Rika Sasaki | mitochondria | Best Researcher Award

Dr. Rika Sasaki | mitochondria | Best Researcher Award

Dr. Rika Sasaki , Department of Molecular Pathology, Nara Medical University , Japan

Rika Sasaki is a researcher in the Department of Molecular Pathology at Nara Medical University, Japan. She completed her degree in Medicine from the Faculty of Medicine, Nara Medical University in March 2023 and began her doctoral studies in April 2023. Currently, she is in the second year of her program, focusing on cancer research, particularly on the role of mitochondrial transfer in colorectal cancer. Rika is passionate about understanding the molecular mechanisms behind cancer malignancy and drug resistance. She has a growing academic presence, having published multiple papers in respected journals such as the International Journal of Molecular Sciences. Her work has contributed to important discoveries, including the identification of HMGB1 as a key factor in mitochondrial transfer. Rika is a member of The Japanese Cancer Association and The Japanese Society of Pathology, and she is dedicated to furthering cancer-related research.

Publication Profile:

Scopus

Strengths for the Award:

Rika Sasaki has demonstrated considerable promise as a young researcher in the field of molecular pathology, with a focused interest in cancer biology. Sasaki’s research on the therapeutic strategy for targeting drug resistance in colorectal cancer through mitochondrial transfer is both innovative and highly relevant. Her ability to identify key molecules, such as oxidized HMGB1, contributing to cancer malignancy and resistance, highlights her potential to shape future cancer therapies. Moreover, Sasaki’s publication record, including in high-impact journals, showcases the quality and impact of her work. Her membership in esteemed professional societies further strengthens her standing in the research community.

Areas for Improvement:

Although Sasaki is an emerging researcher with promising contributions, expanding her network through collaborative research and increasing the breadth of her publications could enhance her visibility in the scientific community. Additionally, the exploration of translational research, particularly through clinical applications, could be an important avenue for the future development of her work.

Education:

Rika Sasaki earned her degree in Medicine from the Faculty of Medicine at Nara Medical University in March 2023. Shortly after graduation, she enrolled in the Doctoral Program at Nara Medical University in April 2023. As of February 2025, she is in the second year of her Ph.D. studies. During her academic career, Rika has demonstrated a strong commitment to medical and scientific research. Her education has provided her with a solid foundation in molecular pathology, particularly with an emphasis on cancer biology. Rika’s research interests have led her to focus on understanding the intricate mechanisms of drug resistance in cancer cells, particularly in colorectal cancer. Her research findings are contributing to the development of potential therapeutic strategies, which may play a significant role in overcoming treatment resistance. Her academic journey reflects dedication, rigor, and a passion for advancing medical knowledge.

Experience:

Rika Sasaki’s professional journey as a researcher began after her graduation from Nara Medical University in March 2023, when she immediately began her Doctoral Program. As a second-year Ph.D. student, she has already been involved in groundbreaking research focused on cancer drug resistance mechanisms. Her experience includes working on the project titled “Therapeutic Strategy for Colorectal Cancer Targeting Drug Resistance Induced by Mitochondrial Transfer.” Rika’s research highlights the oxidized form of HMGB1 as a major factor in mitochondrial transfer, contributing to cancer cell stemness and drug resistance. She has also collaborated with a team of scientists, publishing several research articles in peer-reviewed journals. Though she does not have formal consultancy or industry experience yet, Rika’s academic achievements and publication record indicate her growing expertise in molecular pathology. She is currently refining her skills and knowledge, positioning herself as a future leader in cancer research.

Awards and Honors:

Rika Sasaki, while early in her career, has made significant strides in cancer research, particularly focusing on mitochondrial transfer and drug resistance in colorectal cancer. She has not yet received formal awards for her work; however, her research has been published in respected journals such as the International Journal of Molecular Sciences, underlining her scientific contributions. Rika’s H-index of 5 reflects the growing impact of her publications. Although she has not received awards such as the Best Researcher Award yet, her innovative work has attracted recognition within her institution and the scientific community. As her research progresses, particularly in understanding cancer drug resistance, Rika is likely to gain more recognition in the coming years. Her academic commitment and contributions to molecular pathology have earned her membership in notable professional societies like The Japanese Cancer Association and The Japanese Society of Pathology, setting her up for future accolades.

