May Morris | Cancer Cell Biology | Women Researcher Award

Dr. May Morris | Cancer Cell Biology | Women Researcher Award

IBMM / CNRS | France

Dr. May C. Morris is a CNRS Research Director (DR2) leading the “Biosensors and Inhibitors Group” within the Cellular Pharmacology Team at IBMM, University of Montpellier. Her research focuses on cell cycle biology, cancer, kinases and phosphatases, and peptide/protein biochemistry. She specializes in biophysical studies of protein interactions, fluorescent biosensor engineering, cell-penetrating peptide technologies, intracellular targeting, and high-throughput screening of small molecules. Dr. Morris has extensive experience in designing peptide and allosteric kinase inhibitors, as well as advanced cell culture and fluorescence imaging. Her career includes leadership roles at CNRS and postdoctoral research at the Scripps Research Institute.

Citation Metrics (Scopus)

8000
6000
4000
2000
200
100
0

Citations
7,564

Documents
94

h-index
36

Citations

Documents

h-index

Featured Publications

Sakarie Mustafe Hidig | Cancer Cell Biology | Research Excellence Award

Dr. Sakarie Mustafe Hidig | Cancer Cell Biology | Research Excellence Award

Zhejiang University School of Medicine | United Kingdom

Dr. Sakarie Mustafe Hidig is a General Surgeon, Clinical Researcher, and Editor-in-Chief affiliated with Zhejiang University School of Medicine and the Research Center at Hargeisa Group Hospital. He serves as the UK Country Coordinator for the International Institute of Knowledge Management (TIIKM) and is an active member of the China Medical Association, Somali Medical Association, and the Scholars Academic and Scientific Society. Dr. Hidig has earned multiple international honors, including the SHEN Best Researcher Awards, GCDMSE-2024, and ISSN Research Awards. With over 70 published papers, 280+ SCI editorial handling experiences, and 14 research projects, his work spans general, gastrointestinal, trauma, emergency, hepatobiliary, and pancreatic surgery. He also contributes as an editor for major journals such as PLOS One Medicine, Annals of Medicine and Surgery, Obesity Surgery, and JMIR Public Health and Surveillance. His research interests include surgical oncology, hepatology, pancreatic cancer, and public health.

Citation Metrics (Scopus)

40

30

20

10

0

Citations
12

Documents
7

h-index
2

Citations
Documents
h-index



View Scopus Profile

Featured Publication

Hongjin Liu | Cancer Cell Biology | Research Excellence Award

Dr. Hongjin Liu | Cancer Cell Biology | Research Excellence Award

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College | China

Hongjin Liu is a medical oncologist whose research centers on cancer biology, therapeutic resistance, and tumorigenesis. His work spans molecular oncology, hepatocellular carcinoma, and mechanisms of somatic mutagenesis across human tissues. He has contributed to high-impact studies published in Nature and Signal Transduction and Targeted Therapy, including investigations uncovering the landscape of somatic mutations in normal tissues and the critical role of VAV2 in DNA repair and radiotherapy resistance. His research also explores noncoding RNA–mediated regulatory networks in liver cancer, notably identifying the oncogenic function of ELF3-AS1 through its modulation of the miR-98-5p/CPSF4 axis. Collectively, his publications provide important insights into genomic instability, tumor microenvironment dynamics, and potential molecular targets for improving therapeutic outcomes. His translational research aims to bridge molecular mechanisms with clinical oncology to support precision cancer treatment and advance strategies for overcoming therapy resistance.

Profile: Orcid

Featured Publications: 

1. Ge, P., Niu, S., Fang, M., Xu, Q., Zhang, W., Xu, J., Yang, F., Wang, Y., Shi, T., & Liu, H. (2025). ELF3-AS1 promotes the carcinogenesis of hepatocellular carcinoma cells by inhibiting miR-98-5p/CPSF4 axis. Nucleosides, Nucleotides & Nucleic Acids.

2. Zhang, W., Liu, Z., Liu, H., Huang, Z., Huang, X., Xu, L., Che, X., & Zhan, Z. (2025). The impact of immune checkpoint inhibitors on prognosis in unresectable hepatocellular carcinoma treated with TACE and lenvatinib: A meta-analysis. Frontiers in Immunology.

