Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada, Osaka Metropolitan University, Japan

Naoki Harada is an Associate Professor at Osaka Metropolitan University, Japan, with extensive expertise in molecular biology, biochemistry, endocrinology, and nutrition. He earned his Ph.D. in Life Sciences from Osaka Prefecture University in 2007. Over the past two decades, Harada has made significant contributions to understanding the physiological and biochemical mechanisms underpinning metabolic diseases, particularly type 2 diabetes. His research, characterized by high citation impact (H-index of 25), centers on pancreatic β-cell function and metabolic regulation. He has published 77 peer-reviewed articles and holds a patent related to therapeutic interventions. Harada has collaborated with leading scientists like Professors Hiroshi Inui and Ryoichi Yamaji, strengthening his academic footprint in both national and international circles. A member of multiple scientific societies, Harada continues to influence the field through impactful research, industry collaboration, and educational leadership.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Consistent Research Output

    • 77 peer-reviewed publications in reputable journals (SCI, Scopus).

    • Recent high-impact studies published in Journal of Biological Chemistry, Scientific Reports, and FASEB BioAdvances.

    • Active research profile with an H-index of 25 and over 1,785 citations.

  2. Innovative Scientific Contributions

    • Identified REDD2 as a novel therapeutic target for type 2 diabetes—bridging basic research with translational medicine.

    • Works across disciplines such as molecular biology, endocrinology, and nutritional biochemistry.

  3. Project Leadership & Industry Engagement

    • Led or participated in 14 major research projects.

    • 5 consultancy/industry-based projects, reflecting application-oriented research.

  4. Academic and Collaborative Network

    • Strong academic collaborations with Professors Hiroshi Inui and Ryoichi Yamaji.

    • Member of prestigious scientific societies (e.g., Japanese Biochemical Society, Japan Society of Nutrition and Food Science).

  5. Scientific Versatility

    • Contributions span fundamental mechanisms (e.g., oxidative stress, insulin signaling) to dietary interventions (e.g., mogrol, oleamide).

    • Demonstrates ability to bridge molecular insights with systemic physiological outcomes.

⚙️ Areas for Improvement:

  1. International Visibility and Engagement

    • Expanding participation in international conferences and editorial boards could elevate his global scientific standing.

    • Pursuing cross-border collaborations would further enrich the translational value of his work.

  2. Commercialization and Patent Activity

    • While one patent is noted, increased focus on intellectual property development and biomedical commercialization could further validate his applied research strength.

  3. Outreach and Communication

    • More active public science communication (e.g., webinars, policy advocacy, media coverage) would amplify the societal impact of his research.

🎓 Education:

Naoki Harada received his Ph.D. in Life Sciences from Osaka Prefecture University, Osaka, Japan, in September 2007. His doctoral studies laid the foundation for his interdisciplinary research in molecular biology, biochemistry, and endocrinology. Harada’s academic path was driven by a keen interest in the cellular and molecular mechanisms underlying metabolic regulation, particularly in relation to glucose homeostasis and pancreatic function. His education provided him with a solid grounding in experimental techniques, critical thinking, and scientific communication, which have become hallmarks of his later work. The institution, known for excellence in biosciences, enabled Harada to cultivate a strong research acumen. His academic training was complemented by exposure to applied research, linking basic science with clinical and nutritional applications—an approach that he has continued to emphasize throughout his career. His strong educational background plays a pivotal role in his current research endeavors and professional development.

💼 Experience:

Dr. Naoki Harada began his academic career in 2008 as an Assistant Professor at the Graduate School of Life and Environmental Sciences, Osaka Prefecture University. He was promoted to Lecturer in 2015, and subsequently to Associate Professor in 2019. Since 2022, he has served as Associate Professor at the Graduate School of Agriculture, Osaka Metropolitan University. Harada has consistently combined teaching with intensive research, mentoring graduate students while advancing his lab’s focus on metabolic diseases and endocrine physiology. His experience includes leading 14 research projects, consulting on 5 industry-linked nutrition initiatives, and co-authoring over 75 scientific papers. His experience reflects a blend of academic leadership, scientific innovation, and multidisciplinary collaboration. Notably, Harada’s role in identifying REDD2 as a therapeutic target exemplifies his contribution to translational science. He maintains strong academic partnerships and actively contributes to several professional societies, making him a respected figure in Japan’s scientific community.

🔬 Research Focus:

Naoki Harada’s research is at the intersection of molecular biology, endocrinology, and nutrition science, with a particular focus on pancreatic β-cell physiology and glucose metabolism. He investigates how oxidative stress, hormonal signals, and metabolic regulators influence insulin secretion and β-cell viability. One of his pivotal contributions is identifying the REDD2 gene as a negative regulator of β-cell function, offering novel therapeutic targets for type 2 diabetes mellitus. His studies also explore nutrient-sensing pathways, G-protein-coupled receptors, and hormonal modulation of energy metabolism. Harada’s recent work delves into the effects of dietary compounds like mogrol and oleamide on metabolic health, linking molecular mechanisms to real-world dietary interventions. His ability to bridge bench science with clinical and nutritional applications sets his research apart. Through collaborations with leading experts and high-impact publications, Harada continues to advance knowledge in the prevention and treatment of metabolic disorders.