Research Focus:

Rika Sasaki’s research primarily revolves around understanding cancer drug resistance, particularly in colorectal cancer. Her focus is on the therapeutic strategy targeting mitochondrial transfer that promotes cancer cell stemness and resistance to conventional chemotherapy. Through her research, she has identified the oxidized form of HMGB1 as a key factor that accelerates mitochondrial transfer from mesenchymal stem cells to colorectal cancer cells. This discovery holds potential for novel cancer therapies aimed at reversing drug resistance. Rika’s research also extends to studying energy metabolism and the role of various molecules, such as lauric acid, in overcoming chemoresistance. Her work provides critical insights into the molecular mechanisms underlying the malignancy of cancer cells, contributing to the development of more effective treatments. Rika’s research bridges molecular pathology and clinical applications, making her a promising scientist in the fight against cancer. Her findings are already influencing the field of cancer research, making her work highly relevant.

Publications Top Notes:

  • Oxidative stress
  • “Oxidative High Mobility Group Box-1 Accelerates Mitochondrial Transfer from Mesenchymal Stem Cells to Colorectal Cancer Cells Providing Cancer Cell Stemness” (Int. J. Mol. Sci. 2025) 📚💥
  • “Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells” (Int. J. Mol. Sci. 2025) 🍏🔬
  • “Significance of CD10 for Mucosal Immunomodulation by β-Casomorphin-7 in Exacerbation of Ulcerative Colitis” (Curr. Issues Mol. Biol. 2024) 🔬🧬
  • “Effects of High-Mobility Group Box-1 on Mucosal Immunity and Epithelial Differentiation in Colitic Carcinoma” (Int. J. Mol. Sci. 2024) 🔬🦠
  • “Berberine Improves Cancer-Derived Myocardial Impairment in Experimental Cachexia Models by Targeting High-Mobility Group Box-1” (Int. J. Mol. Sci. 2024) 💪🧪
  • “Nuclear MAST4 Suppresses FOXO3 through Interaction with AKT3 and Induces Chemoresistance in Pancreatic Ductal Carcinoma” (Int. J. Mol. Sci. 2024) 💥🧠
  • “Investigation of Cancer-Induced Myocardial Damage in Autopsy Cases—A Comparison of Cases with and without Chemotherapy” (Pathol. Int. 2024) 🧠❤️
  • “Pterostilbene Induces Apoptosis from Endoplasmic Reticulum Stress Synergistically with Anticancer Drugs That Deposit Iron in Mitochondria” (Int. J. Mol. Sci. 2024) 🧪💔
  • “Involvement of Ferroptosis Induction and Oxidative Phosphorylation Inhibition in the Anticancer-Drug-Induced Myocardial Injury: Ameliorative Role of Pterostilbene” (Int. J. Mol. Sci. 2024) ⚡🧬
  • “Lauric Acid Overcomes Hypoxia-Induced Gemcitabine Chemoresistance in Pancreatic Ductal Adenocarcinoma” (Int. J. Mol. Sci. 2023) 🧪🍃

Conclusion:

Given her strong academic background, innovative research on cancer biology, and growing publication record, Rika Sasaki is a strong candidate for the Best Researcher Award. Her work on mitochondrial transfer and cancer resistance mechanisms promises significant advancements in cancer treatment. With continued professional growth and wider collaborations, she has the potential to make substantial contributions to medical science.

 

 

Vaibhav Rajoriya | Cancer Cell Biology | Cell Biology Research Award

Mr. Vaibhav Rajoriya | Cancer Cell Biology | Cell Biology Research Award

Mr. Vaibhav Rajoriya , Oriental University, Indore , India

Vaibhav Rajoriya is a dedicated and accomplished researcher and pharmacist based in Sagar, Madhya Pradesh, India. With a strong academic background, he has earned his B.Pharm and M.Pharm from renowned institutions. He is a registered pharmacist with the MP State Pharmacy Council and holds memberships in various professional organizations, including the Association of Pharmacy Professionals. As a passionate researcher, Vaibhav has contributed to numerous studies, particularly focusing on nanomedicine, drug delivery systems, and cancer therapies. He has received prestigious fellowships such as ICMR-SRF and CSIR-SRF, contributing significantly to the field of pharmaceutical sciences. Currently pursuing a Ph.D., Vaibhav’s work continues to push boundaries in pharmaceutical research and development. His drive for excellence is further reflected in his active participation in various national and international conferences and research collaborations.

