Chiara Alfare | Cardiovascular Disease After Preeclampsia | Research Excellence Award

Mrs. Chiara Alfare | Cardiovascular Disease After Preeclampsia | Research Excellence Award

University of Parma | Italy

Chiara Alfarè is a resident in Gynecology and Obstetrics at the University of Parma with a strong academic interest in maternal–fetal medicine and cardiovascular complications of pregnancy. She holds a medical degree in Medicine and Surgery and gained valuable international research experience through a six-month placement at University Medical Center Hamburg-Eppendorf (UKE), where she worked with leading experts in reproductive immunology and obstetric medicine. Her research has contributed to the peer-reviewed review article “Predicting Cardiovascular Disease After Preeclampsia: Emerging Tools and Early Detection Approaches” published in the Journal of Reproductive Immunology. Her work explores long-term cardiovascular risk following preeclampsia and emphasizes early prediction and prevention strategies. In addition, she is currently involved in an innovative project applying artificial intelligence to optimize decision-making regarding the mode of delivery. She has received recognition for her scientific contributions, including a Best Poster Presentation award at a major European scientific meeting.

Featured Publications


Predicting Cardiovascular Disease After Preeclampsia: Emerging Tools and Early Detection Approaches

– Journal of Reproductive Immunology, 2026 (Review)

Contributors: Chiara Alfarè; Emma M. Giesen; Evelyn A. Huhn; Tullio Ghi; Stefan Verlohren; Sandra M. Blois

Ji Cao | Macrophage Biology | Research Excellence Award

Prof. Ji Cao | Macrophage Biology | Research Excellence Award

Zhejiang University | China

Ji Cao, Ph.D., is a leading scholar in tumor pharmacology and anticancer drug discovery, internationally recognized as a World’s Top 2% Scientist (Stanford ranking, 2023) and a National Young Top Talent of China. His research integrates tumor pharmacology, chemical biology, and artificial intelligence–driven drug design, with major contributions to targeted protein degradation (PROTACs), ferroptosis regulation, MYC oncoprotein inhibition, and cancer immunotherapy. He has published over 59 peer-reviewed articles in high-impact journals such as Cell Metabolism, Nature Communications, PNAS, and Science Advances, including multiple ESI highly cited papers, accumulating more than 4,000 citations with an h-index of 36. His work has translated into innovation through 18 Chinese patents and one international patent. He has led nationally and provincially funded projects exceeding ¥14 million and has received prestigious science and technology awards for outstanding contributions to biomedical research and translational pharmacology.

Citation Metrics (Scopus)

6000
4000
2000
200
100
50
0

Citations
5,725

Documents
149

h-index
44

Citations

Documents

h-index

Featured Publication

Lin Wu | Bone Tissue Engineering | Excellence in Research Award

Ms. Lin Wu | Bone Tissue Engineering | Excellence in Research Award

Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R | China

Professor Wu Lin is a leading scholar in oral rehabilitation and biomaterials research, recognized for her extensive contributions to bone implant materials and advanced technologies for dental restoration. Her work spans more than 90 peer-reviewed publications across high-impact national and international journals, reflecting sustained productivity and influence in stomatology research. She has led major scientific initiatives, including national natural science projects, a “14th Five-Year Plan” National Key R&D project, national disaster-related research, multiple sub-projects under the national “863” Plan, and several provincial-level grants. As the first inventor, she holds two authorized invention patents that advance the design and performance of oral implant systems. Her editorial roles in multiple scientific journals and participation in specialized professional committees further demonstrate her leadership in shaping research directions in oral medicine, prosthodontics, and biomaterials science. Through her innovations, Professor Wu has significantly advanced clinical applications and material technologies in modern stomatology.