📚 Publications Top Notes:

  • 🧬 REDD2 confers pancreatic β-cell dysfunction in high-fat diet-fed miceJournal of Biological Chemistry, 2025

  • 🦷 Androgens suppress ST3GAL1/4, modulating mucin glycosylation and microbiota in miceBioscience, Biotechnology, and Biochemistry, 2025

  • 🍟 CRTC1 in MC4R cells regulates dietary fat intakeFASEB BioAdvances, 2024

  • 💉 Insulin reduces ER stress-induced apoptosis in INS-1 β-cellsPhysiological Reports, 2024

  • 🍬 Mogrol activates GPBAR1 and insulin secretion, alleviates hyperglycemiaScientific Reports, 2024

  • 🔥 Androgen receptor suppresses β-adrenoceptor-mediated thermogenesisJournal of Biological Chemistry, 2022

  • 🏥 Age-dependent sex differences in NAFLD in TSOD and db/db micePLOS ONE, 2022

  • 🐭 Dietary oleamide attenuates obesity in caged miceBioscience, Biotechnology, and Biochemistry, 2022

  • 🌿 Curcumin targets GPR55 receptornpj Science of Food, 2022

  • 💪 Oleamide rescues muscle atrophy in small-caged miceBritish Journal of Nutrition, 2021

🧾 Conclusion:

Dr. Naoki Harada demonstrates a clear trajectory of research excellence, grounded in scientific rigor and driven by impactful biomedical questions. His ability to identify molecular mechanisms (e.g., REDD2’s role in β-cell dysfunction) and propose therapeutic directions sets him apart as a leading academic in metabolic disease research. His publication record, industry collaborations, and professional memberships underscore a mature and influential academic career.

Carlos Cruchaga | Neuronal Cell Biology | Best Researcher Award

Dr. Carlos Cruchaga | Neuronal Cell Biology | Best Researcher Award

Dr. Carlos Cruchaga, Washington Univeristy, United States

Dr. Carlos Cruchaga is a tenured Professor at Washington University School of Medicine, with joint appointments in Psychiatry, Genetics, and Neurology. He is the Director of the NeuroGenomics and Informatics Center and leads multiple high-impact cores including the Knight ADRC, DIAN Genetics Core, and Biorepository Core for initiatives like the Dystonia Coalition and Aging Adult Brain Connectome. Internationally recognized for his pioneering work in neurodegenerative diseases, Dr. Cruchaga specializes in integrating multi-omic datasets to identify novel genetic and molecular mechanisms underlying Alzheimer’s disease and other neurological disorders. He has authored over 340 peer-reviewed publications and continues to lead major NIH-funded projects. With a strong commitment to translational research, he also contributes to tool development for omics data analysis. His work consistently bridges the gap between basic research and clinical application, making him a deserving candidate for the Best Researcher Award.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  • Leadership: Director of NeuroGenomics and Informatics Center; leads major genetics cores (Knight ADRC, DIAN, Dystonia Coalition, AABC).

  • Research Impact: Over 346 peer-reviewed publications with significant contributions in Alzheimer’s Disease (AD), neurodegeneration, multi-omics, and genetic epidemiology.

  • Translational Focus: Discoveries such as rare variants in AD-related genes (APP, PSEN1, PSEN2, PLD3, TREM2) and biomarker identification have major clinical implications.

  • Global Collaborations: Works with international research consortia including ADNI, GERAD, and Alzheimer’s Research UK, showing both scientific influence and collaboration.

  • Recognition: Invited speaker at high-level conferences; selected for the prestigious Spanish “Excellence Campus 2005”.

  • Innovation: Pioneered multi-omic and bioinformatic pipelines for biomarker discovery.

⚠️ Areas for Improvement:

  • Public Outreach: While academically exceptional, public or patient-facing outreach or science communication isn’t highlighted.

  • Diversity Initiatives: Potential to expand into mentorship programs or initiatives focused on increasing diversity in genomics.

  • Commercialization: There is room to emphasize translational science through startups, patents, or technology transfer.

🎓 Education:

Dr. Cruchaga earned his undergraduate degree in Biochemistry from the University of Navarra, Pamplona, Spain (1996–2000). He continued his graduate studies at the same institution, obtaining an MA (2000–2002) followed by a PhD in Biochemistry and Molecular Biology in 2005. His doctoral research, awarded Summa Cum Laude, focused on molecular mechanisms and biomarkers associated with neurodegenerative diseases. Dr. Cruchaga was selected among Spain’s top 18 PhD students to present his research at the “Excellence Campus 2005,” hosted by the Spanish Government and attended by Nobel Laureates. His training included foundational roles as a student and teaching assistant in the Department of Biochemistry and Molecular Biology, setting the stage for a career deeply rooted in research excellence and academic mentorship. This strong academic background has been instrumental in shaping his translational approach to complex neurological conditions like Alzheimer’s and dystonia.