Publication Profile:

Orcid

Strengths for the Award:

  1. Diverse and Strong Research Background:
    • Vaibhav Rajoriya has a robust academic and research profile, with an established history of contributions to pharmaceutical sciences, particularly in the areas of drug delivery, nanotechnology, and cancer therapies.
    • He has authored multiple publications in high-impact journals, such as International Journal of Pharmaceutics and Current Nanomedicine, which demonstrate his expertise in nanomedicine, drug delivery systems, and the pharmaceutical applications of lipid nanoparticles and nanogels.
    • His focus on cutting-edge research areas, such as lung cancer targeting with folate-conjugated nanoparticles and novel drug delivery systems using solid lipid nanoparticles, shows a clear alignment with important biological research themes, including targeted therapy and cellular uptake.
  2. Research Achievements and Awards:
    • He has received prestigious recognitions, such as the MPCST Young Scientist Award and Best Poster Awards from institutions like AIIMS, Rishikesh, and IIT-BHU. These accolades reflect the high quality and relevance of his work in the biomedical field.
    • His successful completion of ICMR-SRF and CSIR-SRF fellowships exemplifies his ability to lead significant research projects. Moreover, he has actively contributed to a variety of projects in pharmaceutical science, indicating a deep understanding of the complexities of drug formulations, targeting mechanisms, and therapeutic applications.
  3. Ph.D. Candidacy and Future Potential:
    • Vaibhav Rajoriya is currently pursuing a Ph.D. at Oriental University, Indore, demonstrating his commitment to further advancing his research capabilities and contributing to cutting-edge research in cell biology and drug development.
    • His experience and involvement in multi-disciplinary projects, along with his fellowship positions, position him to be a strong contender for advanced research awards, including in the field of cell biology.
  4. Collaborative and Multi-dimensional Approach:
    • His involvement in collaborative research is evident through co-authorship in studies that blend different scientific approaches (nanotechnology, pharmacology, and medicinal chemistry). Such collaborations show his adaptability and the potential for cross-pollination of ideas between different scientific domains, an important characteristic in cell biology research.

Areas for Improvement:

  1. Focus on Cell Biology-Specific Research:
    • While Vaibhav’s work in nanomedicine and drug delivery systems has implications for cell biology, the research could benefit from a more explicit focus on cell biology topics such as cell signaling, cell-matrix interactions, or cell morphology, particularly at the molecular level.
    • His research could further explore in vivo and ex vivo models to study the cellular response in the context of drug delivery, providing a direct link to cellular behavior and biological mechanisms.
  2. Publication Expansion in Cell Biology Journals:
    • While his work is widely published in pharmaceutically inclined journals, increasing the number of publications directly in cell biology and molecular biology journals would provide a stronger case for this specific award. It could enhance his visibility and establish his position as a leading researcher in this field.
  3. Broader Approach to Targeted Drug Delivery in Cell Biology:
    • The research could be expanded by investigating multi-targeted delivery systems that engage specific cell types or signaling pathways, thereby providing deeper insights into cellular responses to treatment, as well as optimizing efficacy in various disease models, particularly cancer and genetic disorders.

Education:

Vaibhav Rajoriya’s educational journey is marked by a focus on pharmaceutical sciences and research. He completed his Standard X and XII from Jain Higher Secondary School, Sagar, achieving 69% and 68%, respectively. Vaibhav pursued his B.Pharm from Sagar Institute of Pharmaceutical Sciences, securing 70.4% and completed his M.Pharm at Adina Institute of Pharmaceutical Sciences with an impressive 79.9%. In addition to his pharmaceutical qualifications, Vaibhav obtained a PGDCA (Post Graduate Diploma in Computer Applications) from Agrabhan Institute of Excellence. His pursuit of knowledge led him to enroll in a Ph.D. program at Oriental University, Indore, in 2022, to further his expertise in pharmaceutical research. Throughout his academic career, he has demonstrated a strong foundation in various fields, including drug delivery systems and nanotechnology, which continues to shape his innovative research.

Experience”

Vaibhav Rajoriya has extensive experience in the field of pharmaceutical sciences, with a career that spans various research positions and projects. He was a Junior Research Fellow (JRF) in the DST-SERB-sponsored project from May 2016 to June 2018, followed by a Project Fellow position in the MPCST-sponsored research project from 2014 to 2016. These roles allowed him to gain hands-on experience in scientific research, contributing to the advancement of drug delivery systems and nanomedicine. Vaibhav has been awarded prestigious fellowships, including the ICMR-SRF (2018–2021), which further honed his skills in biomedical research. He has worked on numerous research topics, particularly focused on targeted drug delivery for cancer and other diseases, which resulted in multiple publications in high-impact journals. Vaibhav’s expertise spans the development of nanoparticle-based drug delivery systems, nano-lipid carriers, and the formulation of pharmaceutical compounds with specific targeting properties.