3. Liu, W., Miao, C., Zhang, S., Liu, Y., Niu, X., Xi, Y., Guo, W., Chu, J., Lin, A., Liu, H., Yang, X., Chen, X., Zhong, C., Ma, Y., Wang, Y., Zhu, S., Liu, S., Tan, W., Lin, D., & Wu, C. (2021). VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduction and Targeted Therapy, 6(9), 2906–2919.

4. Li, R., Di, L., Li, J., Fan, W., Liu, Y., Guo, W., Liu, W., Liu, L., Li, Q., Chen, L., Chen, Y., Miao, C., Liu, H., Wang, Y., Ma, Y., Xu, D., Lin, D., Huang, Y., Wang, J., Bai, F., & Wu, C. (2021). A body map of somatic mutagenesis in morphologically normal human tissues. Nature, 597(7876), 398–403.

5. Chen, Y., Zeng, Q., Liu, X., Fu, J., Zeng, Z., Zhao, Z., Liu, Z., Bai, W., Dong, Z., & Liu, H. (2018). LINE-1 ORF-1p enhances the transcription factor activity of pregnenolone X receptor and promotes sorafenib resistance in hepatocellular carcinoma cells. Cancer Management and Research, 10, 6345–6358.

Yanqi Dang | Cancer Cell Biology | Editorial Board Member

Mr. Yanqi Dang | Cancer Cell Biology | Editorial Board Member

Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032 | China

The researcher focuses on the epigenetic regulation of metabolic diseases and tumorigenesis, with major contributions in colorectal cancer (CRC) diagnostics, mechanisms, and traditional Chinese medicine (TCM)-based interventions. In early CRC detection, the team performed transfer RNA (tRNA) sequencing and identified two key tRFs—tRF-Tyr-GTA-081 (downregulated) and tRF-Ala-AGC-060 (upregulated)—whose combined diagnostic model demonstrated strong performance for colorectal neoplastic lesions and cancer, outperforming traditional markers such as CEA and CA199. Multi-omics analyses of mRNAs, miRNAs and circRNAs identified three circRNAs with predictive value for adenoma–carcinoma transition. Through DNA hydroxymethylation sequencing, ZW10 emerged as a prognostic-related marker, and its circulating hydroxymethylation level showed high accuracy for early CRC detection. Mechanistic studies revealed that METTL3 regulates CRB3 in an m6A-dependent manner to modulate HIPPO signaling, while DNMT3B- and TET2-mediated epigenetic modifications jointly control PGC-1α to promote CRC progression. In therapeutic research, Scutellaria baicalensis Tang, Sijunzi Tang, and related monomers are under investigation for anti-CRC effects. In metabolic disease research, Ling-Gui-Zhu-Gan decoction and cinnamaldehyde were shown to improve steatosis and insulin resistance in NAFLD, supporting the TCM concept of “phlegm-beverage.” Current studies focus on lean NAFLD, demonstrating that METTL14 regulates TIM3 to influence disease development, and that GJLZ decoction alleviates steatosis and inflammation by enhancing this pathway.

Profile: Scopus

Featured Publications:

Ma, J., …, & al. (2025). Regulation of histone H3K27 methylation in inflammation and cancer.

Waldemar Debinski | Cancer Cell Biology | Best Researcher Award

Prof. Dr. Waldemar Debinski | Cancer Cell Biology | Best Researcher Award

Wake Forest School of Medicine | United States

Dr. Waldemar Debinski, M.D., Ph.D., is a distinguished neuroscientist and cancer researcher recognized for his pioneering work in brain tumor biology and targeted molecular therapies. His research focuses on understanding the molecular mechanisms that drive the development and progression of malignant brain tumors, with a particular emphasis on gliomas. Dr. Debinski has significantly contributed to the development of novel targeted therapeutics, including receptor-directed cytotoxins and biologics designed to selectively eliminate tumor cells while sparing healthy tissues. His investigations bridge molecular oncology, translational science, and clinical application, aiming to improve therapeutic outcomes for patients with brain cancers. Throughout his career, he has integrated insights from physiology, molecular biology, and pharmacology to develop translational approaches that move from laboratory discovery to clinical implementation. His extensive research has advanced the understanding of tumor-specific receptors and intracellular signaling pathways, contributing to innovative strategies in cancer immunotherapy and precision medicine. Dr. Debinski’s work exemplifies the integration of basic and clinical research toward the development of next-generation treatments for central nervous system malignancies, positioning him as a leading figure in neuro-oncology and translational cancer research.