Citation Metrics (Scopus)
800

600

400

200

0

Citations
719

Documents
50

h-index
15

Citations
Documents
h-index



View Scopus Profile


Featured Publications

Ioan Tomuta | Genetic Material | Research Excellence Award

Prof. Dr. Ioan Tomuta | Genetic Material | Research Excellence Award

University of Medicine and Pharmacy Iuliu Hatieganu Cluj-Napoca | Romania

Ioan Tomuță is a leading researcher in pharmaceutical technology with extensive expertise in the design, development, and optimization of modern dosage forms. His work focuses on understanding the physicochemical and mechanical properties of active substances and excipients, their processing behavior, and their influence on drug release kinetics and bioavailability. He has made significant contributions to advanced drug delivery systems, including liposomes, nanoparticles, polymeric films, and gastroretentive drug delivery platforms produced through 3D printing. His research also advances the use of NIR spectroscopy, chemometrics, and Quality-by-Design principles for pharmaceutical development and process analytical control. He has played key roles in national and European research projects involving process engineering, tissue regeneration technologies, and artificial intelligence–based prediction tools for 3D-printable medicines. His work spans formulation science, process optimization, GMP-oriented industrial applications, and innovation in personalized medicine manufacturing technologies.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Savencu, I., Iurian, S., Porfire, A., Bogdan, C., & Tomuță, I. (2021). Review of advances in polymeric wound dressing films. Reactive and Functional Polymers, 168, 105059.

Ilyés, K., Kovács, N. K., Balogh, A., Borbás, E., Farkas, B., Casian, T., Marosi, G., … & Tomuță, I. (2019). The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations, printability, process modulation, with particular interest in additive manufacturing applications. European Journal of Pharmaceutical Sciences, 129, 110–123.

Tefas, L. R., Sylvester, B., Tomuță, I., Sesarman, A., Licarete, E., Banciu, M., … & Porfire, A. (2017). Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin through the use of a quality-by-design approach. Drug Design, Development and Therapy, 1605–1621.

Tefas, L. R., Tomuță, I., Achim, M., & Vlase, L. (2015). Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design. Clujul Medical, 88(2), 214.

Barbalata, C. I., Tefas, L. R., Achim, M., Tomuță, I., & Porfire, A. S. (2020). Statins in risk-reduction and treatment of cancer. World Journal of Clinical Oncology, 11(8), 573.

Bogdan, C., Iurian, S., Tomuță, I., & Moldovan, M. (2017). Improvement of skin condition in striae distensae: Development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Design, Development and Therapy, 521–531.

Rusu, M. E., Gheldiu, A. M., Mocan, A., Moldovan, C., Popa, D. S., Tomuță, I., … & Vlase, L. (2018). Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) septum: Phytochemical profile and biological activities. Molecules, 23(11), 2814.

Colobatiu, L., Gavan, A., Potarniche, A. V., Rus, V., Diaconeasa, Z., Mocan, A., … & Tomuță, I. (2019). Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. Reactive and Functional Polymers, 145, 104369.

Rusu, M. E., Fizeșan, I., Pop, A., Gheldiu, A. M., Mocan, A., Crișan, G., Vlase, L., … & Tomuță, I. (2019). Enhanced recovery of antioxidant compounds from hazelnut (Corylus avellana L.) involucre based on extraction optimization: Phytochemical profile and antioxidant activity. Antioxidants, 8(10), 460

Wan Wan Lin | Inflammation | Best Researcher Award

Prof. Wan Wan Lin | Inflammation | Best Researcher Award

Department of Pharmacology, College of Medicine, NTU | Taiwan

Dr. Wan-Wan Lin is a leading researcher in the fields of pharmacology and immunology, with a strong focus on cellular signaling and innate immune mechanisms. Her work has significantly advanced understanding of signal transduction pathways and their regulation of inflammation and cell death. She has made notable contributions to the study of pattern recognition receptors, inflammasomes, and cytokine-mediated immune responses, particularly in the context of oxidative stress and mitochondrial function. Dr. Lin’s research explores how mitochondrial dynamics and redox balance influence inflammatory signaling and programmed cell death, providing key insights into the molecular basis of immune regulation and inflammatory diseases. Her studies have also shed light on the crosstalk between cellular stress responses and immune activation, offering potential therapeutic targets for controlling excessive inflammation and tissue damage. Recognized for her excellence in research, Dr. Lin has received multiple national awards and continues to contribute to the advancement of pharmacological sciences through her editorial and academic roles. Her integrative approach bridges pharmacology, immunology, and cell biology, driving innovations in the understanding of molecular mechanisms underlying inflammation and innate immunity.

Profile: Orcid

Featured Publications:

Lin, W.-W., Lee, C.-Y., Tsai, M.-C., & Tsaur, M.-L. (1985). Pharmacological study on angusticeps-type toxins from mamba snake venoms. Journal of Pharmacology and Experimental Therapeutics, 233, 491–498.

Lin, W.-W., Chang, P.-L., Lee, C.-Y., & Joubert, F. J. (1987). Pharmacological study on phospholipases A₂ isolated from Naja mossambica mossambica venom. Proceedings of the National Science Council, Republic of China B, 11, 155–163.