Awards and Honors:

Vaibhav Rajoriya’s exceptional contributions to pharmaceutical sciences have earned him several prestigious awards and honors. Notably, he was the recipient of the MPCST Young Scientist Award in 2018, recognizing his contributions to innovative research in nanomedicine. He has also earned accolades for his research presentations, including the Best Poster Award at AIIMS, Rishikesh, in 2018, for his work on folate-conjugated solid lipid nanoparticles for cancer treatment. In addition, Vaibhav won the Outstanding Poster Presentation Award in the Life Sciences category at the 1st National Biomedical Research Competition in 2018. His work at the 3rd SPIRIT 2019 conference earned him the 3rd position in the poster presentation, further highlighting his research prowess. These accolades reflect Vaibhav’s deep commitment to advancing pharmaceutical research, particularly in targeted drug delivery systems and cancer therapies, as well as his ability to effectively communicate his findings on national and international platforms.

Research Focus:

Vaibhav Rajoriya’s research focus lies primarily in the development of novel drug delivery systems, particularly for cancer treatment and other chronic diseases. His work explores the use of nanomedicine, including the formulation of solid lipid nanoparticles, nano-lipid carriers, and targeted drug delivery systems. Vaibhav’s research aims to enhance the bioavailability and therapeutic efficacy of drugs, particularly in targeted therapies for lung carcinoma and other cancers. He is particularly interested in the design and optimization of nanoparticles conjugated with targeting moieties such as folate and mannosylation to improve cellular uptake and reduce side effects. Through his research, Vaibhav has contributed to the advancement of nanocarriers for targeted drug delivery, studying their physicochemical properties, drug release profiles, cytotoxicity, and in vivo behavior. His focus is on using cutting-edge nanotechnology to create more effective and precise drug therapies for patients, particularly in oncology and infectious diseases.

Publications Top Notes:

  1. “Lactosaminated-Nsuccinyl Chitosan Nanoparticle for Hepatocyte-Targeted Delivery of Acyclovir” 🧬
  2. “Glycyrrhizin Conjugated Chitosan Nanoparticles for Hepatocyte-Targeted Delivery of Lamivudine” 💊
  3. “Mannosylated Solid Lipid Nanoparticles for Lung Targeted Delivery of Paclitaxel” 🌱
  4. “Folate-Conjugated Albumin Nanoparticles for Rheumatoid Arthritis-Targeted Delivery of Etoricoxib” 🦴
  5. “Development and Validation of RP-HPLC Method for Theophylline and Motelukast Estimation” 🔬
  6. “Evaluation of Ethanolic Extract of Zizyphus Xylopyrus on Wound Healing Activity” 🩹
  7. “Formulation Development and Evaluation of Fast Dissolving Tablet of Ramipril” 💊
  8. “UV-Spectrophotometric and Stability-Indicating RP-HPLC Method for Amlodipine and Indapamide” 📊
  9. “Folate-Conjugated Nano-Lipid Construct of Paclitaxel for Site-Specific Lung Squamous Carcinoma Targeting” 🫁
  10. “Nanostructured Lipid Carriers for Lung Cancer Targeting” 💥

Conclusion:

Vaibhav Rajoriya is a highly capable and promising researcher with strong achievements in pharmaceutical sciences, nanomedicine, and drug delivery systems. His research in the area of targeted drug delivery to specific cell types (e.g., cancer cells) already touches on key aspects of cell biology. His extensive background in various fellowships and awards underscores his dedication and success in research.

 

 

 