💼 Experience:

Dr. Cruchaga has amassed extensive experience across academic, administrative, and research leadership roles. Since 2019, he has served as a Professor in Psychiatry, Genetics, and Neurology at Washington University. He is also the current Director of the NeuroGenomics and Informatics Center (since 2018), where he supervises multi-disciplinary teams and oversees high-throughput genomics operations. He leads cores in major initiatives such as the Knight Alzheimer’s Disease Research Center (ADRC), DIAN (Dominantly Inherited Alzheimer Network), and the Dystonia Coalition. Earlier roles include serving on the Alzheimer’s Association International Conference Scientific Program Committee (2014–2017), where he curated session topics, evaluated hundreds of abstracts, and chaired sessions. His international collaborations span omics, imaging, and computational biology, making him a leader in neurogenomics. These diverse roles have allowed Dr. Cruchaga to influence both scientific innovation and strategic planning within global neuroscience research initiatives.

🏅 Honors and Awards:

Dr. Cruchaga’s excellence has been recognized through numerous awards and invitations. In 2005, he was chosen for “Excellence Campus 2005,” a prestigious event featuring the top Spanish PhD students alongside Nobel Prize winners. He has received multiple invitations for keynote lectures and seminars at institutions across Europe and the U.S., including the University of the Basque Country, the Center for Applied Medical Research in Pamplona, and Washington University. He was a finalist for the O’Leary Award for Research in Neuroscience in 2009. His service as a Scientific Program Committee Member for the Alzheimer’s Association International Conference further underscores his leadership in the field. These accolades not only celebrate his scientific contributions but also affirm his status as a thought leader in neurodegenerative disease research. His peer-reviewed work has appeared in top-tier journals like Nature, Neuron, and Acta Neuropathologica.

🔬 Research Focus:

Dr. Cruchaga’s research centers on understanding the molecular and genetic underpinnings of neurodegenerative diseases, particularly Alzheimer’s disease, using integrative multi-omics approaches. His lab specializes in analyzing genomic, transcriptomic, proteomic, and metabolomic data from human biospecimens to uncover biomarkers, risk variants, and causal pathways. He has led groundbreaking studies identifying rare coding variants in genes like TREM2, PLD3, and APP, linking them to Alzheimer’s pathology. He applies advanced computational tools and machine learning to interpret high-dimensional data and translate findings into diagnostic and therapeutic strategies. As director of several national consortia cores (e.g., Knight ADRC, DIAN), he facilitates data-sharing and harmonization across global cohorts. His work also explores the genetic architecture of disorders like dystonia and peripheral neuropathy. The long-term goal of his research is to bridge omics data with clinical outcomes to enable personalized medicine in neurology.

📚 Publications Top Notes:

  1. 🧠 Rare variants in APP, PSEN1 and PSEN2 increase AD risk in late-onset familiesPLoS One (2012)

  2. 🧬 GWAS of CSF tau levels reveals novel AD risk variantsNeuron (2013)

  3. 🧠 Rare coding variants in PLD3 gene confer AD riskNature (2014)

  4. 🧠 TREM2 coding variants increase AD riskHuman Molecular Genetics (2014)

  5. 🧪 TREM2 variants linked to AD risk in African AmericansMol Neurodegeneration (2015)

  6. 🧫 Higher CSF soluble TREM2 linked to AD mutation statusActa Neuropathologica (2016)

  7. 🧪 Genetics of plasma analytes identifies novel biomarkersScientific Reports (2016)

  8. 🧬 Variants in Mendelian AD genes within ADSPJAD (2025)

  9. 🧠 RFC1 AAGGG repeat expansions common in neuropathyPreprint (2025)

  10. 🧪 Plasma proteomics uncovers novel AD biomarkersPreprint (2025)

🧾 Conclusion:

Dr. Carlos Cruchaga exemplifies the highest standards of neuroscience and genomics research. His contributions have advanced the global understanding of Alzheimer’s disease, making him a top-tier candidate for the Best Researcher Award. His scientific leadership, prolific output, and translational success position him as a standout in the biomedical field.

Sibel Elif Gultekin | Stem Cell Research | Best Researcher Award

Prof. Dr. Sibel Elif Gultekin | Stem Cell Research | Best Researcher Award

Prof. Dr. Sibel Elif Gultekin, Gazi University Faculty of Dentistry, Turkey

Prof. Dr. Sibel Elif Gültekin is a renowned academic and clinician in Oral Pathology and Periodontology at Gazi University Faculty of Dentistry, Türkiye. With over two decades of experience, she has significantly advanced molecular understanding of odontogenic tumors, HPV-induced oral lesions, and periodontal regeneration. Holding both DDS and Ph.D. degrees, she has led her department as Chair for 10 years and contributed globally as a visiting researcher and advisor. Her collaborations with institutions like the University of Cologne and UCSF reflect her international impact. She has published extensively in high-impact journals, authored books, and mentored numerous young researchers. Her dedication has been recognized through editorial appointments and professional society memberships. Prof. Gültekin’s translational research bridges pathology and clinical dentistry, making her a pioneer in the diagnosis and treatment of oral diseases.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Dual Specialization & Academic Leadership: Prof. Gültekin’s rare dual Ph.D. in Oral Pathology and Periodontology, along with her decade-long leadership as department chair, highlights deep academic and organizational expertise.