Lin, W.-W., Lee, C.-Y., & Burnett, J. W. (1988). Effect of sea nettle (Chrysaora quinquecirrha) venom on isolated rat aorta. Toxicon, 26, 1209–1212.

Chiou, S.-H., Lin, W.-W., & Chang, W.-P. (1989). Sequence characterization of venom toxins from Thailand cobra. International Journal of Peptide and Protein Research, 34, 148–152.

Lee, C.-Y., Lin, W.-W., Chen, Y.-M., & Lee, S.-Y. (1989). Is direct cardiotoxicity the primary cause of death following intravenous injection of the basic phospholipase A₂ from Naja nigricollis venom? Acta Physiologica et Pharmacologica Latinoamericana, 39, 383–391.

Lee, C.-Y., & Lin, W.-W. (1989). Two subtypes of acetylcholinesterase isoenzymes distinguishable by Angusticeps-type toxin F7. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology, 92, 279–281.

Lin, W.-W., Lee, C.-Y., & Chuang, D.-M. (1989). Cross-desensitization of endothelin- and sarafotoxin-induced phosphoinositide turnover in neurons. European Journal of Pharmacology, 166, 581–582.

Lin, W.-W., Chen, Y.-M., Lee, S.-Y., Nishio, H., Kimura, T., Sakakibara, S., & Lee, C.-Y. (1990). Cardiovascular effects of two disulfide analogues of sarafotoxin S6b. Toxicon, 28, 911–923.

Lin, W.-W., Lee, C.-Y., Yasumoto, T., & Chuang, D.-M. (1990). Maitotoxin induces phosphoinositide turnover and modulates glutamatergic and muscarinic cholinergic receptor function in cultured cerebellar neurons. Journal of Neurochemistry, 55, 1563–1568.

Lin, W.-W., & Lee, C.-Y. (1990). Biphasic effects of endothelin in the guinea-pig ileum. European Journal of Pharmacology, 176, 57–62.

Yi Zhang | Tumor Immunology | Best Researcher Award

Prof. Yi Zhang | Tumor Immunology | Best Researcher Award

The First Affiliated Hospital of Zhengzhou University | China

Prof. Yi Zhang is a globally recognized leader in genetically engineered cell therapy and translational immuno-oncology research. Over the past 36 years, he has made pioneering contributions to overcoming major barriers in cell therapy and advancing its clinical applications worldwide. His extensive research has produced 290 SCI-indexed publications, including 11 ESI top 1% highly cited papers, accumulating more than 14,000 citations and an h-index of 66. Prof. Zhang’s groundbreaking innovations include identifying the novel CAR-T therapeutic target CD276 for solid tumors, developing gene-editing technologies to reduce PD-1–mediated immunosuppression, and creating novel cytokines and culture protocols that enhance immune cell stemness and anti-tumor function. He has also led the development of CAR-T cells that normalize tumor vasculature and improve infiltration, significantly enhancing therapeutic efficacy. With 46 invention patents (17 authorized) and over 80 million yuan in technology transfers, his work bridges basic science and clinical application through an integrated “industry-university-research” platform. As principal investigator, he has directed more than 52 clinical trials—29 targeting solid tumors, the highest number globally—resulting in improved outcomes and even clinical cures for advanced cancer patients. His leadership in establishing national standards and safety protocols has also shaped the regulation and global best practices in cell therapy.

Profile: Orcid

Featured Publications:

Gao, Y., Liu, S., Huang, Y., Wang, H., Zhao, Y., Cui, X., Peng, Y., Li, F., & Zhang, Y. (2024, December 3). CAR T cells engineered to secrete IFNκ induce tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Cancer Immunology Research.

Huang, Y., Cao, R., Wang, S., Chen, X., Ping, Y., & Zhang, Y. (2025, December 31). In vivo CAR-T cell therapy: New breakthroughs for cell-based tumor immunotherapy. Human Vaccines & Immunotherapeutics.

Li, J., Wang, D., Zhang, Z., Sun, K., Lei, Q., Zhao, X., Huang, J., Wang, L., & Zhang, Y. (2025, June 1). Serum carcinoembryonic antigen levels as a predictive biomarker for cytokine-induced killer cell immunotherapy in patients with colorectal cancer. The Journal of Immunology.