Annoor Awadasseid | Cancer Cell Biology | Best Researcher Award

Dr. Annoor Awadasseid | Cancer Cell Biology | Best Researcher Award

Dr. Annoor Awadasseid , Zhejiang University of Technology , Sudan

Dr. Annoor Awadasseid is a dedicated biochemist and molecular biologist specializing in medicinal chemistry, with a profound focus on cancer treatment. With a rich background in the exploration of novel small-molecule compounds, his research is at the forefront of developing potential therapeutic drugs for oncology. Dr. Awadasseid has made significant contributions to biochemistry, molecular biology, and cancer therapy, integrating his expertise to evaluate promising compounds. Passionate about enhancing patient outcomes, he collaborates extensively with interdisciplinary teams and mentors junior researchers. Currently, he is a Senior Researcher at Hangzhou Qingzhenghong Technology Co., Ltd., where he leads oncology-focused R&D initiatives, developing novel cancer therapies. He has authored numerous high-impact publications, showcasing his commitment to advancing therapeutic approaches for cancer care.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Annoor Awadasseid exhibits outstanding qualities as a researcher in the field of biochemistry and molecular biology, particularly within cancer therapeutics. His expertise in evaluating small-molecule compounds for cancer treatment is evident through his advanced knowledge of biochemical processes, medicinal chemistry, and molecular biology techniques. Dr. Awadasseid has significantly contributed to the design and development of novel therapeutic agents, particularly targeting the PD-1/PD-L1 immune checkpoint pathway, which is critical for cancer immunotherapy. His ability to collaborate with interdisciplinary teams and mentor junior researchers demonstrates a strong leadership role in advancing scientific knowledge and fostering innovation. His extensive publication record in prestigious journals, alongside the recognition he has received via multiple scholarships and awards, further attests to the high impact of his research and contributions to improving patient care.

Areas for Improvement:

While Dr. Awadasseid’s research is impressive and impactful, further diversification of research methodologies could enhance his work. For instance, incorporating more cutting-edge computational techniques and expanding collaborations with clinical research teams could accelerate the translation of his lab-based discoveries into clinical applications. Additionally, increasing visibility in international scientific conferences would allow Dr. Awadasseid to expand his professional network, share insights, and potentially collaborate on global-scale projects. Engaging in multidisciplinary research that spans beyond oncology could also create new avenues for discovery and broaden his research impact.

Education:

Dr. Awadasseid’s academic journey includes a Ph.D. in Medicinal Chemistry from the University of Chinese Academy of Sciences (2017-2020), where he specialized in the design and evaluation of therapeutic compounds. Prior to that, he earned another Ph.D. in Biochemistry and Molecular Biology from Dalian Medical University (2014-2017). His earlier studies culminated in a Master’s degree in Biochemistry and Molecular Biology from Northeast Normal University (2012-2014). These rigorous educational experiences have honed his skills in biochemical and molecular techniques, which form the foundation for his groundbreaking research in cancer therapy. Dr. Awadasseid’s extensive training across multiple renowned institutions equipped him with the tools to explore novel therapeutic pathways, ultimately paving the way for his contributions to drug discovery and cancer treatment.

Experience:

Dr. Awadasseid has over a decade of experience in biochemistry, molecular biology, and medicinal chemistry. Following his postdoctoral fellowship at Zhejiang University of Technology (2020-2024), where he focused on small-molecule drug evaluation for cancer therapy, he became a Senior Researcher at Hangzhou Qingzhenghong Technology Co., Ltd. (2024-present). In this role, he leads R&D initiatives, specializing in the discovery and development of novel small-molecule compounds for oncology. His work includes evaluating drug efficacy through preclinical models, optimizing therapeutic candidates, and integrating interdisciplinary insights to drive advancements in targeted cancer therapies. Dr. Awadasseid’s expertise spans a variety of techniques, including CRISPR/Cas9 gene editing, flow cytometry, and qPCR, supporting his pivotal contributions to improving cancer treatment and patient outcomes. He also mentors junior researchers and contributes to intellectual property creation, including patents and publications in prestigious journals.

Awards and Honors:

Dr. Awadasseid has received prestigious accolades throughout his career. He was awarded the CAS-TWAS President’s Fellowship Programme (2017-2020) for his Ph.D. studies at the University of Chinese Academy of Sciences, recognizing his potential for significant scientific contributions. Additionally, he received the Liaoning Provincial Government Scholarship (2014-2017) while pursuing his Ph.D. at Dalian Medical University. The Chinese Government Scholarship (2012-2014) was awarded to him for his Master’s degree studies at Northeast Normal University, reflecting his academic excellence and commitment to advancing research in biochemistry and molecular biology. These scholarships and awards highlight Dr. Awadasseid’s dedication to his field, his research accomplishments, and his potential to make lasting impacts in the realm of cancer therapy and medicinal chemistry.