  2. High Research Output & Impact: With 96 publications, 50+ research projects, and citations exceeding 1300 (Google Scholar), her scholarly productivity and influence are clear. Her h-index across databases (14–17) confirms consistent academic contribution.

  3. Global Collaborations: Active collaborations with international centers like UCSF and University of Cologne underscore her role in global scientific advancement.

  4. Innovative Research Areas: She works at the forefront of molecular oncology, focusing on HPV-associated oral cancers, odontogenic tumors, and biomarkers like P16, VIM3, and PDCD4.

  5. Educational & Editorial Leadership: Served on scientific and editorial boards, symposiums, and advisory panels; she also authored 2 academic books and guided national congresses.

  6. Professional Societies: Active member of multiple esteemed societies (IAOP, ESP, EHNS, IADR), reflecting recognition in the international scientific community.

⚙️ Areas for Improvement:

  1. Clinical Translation Scaling: While her biomarker discoveries are notable, increasing efforts to lead translational clinical trials could accelerate therapeutic application.

  2. Policy Advocacy: Engaging more in international oral health policy or WHO-affiliated programs could amplify her impact beyond academia.

  3. Mentorship on Global Scale: Expanding formal international mentorship programs or fellowships could further cement her influence and legacy.

🎓 Education:

Prof. Dr. Sibel Elif Gültekin holds both DDS and Ph.D. degrees, specializing in Oral Pathology and Periodontology. She completed her undergraduate dental studies at Gazi University Faculty of Dentistry, where she later pursued her doctoral studies. Her academic training extended beyond Türkiye through international fellowships and research placements, including the prestigious Department of Medicine and Stomatology at the University of California San Francisco (UCSF) and the Institute for Pathology at the University of Cologne. Her educational journey is marked by an interdisciplinary approach, blending basic sciences and clinical applications. These robust academic foundations have positioned her as a global expert in oral cancer biomarkers, regenerative periodontology, and molecular pathology, nurturing future dentists and researchers through an integrative, evidence-based curriculum and global research exposure.

💼 Experience:

Prof. Dr. Gültekin has over 25 years of experience in dentistry, oral pathology, and periodontology. She has served as Professor and Chair of the Department of Oral Pathology at Gazi University, shaping both academic curricula and national diagnostic standards. Internationally, she collaborated with UCSF and the University of Cologne on pioneering projects in oral cancer and HPV research. Her clinical and academic background spans over 50 funded research projects, with 96 published papers in prestigious journals indexed by SCI, Scopus, and PubMed. She has contributed to oral health policy through editorial and advisory roles, including at journals like Journal of Oral Health Frontiers. Her expertise has guided scientific boards and symposia in Türkiye and beyond, particularly in head and neck pathology. She remains a sought-after consultant and reviewer, advocating for personalized medicine and molecular diagnostics in oral health.

🔬 Research Focus:

Prof. Dr. Sibel Elif Gültekin’s research centers on the molecular mechanisms of oral diseases, particularly odontogenic tumors, oral epithelial dysplasia, and HPV-induced carcinomas. She has made key contributions in identifying biomarkers such as P16, PDCD4, VIM3, and CD8+ T-cell infiltrates, enhancing early diagnosis and prognosis of oral and oropharyngeal cancers. Her research also explores microsatellite instability and loss of heterozygosity in oral squamous cell carcinoma. Additionally, she has contributed to periodontal tissue regeneration studies and the development of personalized therapeutic strategies. With over 1,300 citations and an h-index of 17 on Google Scholar, her impactful work bridges molecular science and clinical application. Collaborating with global experts in pathology, oncology, and molecular biology, Prof. Gültekin’s research not only contributes to academic literature but also informs clinical protocols and treatment pathways in modern dentistry and oral oncology.

📚 Publications Top Notes:

  • 🧬 Microsatellite Instability and Loss of Heterozygosity as Prognostic Markers in Oral Squamous Cell Carcinoma (Genes, Chromosomes and Cancer, 2024)

  • 🧪 Efficiency of B-RAF-/MEK-inhibitors in B-RAF Mutated Ameloblastoma: Case Report and Review (Heliyon, 2023)

  • 🦷 Kişiselleştirilmiş Diş Hekimliği (ADO Klinik Bilimler Dergisi, 2023)

  • 🔍 Apoptosis Related PDCD4: Promising Novel Biomarker for Early Detection of Oral Cancer (ADO Klinik Bilimler Dergisi, 2022)

  • 🛡️ PD-L1 Expression and High CD8+ Lymphocyte Infiltrate Predict Outcome in Oropharyngeal SCC (International Journal of Molecular Sciences, 2020)

🧾 Conclusion:

Prof. Dr. Sibel Elif Gültekin is a highly deserving nominee for the Best Researcher Award. Her pioneering contributions in oral pathology, particularly in molecular diagnostics and HPV-related oral oncology, place her at the forefront of dental research. Her exceptional academic record, leadership, and dedication to collaborative and translational science make her a standout candidate who embodies the spirit of innovation, mentorship, and global impact.