Lian, J., Yue, Y., Yu, W., & Zhang, Y. (2025, March 5). Correction: Immunosenescence: A key player in cancer development. Journal of Hematology & Oncology.

Ping, Y., Fan, Q., & Zhang, Y. (2025, February). Modulating lipid metabolism improves tumor immunotherapy. Journal for ImmunoTherapy of Cancer.

Hu, W., Li, F., Liang, Y., Liu, S., Wang, S., Shen, C., Zhao, Y., Wang, H., & Zhang, Y. (2025, January). Glut3 overexpression improves environmental glucose uptake and antitumor efficacy of CAR-T cells in solid tumors. Journal for ImmunoTherapy of Cancer.

Ann-Kathrin Eisfeld | Molecular Profiles | Best Researcher Award

Prof. Dr. Ann-Kathrin Eisfeld | Molecular Profiles | Best Researcher Award

The Ohio State University | United States

Dr. Ann-Kathrin Eisfeld is an internationally recognized physician-scientist and Associate Professor with Tenure in the Division of Hematology at The Ohio State University, where she also serves as Director of the Clara D. Bloomfield Center for Leukemia Outcomes Research. Her research focuses on the molecular and genetic underpinnings of acute myeloid leukemia (AML), with a particular emphasis on translational applications that improve patient outcomes. Dr. Eisfeld has published extensively in high-impact journals such as Nature, Leukemia, Blood, and Cell Stem Cell, contributing significantly to our understanding of leukemia biology, clonal evolution, and treatment resistance. she has authored over 100 peer-reviewed scientific publications, with an h-index of 38, more than 6,500 citations, and has led or co-led multiple collaborative studies within national consortia such as the Alliance for Clinical Trials in Oncology. Her work has identified critical biomarkers and therapeutic targets in AML, including insights into TP53 mutations, FLT3 alterations, and resistance mechanisms to venetoclax. Recognized for her integration of clinical insight with cutting-edge genomics, Dr. Eisfeld is a leading voice in precision oncology and leukemia research, shaping the future of individualized treatment strategies through both clinical innovation and scientific discovery.

Profile: Scopus

Featured Publications:

“Highly elevated serum hepcidin in patients with acute myeloid leukemia prior to and after allogeneic hematopoietic cell transplantation: Does this protect from excessive parenchymal iron loading?”

“Heritable polymorphism predisposes to high BAALC expression in acute myeloid leukemia”

“miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia”

“Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia”

“Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation”

“inv(16)/t(16;16) acute myeloid leukemia with non-type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations”

“Clinical Role of microRNAs in Cytogenetically Normal Acute Myeloid Leukemia: miR-155 Upregulation Independently Identifies High-Risk Patients”

“In rare acute myeloid leukemia patients harboring both RUNX1 and NPM1 mutations, RUNX1 mutations are unusual in structure and present in the germline”

“A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia”

Wei Zhang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Dr. Wei Zhang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Dr. Wei Zhang | Central South University | China

Dr. Wei Zhang, born on December 29, 1977, is a leading expert in clinical pharmacology and pharmacogenomics at the Institute of Clinical Pharmacology, Central South University, China. With over two decades of dedication to personalized medicine and drug-gene interaction research, Dr. Zhang has advanced the fields of pharmacokinetics, pharmacodynamics, and gut microbiome-pharmacology interactions. His global experience includes a research stint at the University of Maryland, USA. As a professor, scientific secretary, and associate dean, he contributes significantly to clinical research, translational pharmacogenomics, and academic leadership. Dr. Zhang has led multiple national research grants and published in top-tier journals like The Lancet, Nature Communications, and Signal Transduction and Targeted Therapy. His research bridges clinical pharmacology and precision medicine, with a particular focus on diabetes, cancer immunotherapy, and microbiome-drug interactions.

Publication profile:

Scopus

✅ Strengths for the Award:

  1. Outstanding Research Leadership
    Dr. Wei Zhang has served as a principal investigator for over 7 nationally funded projects, including China’s prestigious 863 Program and multiple NSFC grants. These projects span pharmacogenomics, clinical pharmacology, and personalized medicine, highlighting his leadership in cutting-edge translational research.

  2. Pioneering Work in Pharmacogenomics & Microbiome
    He has contributed significantly to the drug-gene-microbiota interaction field, especially in type 2 diabetes, cancer immunotherapy, and nephrotoxicity. His discoveries on SLCO1B1, TRIB3, OATP1B1, and CYP2A6 variations have direct implications for individualized therapy.