Research Focus:

Dr. Awadasseid’s research is centered on the development and evaluation of novel small-molecule compounds for cancer treatment, specifically focusing on their mechanisms and potential as therapeutic agents. His work aims to identify promising candidates that could enhance patient outcomes in oncology. He has a strong interest in the design and synthesis of therapeutic molecules, particularly those targeting the PD-1/PD-L1 pathway and other key molecules involved in cancer progression. Through extensive preclinical testing, Dr. Awadasseid evaluates the efficacy of these compounds, with a particular emphasis on their ability to target specific cancer pathways, including apoptosis, immune response modulation, and signal transduction. His research employs a wide range of molecular and biochemical techniques, including CRISPR/Cas9 gene editing, qPCR, flow cytometry, and various microscopy methods, to assess the therapeutic potential of novel compounds. Ultimately, Dr. Awadasseid aims to contribute to the development of more effective, targeted therapies for cancer patients.

Publication Top Notes:

  1. Design, synthesis and biological evaluation of novel TMPRSS2-PROTACs with florosubstituted 4-guanidino-N-phenylbenzamide derivative ligands. 🔬💊
  2. Design, synthesis, and evaluation of antitumor activity of 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives as PD-1/PD-L1 inhibitors. 🧬💥
  3. Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. 🔬🐭
  4. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. 💡📚
  5. Design, synthesis, anti-tumor activity and mechanism of novel PROTACs as degraders of PD-L1 and inhibitors of PD-1/PD-L1 interaction. 🔧🎯
  6. Current studies and future promises of PD-1 signal inhibitors in cervical cancer therapy. 🎗️🔬
  7. A Review on the Anticancer Activity of Carbazole-based Tricyclic Compounds. 📖🔍
  8. Design, Synthesis, and Antitumor Activity Evaluation of 2-Arylmethoxy-4-(2, 2′-dihalogen-substituted biphenyl-3-ylmethoxy) Benzylamine Derivatives as Potent PD-1/PD-L1 Inhibitors. 🧪🧫
  9. PD-L1 dimerisation induced by biphenyl derivatives mediates anti-breast cancer activity via the non-immune PD-L1–AKT–mTOR/Bcl2 pathway. 🧬💥
  10. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. 🧪⚡

Conclusion:

Dr. Awadasseid is undoubtedly a strong candidate for the Best Researcher Award due to his exceptional contributions to the field of cancer research. His innovative approach to discovering therapeutic small-molecule compounds, coupled with his ability to collaborate across disciplines, positions him as a leader in the biochemistry and molecular biology community. By continuing to refine his research techniques and expanding his collaborations, Dr. Awadasseid is likely to further enhance the scope and impact of his work. His ultimate goal of improving patient care and treatment modalities places him in alignment with the mission of the Best Researcher Award, making him a fitting candidate for this prestigious recognition.

 

 

 

Paola Zagami | Cancer Cell Biology | Young Scientist Award

Dr. Paola Zagami | Cancer Cell Biology | Young Scientist Award

Dr. Paola Zagami , IEO european institute of oncology University of Milan , Italy

Dr. Paola Zagami is an accomplished Italian physician and medical oncologist currently working at the European Institute of Oncology (IEO) in Milan. She specializes in clinical and research oncology, focusing on breast cancer. With a strong academic background and passion for advancing cancer treatment, Dr. Zagami has contributed to numerous studies on innovative therapies, particularly immunotherapy and endocrine treatments in breast cancer. She is recognized for her expertise in cancer genomics and the impact of immune checkpoint inhibitors in cancer treatment. Dr. Zagami’s work reflects a blend of clinical practice and research, as she actively collaborates with experts in the oncology field to improve patient outcomes.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Paola Zagami is an exceptional candidate for the Research for Young Scientist Award due to her profound contributions to oncology research, particularly in breast cancer treatment and clinical trials. Her work on immune checkpoint inhibitors, endocrine therapies, and the genomics of breast cancer demonstrates her expertise in precision oncology. Dr. Zagami has been involved in high-impact publications and collaborative international studies, such as her work on metastatic triple-negative breast cancer and the development of novel cancer therapies. Her clinical and research skills, combined with her ability to contribute to the scientific community through publications and awards, make her a highly qualified and promising young scientist. Furthermore, her commitment to gender equity in pharmacological research and clinical trials aligns with the future direction of oncology research, making her a strong contender for the award.

Areas for Improvement:

While Dr. Zagami has made significant strides in breast cancer research, there are opportunities to broaden her research focus to include other cancer types, enabling her to contribute to a wider array of oncological studies. Additionally, further involvement in leading large-scale clinical trials could enhance her leadership in the field. Expanding her research network internationally could facilitate more diverse collaborations and broader research impact.