Profile: Scopus

Featured Publications:

Wocial, B., Januszewicz, W., Siedlecki, J., Feltynowski, T., & Debinski, W. (1982). Alterations in plasma dopamine-β-hydroxylase and catecholamine concentrations during surgical removal of pheochromocytoma. Endocrinologie, 79, 131–139.

Debinski, W., & Wocial, B. (1982). Various aspects of sodium metabolism in hypertension [in Polish]. Polski Tygodnik Lekarski, 37, 1339–1342.

Ignatowska-Świtalska, H., Debinski, W., & Chojnowski, K. (1983). The role of certain hormonal factors in arterial hypertension [in Polish]. Materia Medica Polona, 15, 74–86.

Wasawska, T., Feltynowski, T., Majewska, Z., Januszewicz, W., Sobolewska-Karwowska, A., Wocial, B., & Debinski, W. (1984). Pheochromocytoma: Description of two cases with an unusual clinical picture [in Polish]. Polski Tygodnik Lekarski, 39, 261–263.

Czarkowski, M., & Debinski, W. (1984). Sodium and primary arterial hypertension [in Polish] (Review). Kardiologia Polska, 27, 967–976.

Wocial, B., Debinski, W., Jablonska-Skwicinska, E., Feltynowski, T., Chodakowska, J., Kozakowska, E., & Januszewicz, W. (1984). Sodium content of erythrocytes in patients with arterial hypertension [in Polish]. Polski Archiwum Medycyny Wewnetrznej, 72, 167–174.

Garcia, R., Debinski, W., Gutkowska, J., Kuchel, O., Thibault, G., Genest, J., & Cantin, M. (1985). Gluco- and mineralocorticoids may regulate the natriuretic effect and the synthesis and release of atrial natriuretic factor by the rat atria in vivo. Biochemical and Biophysical Research Communications, 131, 806–814.

Debinski, W., Kuchel, O., Garcia, R., Buu, N. T., Racz, K., Cantin, M., & Genest, J. (1986). Atrial natriuretic factor inhibits sympathetic activity in one-kidney, one-clip hypertension in the rat. Proceedings of the Society for Experimental Biology and Medicine, 181, 173–177.

Debinski, W., Kuchel, O., Buu, N. T., Garcia, R., Cantin, M., & Genest, J. (1986). Involvement of the adrenal glands in the action of the atrial natriuretic factor. Proceedings of the Society for Experimental Biology and Medicine, 181, 318–324.

Debinski, W., Gutkowska, J., Kuchel, O., Racz, K., Buu, N. T., Cantin, M., & Genest, J. (1986). ANF-like peptide(s) in the peripheral autonomic nervous system. Biochemical and Biophysical Research Communications, 134, 279–284.

Yi Zhang | Tumor Immunology | Best Researcher Award

Prof. Yi Zhang | Tumor Immunology | Best Researcher Award

The First Affiliated Hospital of Zhengzhou University | China

Prof. Yi Zhang is a globally recognized leader in genetically engineered cell therapy and translational immuno-oncology research. Over the past 36 years, he has made pioneering contributions to overcoming major barriers in cell therapy and advancing its clinical applications worldwide. His extensive research has produced 290 SCI-indexed publications, including 11 ESI top 1% highly cited papers, accumulating more than 14,000 citations and an h-index of 66. Prof. Zhang’s groundbreaking innovations include identifying the novel CAR-T therapeutic target CD276 for solid tumors, developing gene-editing technologies to reduce PD-1–mediated immunosuppression, and creating novel cytokines and culture protocols that enhance immune cell stemness and anti-tumor function. He has also led the development of CAR-T cells that normalize tumor vasculature and improve infiltration, significantly enhancing therapeutic efficacy. With 46 invention patents (17 authorized) and over 80 million yuan in technology transfers, his work bridges basic science and clinical application through an integrated “industry-university-research” platform. As principal investigator, he has directed more than 52 clinical trials—29 targeting solid tumors, the highest number globally—resulting in improved outcomes and even clinical cures for advanced cancer patients. His leadership in establishing national standards and safety protocols has also shaped the regulation and global best practices in cell therapy.

Profile: Orcid

Featured Publications:

Gao, Y., Liu, S., Huang, Y., Wang, H., Zhao, Y., Cui, X., Peng, Y., Li, F., & Zhang, Y. (2024, December 3). CAR T cells engineered to secrete IFNκ induce tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Cancer Immunology Research.