  3. Global Research Recognition
    His work is published in high-impact journals such as The Lancet, Nature Communications, Signal Transduction and Targeted Therapy, and Advanced Science. These publications attest to both quality and international relevance.

  4. Interdisciplinary Innovation
    Dr. Zhang bridges clinical pharmacology, bioinformatics, and microbial science, addressing unmet needs in precision medicine. His focus on gut microbiota’s role in drug efficacy and toxicity represents a visionary, interdisciplinary approach.

  5. Academic Mentorship & Leadership
    He has held senior academic roles (Professor, Associate Dean, Scientific Secretary), contributing to the development of academic programs and mentoring the next generation of clinical pharmacologists.

  6. Award-Winning Profile
    With over 9 prestigious national awards, including the New Century Talent Award, Henry Fok Young Teacher Award, and honors from the Chinese Ministry of Education, his contributions are officially recognized at the national level.

⚠️ Areas for Improvement:

  1. International Collaboration Expansion
    While Dr. Zhang has completed a visiting scholar stint in the U.S., expanding ongoing multi-national clinical collaborations (e.g., with EU or U.S. precision medicine centers) would further globalize his impact.

  2. Public Communication & Outreach
    His work is academically impactful but could benefit from greater visibility in public health or policymaking arenas, translating research findings into clinical guidelines or patient-accessible formats.

  3. Patents & Industry Translation
    While his academic output is prolific, increased technology transfer—e.g., pharmacogenetic diagnostics or drug screening tools—would further boost his profile as a translational scientist.

🎓 Education:

Dr. Wei Zhang obtained his entire academic education from Central South University in Changsha, Hunan, China. He earned his Ph.D. in Pharmacology (2003–2006) under the mentorship of Professor Hong-Hao Zhou, a member of the China Engineering Academy. His doctoral work centered on clinical pharmacology, with strong emphasis on drug assays and clinical trials. Prior to this, he received his M.A. in Pharmacology (2001–2003), focusing on pharmacogenomics and drug metabolism, gaining hands-on expertise in pyrosequencing and human DNA analysis. Dr. Zhang began his academic journey with a B.A. in Clinical Medicine (1996–2001) from XiangYa Medical School, where he built a solid foundation in pharmacology, physiology, and clinical medicine. This comprehensive academic trajectory laid the groundwork for his research in personalized therapy, pharmacogenetics, and pharmacokinetics, making him a key contributor in China’s pharmacological landscape.

🧪 Experience:

Dr. Wei Zhang currently serves as Professor at the Department of Clinical Pharmacology, Central South University, since 2013. Since 2009, he has also held the post of Associate Dean at the Institute of Clinical Pharmacology. Previously, he was an Associate Professor (2008–2013), Head of the Genetic Testing Laboratory (2007–2013), and Lecturer (2006–2008). He also contributes administratively as the Scientific Secretary of the National Key Discipline of Pharmacology since 2005. Dr. Zhang gained international experience as a Visiting Scholar at the University of Maryland, USA (2012–2013), further broadening his research expertise. Throughout his career, he has played a pivotal role in pharmacogenomic translation, clinical trials, and precision medicine development, mentoring students and managing large research teams. His leadership and administrative skills have contributed to elevating China’s presence in global pharmacology research.

🏅 Awards and Honors:

Dr. Wei Zhang’s distinguished career has been recognized with numerous prestigious awards. As a student, he received the “Class I Scholarship” and “Outstanding Postgraduate Student” awards in 2004 and 2005, followed by the “Excellent Report Award” from the Chinese Pharmacological Society in 2005. In 2006, he was named an Outstanding Graduate by Central South University. His research excellence earned him the “New Century Excellent Talents” award from the Chinese Ministry of Education in 2010 and the Science and Technology Prize of the Chinese Society of Pharmacy. He received international recognition in 2012 with a foreign fund from the China Scholarship Council. He was also honored as an “Outstanding Young Talent” by the Organization Department of China in 2013, and in 2014 received the esteemed “Henry Fok Young Teacher Award.” These accolades underscore his influential contributions to pharmacogenomics and clinical research in China.