Education:

Dr. Zagami earned her medical degree (MD) and has since pursued extensive education in the field of oncology. In 2021, she received a scholarship from the IEO-Monzino Foundation, focusing on clinical research in oncology. She further honed her expertise by earning the AMMI award in 2023 for her work on gender equity in pharmacological research. This education in clinical research positions Dr. Zagami as a thought leader in her field, with a commitment to investigating new treatments and approaches in cancer care.

Experience:

Dr. Zagami’s professional career began as an oncological clinical researcher, where she focused on the development of targeted therapies and the clinical impact of cancer treatments. Since 2024, she has been serving as a medical oncologist at the European Institute of Oncology (IEO) in Milan, contributing to both clinical and research activities. Throughout her career, Dr. Zagami has gained experience in advanced oncology treatments, particularly in immunotherapy and endocrine therapies for breast cancer. She works closely with interdisciplinary teams to design and conduct clinical trials, improving personalized cancer care. Dr. Zagami’s research collaborations have resulted in several publications in prestigious journals, reflecting her expertise and commitment to enhancing cancer treatment strategies.

Experience:

Dr. Zagami’s professional career began as an oncological clinical researcher, where she focused on the development of targeted therapies and the clinical impact of cancer treatments. Since 2024, she has been serving as a medical oncologist at the European Institute of Oncology (IEO) in Milan, contributing to both clinical and research activities. Throughout her career, Dr. Zagami has gained experience in advanced oncology treatments, particularly in immunotherapy and endocrine therapies for breast cancer. She works closely with interdisciplinary teams to design and conduct clinical trials, improving personalized cancer care. Dr. Zagami’s research collaborations have resulted in several publications in prestigious journals, reflecting her expertise and commitment to enhancing cancer treatment strategies.

Research Focus:

Dr. Zagami’s research focus is primarily centered around the treatment of breast cancer, particularly in the areas of immunotherapy, endocrine therapy, and personalized medicine. She has been involved in research on immune checkpoint inhibitors for metastatic triple-negative breast cancer and the clinical implications of genomic alterations in breast cancer. Dr. Zagami is also dedicated to investigating the safety and efficacy of novel cancer therapies, particularly in early-phase clinical trials. Her research interests also include the study of gender equity in pharmacological research and the integration of molecular diagnostics in clinical trials for metastatic breast cancer. She is committed to advancing precision oncology by studying the genetic and clinical landscape of breast cancer to enhance patient outcomes and treatment strategies.

Publications Top Notes:

  1. Immunotherapy in the treatment landscape of hormone receptor-positive (HR+) early breast cancer: is new data clinical practice changing?
  2. Triple negative breast cancer: pitfalls and progress.
  3. Association of PIK3CA Mutation With Pathologic Complete Response and Outcome by Hormone Receptor Status and Intrinsic Subtype in Early-Stage ERBB2/HER2-Positive Breast Cancer.
  4. Endocrine therapy for early breast cancer in the era of oral selective estrogen receptor degraders: challenges and future perspectives.
  5. Effect of age on safety and efficacy of novel cancer drugs investigated in early-phase clinical trials.
  6. Immunotherapy for patients with metastatic triple-negative inflammatory breast cancer (INCORPORATE): An international cohort study.

Conclusion:

Dr. Paola Zagami is undoubtedly a rising star in the field of oncology. Her combination of clinical experience, research accomplishments, and passion for improving cancer treatments positions her as a highly deserving candidate for the Research for Young Scientist Award. As she continues to advance her work in oncology, her future contributions have the potential to significantly impact cancer care and research globally. With some further expansion in her research focus and leadership roles, Dr. Zagami is poised to be an influential figure in oncology for years to come.

 

 

 

Vidhant Nambiar | Cancer Cell Biology | Best Researcher Award

Dr. Vidhant Nambiar | Cancer Cell Biology | Best Researcher Award

Dr. Vidhant Nambiar , Fiji National University , Fiji

Dr. [Name] is currently the Acting Head of the Department of Dental Public Health, Paediatrics, and Preventive Dentistry at Fiji National University (FNU). With expertise in public health and dental care, Dr. [Name] is dedicated to improving oral health and public health across Fiji and the Pacific region. Actively involved in academic and clinical research, Dr. [Name] is the Chair of the FNU School of Dentistry and Oral Health’s Research Committee and a member of the Oral Health Pacific Island Alliance (OPIA) and the International Association of Dental Research (IADR). In addition to teaching undergraduate and postgraduate dental students, Dr. [Name] supervises research in areas like oral cancer and the effects of heat-treated cooking oils. A committed researcher and educator, Dr. [Name] also contributes to global oral health advocacy through international collaborations and presentations.