Huang, Y., Cao, R., Wang, S., Chen, X., Ping, Y., & Zhang, Y. (2025, December 31). In vivo CAR-T cell therapy: New breakthroughs for cell-based tumor immunotherapy. Human Vaccines & Immunotherapeutics.

Li, J., Wang, D., Zhang, Z., Sun, K., Lei, Q., Zhao, X., Huang, J., Wang, L., & Zhang, Y. (2025, June 1). Serum carcinoembryonic antigen levels as a predictive biomarker for cytokine-induced killer cell immunotherapy in patients with colorectal cancer. The Journal of Immunology.

Lian, J., Yue, Y., Yu, W., & Zhang, Y. (2025, March 5). Correction: Immunosenescence: A key player in cancer development. Journal of Hematology & Oncology.

Ping, Y., Fan, Q., & Zhang, Y. (2025, February). Modulating lipid metabolism improves tumor immunotherapy. Journal for ImmunoTherapy of Cancer.

Hu, W., Li, F., Liang, Y., Liu, S., Wang, S., Shen, C., Zhao, Y., Wang, H., & Zhang, Y. (2025, January). Glut3 overexpression improves environmental glucose uptake and antitumor efficacy of CAR-T cells in solid tumors. Journal for ImmunoTherapy of Cancer.

Evgeny Deforzh | Cancer | Best Researcher Award

Dr. Evgeny Deforzh | Cancer | Best Researcher Award

Brigham and Women’s Hospital, Harvard University | United States

Dr. Evgeny Deforzh is a molecular biologist whose work focuses on the regulation of RNA, microRNAs, chromatin dynamics, and their roles in cancer and neurological disease. After earning his B.S. and M.S. in Biology from Saint Petersburg State University and a Ph.D. in Molecular Biology from Paris‑Saclay University, he completed postdoctoral research as a Research Fellow and subsequently served as Instructor in Neurology at Brigham & Women’s Hospital. His peer‑reviewed contributions include insights into how WEE1 regulators switch roles in cell cycle control, protection of cyclin mRNAs from translational repression, the impact of glioblastoma‑derived extracellular vesicles on astrocyte transformation, and the nuclear modulation of splicing by oncogenic microRNAs. More recently, his work has elucidated promoter/enhancer RNA regulation of super‑enhancers, and miRNA pathways as therapeutic targets in gliomas and meningiomas. To date, Dr. Deforzh has published ~15–20 independent original research articles (first‑, co‑first, or senior‑author) with many additional co‐authored papers. His publications have been cited in the literature ~800‑1,200 times, giving him an approximate h‑index of 12–15. His research has advanced understanding of RNA regulatory networks in cancer and offers potential translational pathways for diagnostics and therapy.

Profiles: Google Scholar | Scopus

Featured Publications:

Zeng, A., Wei, Z., Rabinovsky, R., Jun, H. J., El Fatimy, R., Deforzh, E., & Arora, R. (2020). Glioblastoma-derived extracellular vesicles facilitate transformation of astrocytes via reprogramming oncogenic metabolism. iScience, 23(8), 101420.

Deforzh, E., Uhlmann, E. J., Das, E., Galitsyna, A., Arora, R., Saravanan, H., … (2022). Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Molecular Cell, 82(10), 1894–1908.e5.

El Fatimy, R., Zhang, Y., Deforzh, E., Ramadas, M., Saravanan, H., Wei, Z., … (2022). A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Molecular Cancer, 21(1), 17.

Poller, W., Sahoo, S., Hajjar, R., Landmesser, U., & Krichevsky, A. M. (2023). Exploration of the noncoding genome for human-specific therapeutic targets—Recent insights at molecular and cellular level. Cells, 12(22), 2660.

Deforzh, E., Vargas, T. R., Kropp, J., Vandamme, M., Pinna, G., & Polesskaya, A. (2016). IMP-3 protects the mRNAs of cyclins D1 and D3 from GW182/AGO2-dependent translational repression. International Journal of Oncology, 49(6), 2578–2588.

Kratassiouk, G., Pritchard, L. L., Cuvellier, S., Vislovukh, A., Meng, Q., … (2016). The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell Cycle, 15(5), 667–677.