taghreed Ibrahim | Cell Structure Analysis | Best Researcher Award

Ms. taghreed Ibrahim | Cell Structure Analysis | Best Researcher Award

Ms. taghreed Ibrahim , Mansoura University , Egypt

Taghreed Elsayed is an Assistant Lecturer in the field of Computer Science and Control Systems Engineering. She holds a Bachelor’s degree in Computers and Control Systems Engineering from Mansoura University, and has completed a Master’s degree in the same field with a focus on E-learning and Fog Computing. Taghreed is passionate about teaching and research, particularly in the areas of artificial intelligence, cybersecurity, and cloud computing. She has a deep understanding of systems programming, databases, and modern teaching software. Taghreed is also proficient in supervising both undergraduate and master’s students and has designed and implemented curricula for computer science courses. With diverse teaching experience, she has worked at Delta University for Science and Technology, Midocean University, and other academic institutions, providing online and face-to-face instruction in various programming languages and technologies. Her publications and research further showcase her expertise and dedication to the field.

Publication Profile:

Scopus

Strengths for the Award:

  1. Research Excellence: Taghreed Elsayed has demonstrated a strong track record of research, particularly in the fields of E-learning, AI, and healthcare. Her publication on the “Fog-Based Recommendation System for Promoting the Performance of E-Learning Environments” showcases her ability to innovate in educational technologies. Additionally, her work in deep learning techniques for accurate breast cancer diagnosis and predicting bladder cancer recurrence further highlights her multidisciplinary research expertise.

  2. Comprehensive Knowledge: Taghreed has extensive knowledge in critical domains such as artificial intelligence, cybersecurity, image processing, and cloud computing, all of which are highly relevant to current technological trends. This wide-ranging knowledge base contributes significantly to her ability to approach research from various angles.

  3. Industry and Teaching Experience: She has a strong combination of teaching experience and real-world application of computer science in both academia and industry. Her work as an assistant lecturer in various universities, as well as her extensive experience in networking, security, and programming, demonstrates her well-rounded expertise.

  4. Publications and Contributions: Taghreed’s research publications in prestigious journals underline her capacity to contribute valuable knowledge to the academic community. The citations and recognition of her work are a testament to her impact on the field.

Areas for Improvement:

  1. Broader Industry Collaborations: While Taghreed has made notable contributions in both academia and research, her collaboration with the industry could be further expanded. Developing partnerships with tech companies or health organizations could elevate her research impact, particularly in applied fields like healthcare.

  2. Interdisciplinary Research: Although her work bridges the gap between AI and E-learning, there is an opportunity for more interdisciplinary research, especially in the integration of AI with other domains like IoT, smart cities, and robotics. Exploring these intersections may lead to groundbreaking innovations.

  3. Mentorship and Research Leadership: While she supervises students, further mentoring of PhD candidates or leading large-scale research projects would help solidify her position as a leader in the research community.

Education:

Taghreed Elsayed completed her Bachelor’s degree in Computers and Control Systems Engineering at Mansoura University in 2010, with her graduation project on a Smart Elevator, receiving an excellent grade. Following that, she pursued a Pre-Master’s program in the same department in 2014, studying topics like cloud computing, cybersecurity, and artificial intelligence. Taghreed’s Master’s degree, completed in 2020, focused on enhancing E-learning environments using Fog-based Recommendation Systems (FBRS). She published research on this topic, demonstrating her commitment to advancing education technology. Between 2021-2022, Taghreed embarked on Pre-PhD studies, covering advanced topics in AI, cybersecurity, and deep learning, with a particular focus on using AI techniques to detect cancerous tumors. Her academic excellence is reflected in her A+ scores in various subjects, and her publications demonstrate her active contributions to the field.

Experience:

Taghreed Elsayed has extensive experience in teaching and research within the field of Computer Science. She served as an Assistant Lecturer at Delta University for Science and Technology, where she developed and taught computer science courses focused on AI, programming languages (C#, C++, Java, Python), databases, and more. She has also taught at Midocean University, focusing on online courses in information security, cybersecurity, and Internet of Things (IoT). Additionally, Taghreed worked as an instructor at Harvest Training Center, specializing in Cisco networking courses such as CCNA and CCNA Security, and at Elsewedy Technical Academy, where she taught the principles of networking. Her experience extends beyond academia to the industry, where she worked as an IT Engineer at Quick Air Company for Tourism and as a Technical Support Engineer at Exceed in Smart Village, managing and maintaining IT systems, troubleshooting network issues, and ensuring smooth operations.

Research Focus:

Taghreed Elsayed’s research interests lie primarily in the fields of E-learning, artificial intelligence, cybersecurity, and fog computing. Her work explores how emerging technologies can be used to enhance the performance of E-learning environments, focusing on personalized learning experiences through recommendation systems. In her Master’s research, she developed a Fog-based Recommendation System (FBRS) that significantly improves the performance and personalization of E-learning platforms. Her Pre-PhD research centers on applying AI techniques to medical diagnosis, specifically for detecting cancerous tumors using deep learning methods. Taghreed’s interdisciplinary approach bridges technology and education, striving to improve learning outcomes through innovative technological solutions. Her future research goals include advancing AI applications in healthcare and education and exploring new methods for optimizing cybersecurity protocols in the context of smart environments and IoT.