Publication Profile:

Orcid

Strengths for the Award:

  1. Innovative Research Focus: The study “Analysis of Genotoxic Oral Cancer Carcinogens in Repeatedly Heated Cooking Oils in Suva, Fiji” addresses a critical gap in oral health research, specifically the link between environmental carcinogens and oral cancer, an issue of high relevance in Fiji and the broader Pacific region.
  2. Strong Academic Foundation: The researcher holds a Master of Science in Public Health and a Bachelor of Dental Surgery with notable academic achievements. Their award-winning background and practical clinical experience underscore their ability to handle complex research.
  3. Ongoing, High-Impact Research: The study is in a randomized controlled trial phase, demonstrating rigor and potential for publication in high-impact journals. The trial also received seed funding, which reflects its importance to the broader public health community.
  4. Multidisciplinary Expertise: The researcher brings a blend of public health, clinical dentistry, and research skills to the project, offering a holistic approach to understanding health risks in the Pacific Island context.

Areas for Improvements:

  1. Expanded Collaboration: To maximize the impact of the research, future work could involve more international collaborations or partnerships with other universities or research institutes, enhancing the study’s global reach and significance.
  2. Greater Focus on Data Analysis: While the research is promising, further attention to advanced statistical analyses and more diverse data sources could provide even more robust conclusions.
  3. Wider Community Engagement: Increasing community-based research engagement and ensuring that findings are shared with local populations in accessible formats could further strengthen public health responses.

Education:

Dr. [Name] holds a Master of Science in Public Health from the University of South Wales (2021), equipping them with advanced knowledge of public health principles and practices. Prior to that, Dr. [Name] earned a Bachelor of Dental Surgery from Fiji National University (FNU), where they received the prestigious Pierre Fauchard Award in 2017. During their academic journey, Dr. [Name] gained extensive hands-on clinical experience and was exposed to cutting-edge dental technology and modern practices, including through an elective project at Melbourne and La Trobe University in 2017. This solid academic background, paired with practical dental experience, laid the foundation for their commitment to advancing oral health education, research, and policy development.

Experience:

Dr. [Name] has an extensive career in dental public health and clinical practice. As the Acting Head of the Department of Dental Public Health, Paediatrics, and Preventive Dentistry at FNU, Dr. [Name] oversees curriculum development, academic program delivery, and research activities. They have led multiple community outreach initiatives and have a demonstrated ability to manage strategic planning and research projects. Dr. [Name] has also served as a Lecturer in Dental Public Health, teaching courses across various undergraduate levels and guiding students in their research endeavors. Previous roles include managing the oral surgery clinic at CWM Hospital, where they treated complex surgical cases and participated in surgical audits. Dr. [Name] has also been integral in the COVID-19 response efforts, providing support at the Valelevu Fever Clinic and contributing to public health initiatives aimed at controlling the pandemic.

Research Focus:

Dr. [Name]’s research primarily focuses on oral health and public health, with a particular emphasis on the impact of environmental factors on oral health. Currently, they are conducting a randomized controlled trial titled “Analysis of Genotoxic Oral Cancer Carcinogens in Repeatedly Heated Cooking Oils in Suva, Fiji,” which has qualified for seed funding and is pending publication. This research aims to examine the links between oral cancer and the consumption of oils that have been repeatedly heated, a pressing issue in Pacific Island communities. Dr. [Name] is also a supervisor for research projects related to dental technology, community dentistry, and oral health prevention. Additionally, they have contributed to research on tobacco and betel nut chewing habits, publishing findings in the International Journal of Advanced Research. Their research not only aims to improve clinical practice but also has a broader public health impact, focusing on improving prevention strategies and health outcomes.

Publication Top Notes:

  • “Tobacco and Betel Nut Chewing Habits Amongst Fijians of Indian Descent Living in Suva, Fiji” 📚
  • “Analysis of Genotoxic Oral Cancer Carcinogens in Repeatedly Heated Cooking Oils in Suva, Fiji” 🔬

Conclusion:

This researcher demonstrates strong potential for the Best Researcher Award due to their innovative approach to a significant public health issue. Their current research on genotoxic carcinogens in heated cooking oils addresses an underexplored area of oral cancer prevention and risk factors, particularly in Fiji. With a solid academic background and practical experience, the researcher is well-positioned to make significant contributions to the field. Expanding collaborations, enhancing data analysis, and engaging more directly with communities could further amplify the impact of their work.