Vaclav Ranc | Cancer Cell Biology | Best Researcher Award

Assoc. Prof. Dr. Vaclav Ranc | Cancer Cell Biology | Best Researcher Award

Assoc. Prof. Dr. Vaclav Ranc | Palacký University in Olomouc | Czech Republic

Dr. Václav Ranc is a distinguished analytical chemist and data analyst with over 15 years of experience in academia and applied research. Based in the Czech Republic, he leads a research group at Palacký University Olomouc, specializing in nanotechnology, plasmonic and electronic nanosensors, and advanced analytical techniques. He holds a Ph.D. in Analytical Chemistry and a Habilitation in Physical Chemistry. Dr. Ranc has published over 80 peer-reviewed scientific articles and holds several international patents. He has secured and managed significant EU funding, including Horizon Europe and MSCA projects, showcasing his excellence in both research and project leadership. His expertise spans Raman spectroscopy, mass spectrometry, and LC/GC methods, coupled with data analysis in Python, Matlab, and R. He is a regular presenter at international conferences and a recognized innovator in the fields of biosensing and nanomaterials.

Publication Profiles: 

Google Scholar
Orcid
Scopus

Education:

Dr. Václav Ranc earned his MSc. in Analytical Chemistry from Palacký University Olomouc (UPOL) in 2005, where he focused on the discrimination of enantiomers using mass spectrometry techniques such as LC-MS and CE-MS. He continued at UPOL to complete his Ph.D. in Analytical Chemistry, specializing in chiral analysis with HPLC-MS and GC-MS. His academic trajectory culminated in a Habilitation in Physical Chemistry, reflecting his advancements in Raman microscopy, SERS, and mass spectrometry. Dr. Ranc’s education is deeply rooted in analytical and physical chemistry, with a significant emphasis on developing and applying sophisticated separation and detection techniques for complex biological and clinical samples. His academic background is further enriched by international research experiences in Sweden and Switzerland, where he worked on electroanalytical techniques and nanoLC-MS applications for neurotransmitter analysis.

Experience:

Dr. Václav Ranc currently serves as the Head of a Research Group at Palacký University Olomouc, managing a 20-member team focused on cutting-edge nanomaterials and analytical chemistry. He has led the group’s scientific, financial, and personnel management, improving research output by 30%. Previously, he worked as a Research Assistant in Switzerland and at Palacký University, where he developed analytical techniques for clinical and neurological studies using mass spectrometry. His earlier roles include assisting in electrochemical method development at Lund University and clinical toxicology at Faculty Hospital Olomouc. His leadership extends to managing multimillion-CZK budgets and delivering impactful results in EU-funded research projects. Throughout his career, he has seamlessly combined academic excellence with innovation, leading to patented technologies and industrial prototypes, while mentoring young researchers and collaborating with international scientific networks.

Honors & Awards:

Dr. Václav Ranc has received several national and international honors for his scientific excellence. Notable among them is the Golden Medal at the International Invent Arena for the innovative KeyLock authentication system. He also earned the Bronze Prize from MERCK’s Young Analytical Chemists Competition and was a Finalist for the prestigious Shimadzu Prize for Young Analytical Chemists. His awards reflect consistent recognition for his groundbreaking work in analytical chemistry and applied nanotechnology. These accolades underscore his ability to translate complex research into practical applications, particularly in biosensing, authentication systems, and advanced materials. Dr. Ranc’s career is marked by impactful innovations that bridge academic research with industry needs, affirming his role as a thought leader in his field. His awarded projects and patents have contributed significantly to medical diagnostics, material sciences, and anti-counterfeiting technologies.

Research Focus:

Dr. Ranc’s research focuses on analytical chemistry, nanotechnology, and biosensing. He specializes in Raman spectroscopy (including SERS), LC/GC-MS, and the development of plasmonic and electronic nanosensors. His work bridges basic science and applied innovation, emphasizing the synthesis of nanoparticles, development of authenticity verification systems, and detection of biomarkers in clinical diagnostics. His contributions to surface-enhanced Raman spectroscopy have led to the development of patented methods and tools, including test strips and analytical systems. Dr. Ranc’s interdisciplinary approach combines analytical method development, data analysis using Python, R, and Matlab, and project management of EU-funded research. His current Horizon Europe projects focus on medical applications of nanotechnology, contributing to improved diagnostics, drug delivery systems, and authenticity verification. Through collaborations with European research institutions and industries, Dr. Ranc is pushing the boundaries of next-gen biomedical and analytical technologies.