Publications Top Notes:

  • “A Fog-Based Recommendation System for Promoting the Performance of E-Learning Environments” 📘

  • “Accurate Breast Cancer Diagnosis Strategy (BCDS) Based on Deep Learning Techniques” 🩺

  • “CNN-LSTM for Prediction of Bladder Cancer Recurrence and Response to Treatments” 🏥

Conclusion:

Taghreed Elsayed is a deserving candidate for the Best Researcher Award due to her profound contributions to the fields of AI, cybersecurity, and E-learning. Her academic achievements, coupled with her extensive teaching experience and interdisciplinary research, make her a standout figure. By expanding her industry collaborations and fostering deeper interdisciplinary research, she could further solidify her impact and recognition as a leading researcher in her field.

 

 

 

RICHARD ARNAUD YOSSA KAMSI | Plant Cell Biology | Best Researcher Award

Dr. RICHARD ARNAUD YOSSA KAMSI | Plant Cell Biology | Best Researcher Award

Dr. RICHARD ARNAUD YOSSA KAMSI , University of Bertoua , Cameroon

Dr. Yossa Kamsi Richard Arnaud is a highly skilled physicist specializing in Mechanics, Materials, and Structures with a focus on Materials Science. He is a permanent lecturer at the Department of Wood and Forest Sciences at ISABEE-B, University of Bertoua, Cameroon. Dr. Kamsi has over eight years of experience in secondary and university education and has published extensively in scientific journals. He is involved in student supervision for Master’s and Doctoral projects and has contributed to the scientific community through multiple research articles. With a PhD in Physics from the University of Yaoundé 1, he has participated in international workshops and seminars related to electronic structure and computational studies. Fluent in English and German, he continuously seeks to improve his programming skills, particularly in Python and C++.

Publication Profile: 

Scopus

Strengths for the Award 🌟

Dr. Yossa Kamsi Richard Arnaud stands out as a strong candidate for the Best Researcher Award due to his extensive academic background, significant research contributions, and teaching experience. With a PhD in Physics, specializing in Mechanics, Materials, and Structures, his expertise in Materials Science, computational studies, and DFT simulations is exceptional. Dr. Kamsi has demonstrated consistent productivity with a notable list of publications in highly regarded scientific journals such as Scientific Reports, Heliyon, and Computational and Theoretical Chemistry. His focus on computational methods to explore molecular properties, nanostructures, and their applications in diverse fields (from pharmacology to electronics) is a testament to the depth and relevance of his research.

Furthermore, his involvement in the education of Master’s and Doctoral students and the supervision of projects for over eight years reflects his leadership and mentoring capabilities, enriching the next generation of scientists.

Areas for Improvement 🔧

While Dr. Kamsi’s academic and research performance is exemplary, one area for growth could be the enhancement of his programming skills in Python and C++ through more advanced training or projects. Expanding his programming capabilities could further elevate his research, particularly in simulations and computational methods. Engaging in interdisciplinary research or collaborating with international research labs could also broaden the scope of his work and increase its global impact.

Education 🎓

Dr. Yossa Kamsi obtained his PhD in Physics from the University of Yaoundé 1, Cameroon, in 2020. His research focused on the “Ab initio and DFT simulations of structural and electronic properties of heptacene and limonoids Rubescin D and E molecules.” Prior to this, Dr. Kamsi received specialized training in Python programming at ENSPY, Cameroon, in 2018. He also completed English language courses at the British Council in Yaoundé in 2015, obtaining the TOEFL iBT certification. Furthermore, he studied German at the Institute für Deutsche Sprache (IFDS) in Yaoundé during 2013-2014. His diverse academic background enriches his teaching and research capabilities, making him a valuable member of the scientific and academic community.

Experience  🏫

Dr. Yossa Kamsi brings over eight years of experience in secondary and university education. He is currently a permanent lecturer at the Department of Wood and Forest Sciences at ISABEE-B, University of Bertoua, where he also heads the sectors for Wood Sciences and Specialized Techniques in Wood Transformation. He teaches a variety of courses, including Solid Mechanics, Electrostatics, Point Mechanics, General Physics, and Continuous Media Mechanics. Dr. Kamsi is also a visiting lecturer at the Department of Physics at the University of Bertoua, where he teaches subjects such as Special Relativity and Matter Properties. In addition to teaching, he has supervised numerous Master’s and Doctoral student projects, providing expert guidance in the field of Materials Science. His academic leadership is further reflected in his contributions to scientific publications and international workshops.