🔬 Research Focus:

Dr. Wei Zhang’s research is centered around clinical pharmacology, pharmacogenomics, and drug-microbiome interactions, with a mission to enable personalized medicine. His work investigates the genetic and microbial determinants of drug efficacy, toxicity, and metabolism, especially in type 2 diabetes, cancer immunotherapy, and nephrotoxic drugs like cisplatin. He has led major national projects funded by the National Natural Science Foundation of China and the 863 Program, exploring the pharmacogenomic landscape and the gut microbiota’s impact on drug response. Dr. Zhang’s translational focus bridges laboratory findings to clinical application, utilizing genomic tools and bioinformatics to optimize therapy. His innovative research has unveiled how bacterial metabolites and transporters influence drug absorption and immune modulation, contributing significantly to the understanding of precision pharmacology. Through interdisciplinary collaborations, his work pushes boundaries in oncology, endocrinology, and microbiome science.

📚 Publications Top Notes:

  1. 🧬 SLCO1B1 variants and enalapril-induced coughThe Lancet (2015)

  2. 💉 TRIB3 Gln84Arg and vascular complications in T2DMLancet Diabetes & Endocrinology (2016)

  3. 🧠 Pharmacogenomics of hERG potassium channelsTrends in Molecular Medicine (2013)

  4. 🌱 Eubacterium rectale enhances anti-PD1 immunotherapyResearch (2023)

  5. 💊 Bacteroides ovatus and metformin-induced B12 deficiencyNPJ Biofilms Microbiomes (2023)

  6. 🧨 Cancer nanobombs enhancing PD-L1 expressionAdvanced Science (2024)

  7. 🌿 Regulatory effects of herbal compounds on gut bacteriaPharmacological Research (2023)

  8. 🔄 Drug–microbiota interactions in precision medicineSignal Transduction and Targeted Therapy (2023)

  9. 🧫 Microbiota variation and ICI responseNature Communications (2023)

  10. 🔬 Peptides from Sutterella potentiate PD-1 blockadeGut (2024)

🧾 Conclusion:

Recommendation: Highly Suitable for Best Researcher Award

Dr. Wei Zhang exemplifies the ideal candidate for the Best Researcher Award. His robust scientific portfolio, pioneering work in pharmacogenomics and drug–microbiota interaction, along with his leadership in both academia and national projects, demonstrate excellence, innovation, and long-term impact. While further expansion into international policy or industry translation could enhance his reach, his current achievements already position him at the forefront of clinical pharmacology and personalized medicine in China and globally.

Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan  , Xiangya Hospital, Central South University , China

Professor Zhirong Tan is a leading Chinese expert in pharmacogenomics and clinical pharmacology. Currently a professor at Xiangya Hospital, Central South University, he also serves as the Director of the Pharmacogenetics and Pharmacokinetics Research Laboratory and Deputy Director of the Drug Analysis Center. He has been instrumental in over 300 clinical trials, pushing forward the frontiers of precision medicine, especially in colorectal cancer and Alzheimer’s disease. With over 20 SCI papers, multiple patents, and co-authorship of four books, he’s widely recognized for his work in pharmacokinetics and biomarker discovery. A national GCP and GMP inspector, Prof. Tan actively contributes to pharmaceutical regulation and innovation in China. His academic and industry partnerships reflect a robust foundation in translational research and real-world drug development.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Contributions
    Prof. Zhirong Tan has made outstanding contributions to clinical pharmacology, pharmacogenetics, and metabolomics over two decades. His research has provided critical insights into drug metabolism, biomarker discovery, and precision medicine, especially in colorectal cancer and Alzheimer’s disease.

  2. Prolific Publication Record
    With over 22 SCI-indexed publications (first or corresponding author) and 6 CSCD papers, Prof. Tan’s research has achieved over 3550 citations and an H-index of 33 on Web of Science—evidence of the high impact and recognition of his work.

  3. Strong National & Industry Collaborations
    He has participated in or led 300+ clinical trials and secured 5 “Million+” industry-funded projects, reflecting strong ties with both academia and industry. His leadership in national-level projects, such as the “Major New Drug Development” program, showcases his influence in China’s healthcare innovation.

  4. Intellectual Property and Innovation
    With 3 granted patents and 3 under review, Prof. Tan’s ability to translate research into practical applications is evident. His individualized esomeprazole dosing regimen highlights innovation at the clinical level.

  5. Regulatory & Policy Contributions
    As a national GCP/GMP inspector, he plays a pivotal role in drug trial ethics and compliance in China. He also holds leadership roles in pharmacogenomics committees, further demonstrating his commitment to public health advancement.