Publication Top Notes:

  1. Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy

  2. Highly Cytotoxic Copper(II) Mixed-Ligand Quinolinonato Complexes: Pharmacokinetic Properties and Interactions with Drug Metabolizing Cytochromes P450

  3. Graphene Oxide Nanoplatforms to Enhance Cisplatin-Based Drug Delivery in Anticancer Therapy

  4. Polymer-Based Graphene Derivatives and Microwave-Assisted Silver Nanoparticles Decoration as a Potential Antibacterial Agent

  5. New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative

  6. Label-free Determination of Prostate Specific Membrane Antigen in Human Whole Blood by Magnetically Assisted SERS

  7. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene

  8. Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy

  9. Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides

  10.  Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets for Hydrogen and Oxygen Evolution

Conclusion:

In conclusion, Dr. Václav Ranc is an exceptional candidate for the Best Researcher Award, demonstrating a rare synergy of academic excellence, applied innovation, and impactful leadership. His contributions to analytical chemistry and nanotechnology have advanced both scientific understanding and practical diagnostic solutions. His impressive publication record, international collaborations, patent portfolio, and success in leading multimillion-euro projects set him apart as a researcher of outstanding merit. With minor expansion into global research programs and commercialization efforts, Dr. Ranc is poised to further amplify his already significant impact. For his sustained contributions to science, his ability to lead and innovate, and his commitment to solving real-world problems through chemistry and nanotechnology, Dr. Václav Ranc is highly deserving of the Best Researcher Award.

Sunila Pradeep | Ovarian Cancer | Women Researcher Award

Dr. Sunila Pradeep | Ovarian Cancer | Women Researcher Award

Dr. Sunila Pradeep | The Medical College of Wisconsin | United States

Dr. Sunila Pradeep, Ph.D., is an accomplished Associate Professor at the Medical College of Wisconsin, with over two decades of academic and research experience in immunology, oncology, and translational medicine. Originating from India, Dr. Pradeep began her journey in microbiology before delving deep into cancer research. Her multidisciplinary work bridges basic science with clinical relevance, particularly in ovarian and uterine cancers. Having trained in globally recognized institutions like the Weizmann Institute (Israel) and MD Anderson Cancer Center (USA), she has cultivated a robust research portfolio. Her impact in biomedical sciences is well-established. Dr. Pradeep’s ongoing work on extracellular vesicles, tumor microenvironment, and therapy resistance showcases her commitment to solving real-world clinical problems. A recipient of numerous national and international honors, she is a role model for aspiring women in science, blending scientific rigor with compassionate mentorship.

Publication Profile: 

Scopus

Education:

Dr. Sunila Pradeep’s academic path began in India, where she completed her B.Sc. and M.Sc. in Microbiology at Bharathiar University, Coimbatore, Tamil Nadu. Her passion for biomedical sciences led her to pursue a Ph.D. in Immunology at the University of Calicut, Kerala, under the mentorship of Dr. Girija Kuttan, where she began her exploration into natural compounds with anti-cancer properties. Her graduate studies laid a strong foundation in experimental biology and immunomodulation. Eager to expand her research horizons globally, she pursued postdoctoral training at the Weizmann Institute of Science in Israel, and later at the prestigious MD Anderson Cancer Center, Texas, USA, where she transitioned into translational cancer research. This diverse academic journey spanning three countries has given Dr. Pradeep a unique global perspective, rigorous research training, and an innovative approach to solving complex oncological challenges.

Professional Experience:

Dr. Sunila Pradeep has more than 18 years of research experience in oncology and immunology. Her professional career began with a Postdoctoral Fellowship at the Weizmann Institute, where she explored molecular signaling in cancer progression. She then advanced to a key fellowship role at the MD Anderson Cancer Center, focusing on therapeutic resistance in ovarian cancer. Since joining the Medical College of Wisconsin as an Associate Professor, she has established herself as a leading researcher in ovarian tumor microenvironments, metastasis mechanisms, and extracellular vesicle biology. Her role extends beyond research—she is also a dedicated mentor to graduate students and postdocs, and contributes to several multidisciplinary cancer initiatives. Dr. Pradeep’s scientific rigor, grant success, and translational insights have made her a sought-after collaborator. Her efforts to bridge laboratory research with clinical application reflect her commitment to improving outcomes for women suffering from gynecologic cancers.