Research Focus🔬

Dr. Yossa Kamsi’s research interests lie in the intersection of Materials Science, Mechanics, and Physics, with a particular focus on computational studies using Density Functional Theory (DFT) and Ab initio simulations. His work explores the structural, electronic, and optical properties of various molecules, particularly those relevant to materials used in energy, electronics, and pharmacology. His research aims to uncover new insights into the properties of heptacene, limonoids, and carbon nanostructures, as well as to study the effects of doping and functionalization on the properties of nanomaterials. Dr. Kamsi’s computational work has broad applications, ranging from photovoltaic materials to drug delivery systems. His innovative contributions to the field are reflected in his numerous publications, making him an active researcher in the area of electronic and optical properties of materials.

 Publications Top Notes: 📑

  1. Comparative study of physicochemical properties of some molecules from Khaya Grandifoliola plant, Scientific Reports, 2025.

  2. DFT study of co-doping effects on the electronic, optical, transport, and thermodynamic properties of (5,5) SWCNTs for photovoltaic and photonic applications, Chemical Physics Impact, 2025.

  3. Ab-initio and density functional theory (DFT) computational study of the effect of fluorine on the electronic, optical, thermodynamic, hole, and electron transport properties of the circumanthracene molecule, Heliyon, 2023.

  4. Application of carbon nanostructures toward acetylsalicylic acid adsorption: A comparison between fullerene ylide and graphene oxide by DFT calculations, Computational and Theoretical Chemistry, 2023.

  5. DFT studies of physico-chemical, electronic and nonlinear optical properties of interaction between doped-fullerenes with non-steroidal anti-inflammatory drugs, Physica B: Condensed Matter, 2023.

  6. Computational study of physicochemical, optical, and thermodynamic properties of 2,2-dimethylchromene derivatives, Journal of Molecular Modeling, 2023.

  7. Structural, electronic and nonlinear optical properties, reactivity and solubility of the drug dihydroartemisinin functionalized on the carbon nanotube, Heliyon, 2023.

  8. Contribution of Geoelectricity and Remote Sensing to Study the Basement Fractured Zones in the Bandjoun Region (Cameroon), American Journal of Physical Chemistry, 2022.

  9. DFT studies of the structural, chemical descriptors, and nonlinear optical properties of the drug dihydroartemisinin functionalized on C60 fullerene, Computational and Theoretical Chemistry, 2021.

  10. Computational studies of reactivity descriptors, electronic and nonlinear optical properties of multifunctionalized fullerene ylide with acetylsalicylic acid, Journal of Molecular Modeling, 2021.

Conclusion 🏆

Dr. Yossa Kamsi Richard Arnaud’s research contributions, combined with his academic leadership and teaching experience, make him a highly deserving candidate for the Best Researcher Award. His innovative approach to studying materials through computational simulations, his active role in educating future scientists, and his dedication to advancing the field of Materials Science all highlight his potential as a leading researcher in his domain. With some improvements in programming and broader international collaboration, Dr. Kamsi’s research can continue to grow in influence and importance.

qingwei lu | Cell Differentiation Processes | Innovative Research Award

Mr. qingwei lu | Cell Differentiation Processes | Innovative Research Award

Mr. qingwei lu , Xinjiang Academy of Animal Sciences , China

Qingwei Lu is a student at the Xinjiang Academy of Animal Sciences, China, specializing in animal genetics, breeding, and reproduction. His research focuses on the genetic improvement of wool and meat sheep, specifically through quantitative genetics, population genetic analysis, and genomic selection for key traits. Qingwei also explores the molecular mechanisms behind hair follicle development in cashmere goats, applying transcriptomics and proteomics to understand hair follicle cycling and its relationship with production traits. His studies aim to provide scientific foundations for breeding and industrial development in the livestock sector. Qingwei is actively involved in national and international research collaborations and has published multiple academic papers in prominent journals. His work contributes significantly to the field of animal genetics and breeding, making him a promising researcher with a growing impact in the industry.

Publication Profile:

Orcid

Strengths for the Award:

Qingwei Lu’s work demonstrates remarkable innovation in the field of animal genetics, with a particular emphasis on sheep and cashmere goats. His integration of transcriptomics and proteomics techniques to study the genetic and molecular mechanisms of hair follicle development, especially in cashmere goats, is groundbreaking. The focus on secondary hair follicle cycling and the role of PLIN2 in regulating this cycle offers important insights for enhancing wool and meat production traits. Furthermore, his research is supported by substantial funding, such as the National Key R&D Program and the National Natural Science Foundation of China, underlining the relevance and impact of his work. His numerous published journal articles, including in high-impact journals, also reflect his contributions to advancing the scientific understanding of animal breeding and genetics.

Areas for Improvements:

While Qingwei Lu’s research is highly innovative and impactful, expanding his collaborative network further to include industry partners could enhance the translational aspect of his research. Additionally, more engagement with public-facing scientific communication and outreach could make his discoveries more accessible to a broader audience, including agricultural industries and farmers.

Education:

Qingwei Lu is currently pursuing advanced studies at the Xinjiang Academy of Animal Sciences in China. He holds a bachelor’s degree in animal science, followed by graduate studies focused on animal genetics and breeding. His academic journey is heavily centered on animal genetics, specifically in the context of wool and meat sheep, as well as the genetic improvement of cashmere goats. Qingwei’s research includes the application of quantitative genetics, genomic selection, and molecular techniques to unravel complex genetic traits in livestock. His education equips him with strong foundations in both the theoretical and practical aspects of animal breeding, enabling him to work effectively on high-impact national research projects. Qingwei’s academic achievements reflect his dedication to the scientific advancement of animal science, particularly in genetic evaluation and breeding program optimization.