  6. Academic Mentorship and Editorial Work
    In addition to research, Prof. Tan contributes as a journal reviewer, co-author of four textbooks, and mentor to the next generation of scientists, reinforcing his role as a thought leader in the field.

🔍 Areas for Improvement:

  1. International Visibility
    While Prof. Tan’s national presence is remarkable, further international collaborations, invited keynotes at global conferences, or leading roles in global consortia could enhance his visibility and expand the influence of his work.

  2. Broader Publication Range
    Publishing more frequently in top-tier international journals (e.g., Nature, The Lancet, NEJM) would increase the global academic reach of his findings.

  3. Open Science & Data Sharing
    As the field moves toward transparency, incorporating open-access publications and shared data repositories could boost both reproducibility and citations.

🎓 Education:

Professor Zhirong Tan obtained his Ph.D. from Central South University, a premier Chinese institution, where he laid the groundwork for his expertise in clinical pharmacology and pharmacogenomics. He later pursued postdoctoral research at the School of Pharmacy, University of Maryland, Baltimore, one of the top pharmaceutical research institutions in the United States. This international experience enabled him to gain a global perspective in drug metabolism, biomarker identification, and translational pharmacology. His academic training focused on cutting-edge methodologies such as metabolomics, pharmacokinetics, and precision medicine. Through continuous education and research, he has built a reputation as a highly skilled pharmacologist whose work bridges basic research and clinical applications.

💼 Experience:

With a research career spanning over two decades since 1998, Professor Zhirong Tan has led and participated in numerous national-level and provincial-level projects, including China’s National Science and Technology Major Projects. He currently holds multiple leadership positions at Xiangya Hospital, Central South University. Over the years, he has completed major research grants from NSFC, the Hunan Province, and the Ministry of Science and Technology. As a GCP and GMP inspector, Prof. Tan has overseen more than 300 clinical trials, ensuring drug development meets regulatory and ethical standards. His experience also extends to industry collaboration, with successful execution of 5 “Million+” funded projects and influential roles in pharma-academic alliances. A frequent peer reviewer and contributor to international journals, his work influences both the scientific community and regulatory frameworks.

🔬 Research Focus:

Professor Tan’s primary research focus lies in clinical pharmacology, pharmacogenomics, and metabolomics, particularly for colorectal cancer and Alzheimer’s disease. His work aims to identify and validate biomarkers for disease diagnosis, drug efficacy, and toxicity prediction. A major contributor to China’s “Major New Drug Development” initiative, he has developed personalized esomeprazole dosing regimens by studying genetic polymorphisms, SNPs, and microRNA interactions. His research also explores the pathogenesis of Alzheimer’s disease using metabolomic profiling, offering insights into early detection and potential therapeutics. He applies advanced bioanalytical methods to understand inter-individual variability in drug metabolism and therapeutic response. His projects have real-world clinical implications, transforming how drugs are prescribed, regulated, and monitored. Through his pioneering work, Prof. Tan contributes significantly to the evolution of precision medicine in China.

📚 Publication Top Notes:

  1. 📊 Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males

  2. ❤️ Gly389Arg polymorphism of β1‐adrenergic receptor and cardiovascular response to metoprolol

  3. 💊 CYP2C19 ultra-rapid metabolizer genotype affects voriconazole pharmacokinetics

  4. 🧬 HLA‐B35:01 allele as biomarker for Polygonum multiflorum–induced liver injury*

  5. 🌿 Repeated berberine administration inhibits cytochromes P450 in humans

  6. 💉 Effect of SLCO1B1 polymorphism on pharmacokinetics of nateglinide

  7. 🧪 Assessment of cytochrome P450 activity by five‐drug cocktail approach

  8. Plasma caffeine metabolite ratio linked to CYP1A2 polymorphisms

  9. 🔬 Inducibility of CYP1A2 by omeprazole associated with genetic polymorphism

  10. 🧫 Ile118Val polymorphism of CYP3A4 affects simvastatin lipid-lowering efficacy

📝 Conclusion:

Professor Zhirong Tan is a highly deserving candidate for the Best Researcher Award. His record of scientific excellence, clinical innovation, and regulatory leadership clearly positions him as a key contributor to modern pharmacology. His integrated approach—spanning basic science, clinical trials, and health policy—has had a measurable impact on patient care and drug development in China.

While there is room to further expand his global footprint, his accomplishments to date already demonstrate the caliber, commitment, and consistency expected of a world-class researcher.