Awards and Honors:

Dr. Pradeep’s distinguished career has been marked by several prestigious awards. She received the Fr. Gabriel Award from the Amala Institute of Medical Sciences, Kerala, recognizing her excellence in immunology research. During her tenure at MD Anderson Cancer Center, she was honored with the Trainee Excellence Award, reflecting her high-impact work in cancer biology. Her promising contributions to ovarian cancer research earned her the Scholar-in-Training Award from the Marsha Rivkin Center Foundation for Ovarian Cancer Research—a significant achievement for emerging leaders in gynecologic oncology. These accolades underscore her strong scientific foundation, innovation, and leadership in translational oncology. Beyond individual awards, her prolific publication record and active engagement in scientific communities amplify her impact. Dr. Pradeep’s recognition across three continents emphasizes her global footprint and her consistent commitment to advancing women’s health through science.

Research Focus:

Dr. Sunila Pradeep’s research revolves around understanding tumor biology, metastasis, angiogenesis, immunomodulation, and drug resistance in gynecologic cancers, particularly ovarian and uterine cancers. She investigates the role of extracellular vesicles, tumor-derived signals, and the tumor microenvironment in driving cancer progression and therapy evasion. Her lab explores novel biomarkers and targets for overcoming VEGF resistance, improving chemotherapy response, and modulating the immune system to suppress tumor growth. Her translational work includes identifying new combination therapies (e.g., selinexor with eribulin) and examining gut microbiota’s role in estrogen signaling—connecting metabolic and hormonal networks with cancer biology. She is also involved in cutting-edge research on RNA-binding proteins, such as FXR1, and their roles in mRNA translation in cancer. With cross-disciplinary collaborations and NIH-supported studies, her focus bridges fundamental discovery with real-world clinical applications. Her ultimate goal: to make therapies more precise, personalized, and effective for women with cancer.

Publications Top Notes: 

  1. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine

  2. Protective effect of Piper longum fruit ethanolic extract on radiation-induced damages in mice

  3. Expression of VEGF and VEGF receptors in tumor angiogenesis and malignancies

  4. Protective effect of Thuja occidentalis against radiation-induced toxicity in mice

  5. Piper longum inhibits VEGF and proinflammatory cytokines and tumor-induced angiogenesis

  6. Antimetastatic activity of Thuja occidentalis in a mouse model

  7. Inhibition of carcinogenesis by homeopathic drugs

  8. Effect of homeopathic medicines on transplanted tumors in mice

  9. Dynamized preparations in cell culture

  10. Phosphomimetic mutants of PEDF with enhanced antiangiogenic activity as anticancer agents

Conclusion:

Overall, Dr. Sunila Pradeep is highly qualified and a strong candidate for a Best Researcher Award in ovarian cancer research. Her prolific publication record, substantial citation impact, and focus on innovative cancer biology and treatment research provide a solid foundation for recognition. By highlighting her leadership contributions, translational impact, and broader scientific engagement, she can further strengthen her nomination. Her work clearly advances the field of ovarian cancer and serves as a model for impactful biomedical research, making her a deserving contender for such a prestigious award.

 

Dukagjin Blakaj | Radiation Oncology | Best Researcher Award

Prof. Dukagjin Blakaj | Radiation Oncology | Best Researcher Award

Prof. Dukagjin Blakaj, The Ohio State University, United States

Dr. Dukagjin M. Blakaj, MD, PhD, is a distinguished physician-scientist and academic leader in radiation oncology, specializing in proton therapy. Currently serving as the Vice Chair of Clinical Operations and holding the prestigious Drs. Malati and Ganesh Potdar Endowed Professorship at The Ohio State University Comprehensive Cancer Center – James Cancer Hospital, he brings visionary leadership in patient-centered oncology care. With dual degrees in medicine and biochemistry, Dr. Blakaj integrates clinical expertise with advanced translational research. He is renowned for developing innovative radiotherapy protocols, advancing artificial intelligence applications in oncology, and mentoring future clinician-scientists. His work significantly influences treatment outcomes for head and neck cancers, including HPV-related oropharyngeal cancer, and is published in top-tier journals. A respected thought leader and collaborative partner, Dr. Blakaj embodies excellence in academic medicine, multidisciplinary team leadership, and compassionate patient care.

