influence in the scientific community.

  3. International Research Exposure
    His experience as a visiting scholar at North Carolina State University reflects a global approach to science, enhancing both the breadth and depth of his research collaborations.

  4. Consistent Career Growth
    From lecturer to professor within a decade, Prof. Xin’s steady academic rise reflects both merit and dedication.

  5. Recognition and Awards
    Recipient of the Jiangsu Outstanding Research Award, validating his contributions at the provincial and national level.

⚙️ Areas for Improvement:

  1. Clinical Translation
    While preclinical research is robust, moving towards clinical trials or commercial partnerships would greatly strengthen the translational impact of his work.

  2. Leadership in International Consortia
    Increased participation or leadership in global research initiatives, conferences, or consortia could further elevate his visibility and impact internationally.

  3. Cross-Disciplinary Outreach
    Expanding collaborations into neuropsychology, regenerative medicine, or pharmaceutical industry applications could broaden the application of his delivery systems.

🎓 Education:

Hongliang Xin completed his doctoral studies in Pharmacy at Fudan University in 2011, one of China’s most prestigious universities. His academic journey was grounded in pharmaceutical sciences, focusing on drug delivery systems and nanotechnology-based therapies. During his PhD, he laid the foundation for his future research in targeted therapy and biomimetic materials. Post-PhD, he expanded his academic training internationally as a visiting scholar at North Carolina State University in the United States (2015–2016). This exposure to global research trends and interdisciplinary approaches further honed his expertise. The integration of chemical engineering, pharmacology, and nanotechnology into his educational training has allowed him to develop innovative and effective therapeutic strategies for brain-targeted drug delivery. His education has not only equipped him with strong technical skills but also with a visionary approach to translational medicine.

🧪 Experience:

Dr. Hongliang Xin began his academic career as a lecturer at Nanjing Medical University’s School of Pharmacy in 2011. He was promoted to Associate Professor in 2015 and became a Full Professor in 2020. Over the years, he has built a robust research program in nanomedicine and drug delivery, leading multiple funded projects and mentoring graduate students. His one-year tenure as a visiting scholar at North Carolina State University provided him international collaborative opportunities, boosting his cross-disciplinary competence. Professor Xin has published extensively in high-impact journals such as Biomaterials, ACS Nano, and Advanced Materials. He is also a recognized leader in translational drug delivery platforms, specifically for brain diseases and cancer. His extensive teaching, grant acquisition, and collaborative research background reflect both academic maturity and innovation. His professional journey exemplifies excellence, persistence, and a global perspective on healthcare research.

🔬 Research Focus:

Professor Hongliang Xin’s research centers on cellular biomimetic drug delivery systems and intelligent therapeutic strategies for brain diseases such as glioblastoma and ischemic stroke. His work integrates polymer chemistry, pharmacokinetics, and molecular targeting to design nanoparticles that can cross the blood-brain barrier with precision. A key innovation in his research is the use of Angiopep-conjugated polymers and ROS-responsive carriers to ensure site-specific and safe drug delivery. His dual-targeting PEG-PCL nanoparticle system has shown remarkable results in preclinical models of brain cancer, while his transcutaneous immunotherapy approach enhances anti-tumor immunity. Professor Xin’s focus also extends to thrombolytic delivery systems, neuroprotectants, and engineered nano-platelets for hematologic malignancies. With over a decade of focused work, his lab continues to address clinical challenges in oncology and neurology, aiming to translate nanoscale innovations into real-world therapeutics.

📚 Publications Top Notes:

  1. 🧠💊 Angiopep-conjugated PEG-PCL nanoparticles as dual-targeting system for brain glioma

  2. 🧬🛡 Anti-glioblastoma efficacy of paclitaxel-loaded Angiopep-conjugated PEG-PCL nanoparticles

  3. 💉🧫 Synergistic transcutaneous immunotherapy for checkpoint inhibitor delivery and tumor response

  4. 🧠🎯 2-deoxy-D-glucose functionalized PEG-PTMC nanoparticles for glioma targeting

  5. 🧠⚡ Boronic ester-dextran polymer nanoparticles responsive to ROS for stroke therapy

  6. 🧫🩸 Nano-platelets for enhanced treatment of multiple myeloma and thrombus

  7. 🧠🧬 Site-specific delivery of thrombolytics and neuroprotectants for ischemic stroke

  8. 🧠🧪 Brain targeting mechanism of Angiopep-conjugated PEG-PCL nanoparticles

  9. 🧠💉 Dual-targeted nanocarrier for treatment of brain ischemic stroke

  10. 💊🧠 Integrin-mediated PEG-PTMC nanoparticles for solid tumor penetration and paclitaxel delivery

🧾 Conclusion:

Professor Hongliang Xin is a highly qualified and impactful researcher whose contributions in intelligent, targeted drug delivery—especially for brain diseases—are both scientifically innovative and socially relevant. His work bridges critical gaps in nanomedicine and therapeutic targeting, and his publications are widely cited, reflecting broad recognition. With strategic focus on clinical translation and deeper global engagement, his already excellent profile could reach even greater heights.