Publication Profile: 

Google Scholar

Scopus

Orcid

Education:

Dr. Blakaj’s educational path is both extensive and interdisciplinary. He earned his MD, PhD, and MS in Biochemistry from the Albert Einstein College of Medicine in New York, where he focused on molecular interactions in biological systems. Before that, he completed both a BA in Chemistry and Molecular Biology & Biophysics and an MA in Chemistry from Wesleyan University in Middletown, CT. His doctoral work explored protein-RNA interactions, laying the groundwork for his scientific rigor and precision. This strong biochemical foundation supports his innovative clinical research in radiation oncology and immunotherapy. His education highlights a consistent pattern of academic excellence and intellectual curiosity, equipping him with a rare blend of clinical insight and research acumen that continues to impact cancer treatment paradigms worldwide.

Professional Experience:

Dr. Dukagjin Blakaj is the Vice Chair of Clinical Operations in Radiation Oncology and Drs. Malati and Ganesh Potdar Endowed Professor in Proton Therapy at OSUCCC – James Cancer Hospital. As a senior faculty member, he has led transformative improvements in clinical care, quality assurance, and translational oncology research. His multidisciplinary collaboration extends across surgery, radiology, oncology, and data science, driving innovations such as AI-guided treatment protocols and digital health integration. Dr. Blakaj has also played a critical role in operationalizing proton therapy and implementing personalized cancer therapies. His background spans high-impact clinical trials, program development, and mentorship. The combination of clinical leadership and academic scholarship positions him as a strategic thinker with practical, evidence-driven execution. His commitment to precision medicine and patient-centered care distinguishes him among modern radiation oncologists.

Awards and Honors:

Dr. Blakaj has received numerous accolades that reflect his clinical excellence, research innovation, and service to the academic community. Notably, he was awarded the Drs. Malati and Ganesh Potdar Endowed Professorship in Radiation Oncology – Proton Therapy (effective June 2025), the highest honor granted by Ohio State University. His ABR Volunteer Service Award (July 2025) highlights his contributions to professional standards and education. He was selected for the James Outstanding Physician Peer Award for exemplary leadership, professionalism, and collaboration (August 2024). Additionally, his abstract ranked in the Top 7 of 146 presentations at ACRO, underscoring his research’s national impact. Dr. Blakaj’s consistent recognition across service, research, and teaching is a testament to his dedication, integrity, and influence in the field of oncology.

Research Focus:

Dr. Blakaj’s research is centered on optimizing cancer treatment outcomes through precision radiation therapy, immunotherapy integration, and the application of artificial intelligence in oncology. He focuses primarily on head and neck cancers, with additional emphasis on HPV-associated oropharyngeal carcinoma, FLASH radiotherapy, and treatment response prediction using circulating tumor DNA and inflammatory indices. He co-leads interdisciplinary studies leveraging machine learning, big data, and digital health tools to personalize care and reduce treatment toxicity. His research is both translational and clinically grounded, often influencing national clinical practice guidelines and multi-center trials. As a key contributor to high-impact publications, Dr. Blakaj has established himself as a thought leader in adaptive radiotherapy and survivorship outcomes. His pioneering work in proton therapy protocols and patient-reported outcomes continues to bridge the gap between innovative science and practical oncology care.

Publications Top Notes: 

  1. An integrated ML-based prognostic model in head and neck cancer using inflammatory markers and financial toxicity

  2. Vertebral endplate disruption and compression fracture risk: Expanded radiotherapy analysis

  3. Nasopharyngeal carcinoma in nonendemic regions: Characteristics and treatment outcomes

  4. Emerging paradigms in radiation oncology: Evolution and patient-centric care

  5. FLASH radiotherapy: From in vivo data to clinical translation

  6. Digital health tools in radiation oncology: Development and implementation review

  7. ctDNA as a response marker in HPV-associated oropharyngeal carcinoma: A pilot study

  8. AI, machine learning, and big data in radiation oncology

  9. Predicting cisplatin tolerability in elderly head and neck cancer patients

  10.  Tobacco, marijuana, and alcohol use impact on survival in metastatic head and neck cancer

Conclusion:

Dr. Dukagjin M. Blakaj is a highly qualified, forward-thinking researcher whose body of work exemplifies excellence in translational oncology. He brings together advanced clinical practice, cutting-edge research, and visionary leadership to improve cancer care outcomes and drive future innovations in radiation therapy.

Given his sustained productivity, multidisciplinary leadership, and contributions to patient-centered care models, Dr. Blakaj is a deserving and outstanding nominee for the Best Researcher Award.