Experience:

Qingwei Lu’s research experience spans multiple projects in the field of animal genetics and breeding. His primary research focuses on the genetic enhancement of sheep and goats, particularly wool and meat sheep, and cashmere goats, through innovative approaches in genomics and molecular biology. Qingwei’s work includes estimating genetic parameters, analyzing population genetic structures, and implementing genomic selection to improve economic traits in livestock. He is currently involved in key national research programs in China, including the National Key R&D Program (2021YFD1200902) and the National Natural Science Foundation of China Regional Science Fund (32360814). His collaborative research efforts have resulted in numerous journal publications. Qingwei also collaborates on industry-sponsored projects, contributing his expertise to practical breeding solutions for livestock farmers. His expertise in combining transcriptomics, proteomics, and genomic techniques is making a significant impact on livestock breeding and industrial development.

Research Focus:

Qingwei Lu’s research focus revolves around the genetic improvement of livestock, with particular emphasis on wool and meat sheep, and cashmere goats. His research involves the use of quantitative genetics to estimate genetic parameters, analyze population genetic structures, and implement genomic selection for important economic traits such as early growth and reproductive traits. Additionally, Qingwei studies the genetic and molecular mechanisms of hair follicle development in cashmere goats, aiming to uncover the regulatory pathways behind hair follicle cycling. His work integrates transcriptomics, proteomics, and genomic sequencing techniques to explore how these molecular processes influence the production of wool and cashmere. By understanding these molecular mechanisms, Qingwei seeks to develop breeding strategies that can enhance productivity and economic outcomes in the livestock industry. His work provides valuable insights for improving livestock breeding programs and contributes to the scientific foundation for the development of more sustainable and profitable animal farming.

Publications Top Notes:

  1. Screening of CircRNA Related to Secondary Hair Follicle Cycling in Southern Xinjiang Cashmere Goats
    🐐📚 Chinese Journal of Animal Husbandry and Veterinary Medicine, 2024 | DOI: 10.19556/j.0258-7033.20230117-04

  2. Effects of Non-genetic Factors on Early Growth Traits in Southern Xinjiang Cashmere Goats
    🐐📖 Chinese Journal of Animal Science, 2024 | DOI: 10.16431/j.cnki.1671-7236.2024.05.001

  3. Research on the Cyclical Patterns of Different Types of Hair Follicles in Southern Xinjiang Cashmere Goats
    🐐🔬 Chinese Journal of Animal Science, 2025 | DOI: 10.19556/j.0258-7033.20240422-10

  4. Comparison of Different Animal Models for Estimating Genetic Parameters for Early Growth Traits and Reproductive Traits in Tianmu Sainuo Sheep
    🐑📄 Frontiers in Veterinary Science, 2024 | DOI: 10.3389/fvets.2024

  5. Proteomics Reveals the Role of PLIN2 in Regulating the Secondary Hair Follicle Cycle in Cashmere Goats
    🧬🐐 International Journal of Molecular Sciences, 2025 | DOI: 10.3390/ijms26062710

Conclusion:

Qingwei Lu’s innovative approach to genetic improvement in sheep and goats, particularly his exploration of hair follicle regulation mechanisms and their relation to production traits, makes him an excellent candidate for the Innovative Research Award. His contributions to advancing genetic evaluation and breeding programs have the potential to greatly impact agricultural industries, aligning well with the goals of the award.

Jingying Shi | Microbial Cell Biology | Innovative Research Award

Prof. Dr. Jingying Shi | Microbial Cell Biology | Innovative Research Award

Prof. Dr. Jingying Shi , Shandong Agricultural University , China

Professor Jingying Shi is a distinguished academic in the field of food science and horticultural engineering, currently serving at the College of Food Science and Technology, Shandong Agricultural University, China. She has extensive expertise in postharvest fruit science, particularly in disease resistance, quality maintenance, and ripening regulation of fruits and vegetables. With more than 70 peer-reviewed publications in high-impact journals, Professor Shi is a well-respected figure in her field. She has contributed significantly to advancing knowledge on disease resistance pathways, postharvest fruit protection, and novel food preservation techniques. Professor Shi has also led various research projects funded by the National Natural Science Foundation of China and Shandong Province. She holds numerous patents and awards, underscoring her contributions to agricultural and food science research.

Publication Profile: 

Orcid

Strengths for the Award:

Professor Jingying Shi is an accomplished researcher and educator with significant contributions to the fields of postharvest science and food safety. Her research expertise spans disease resistance in postharvest fruits, quality preservation, and innovative solutions for the ripening and senescence of harvested fruits and vegetables. Her impressive track record includes over 70 peer-reviewed publications in high-impact journals, as well as 16 national patents, demonstrating her influence in both scientific and practical applications. Her leadership in large-scale research projects funded by the National Natural Science Foundation of China, as well as various provincial grants, further underlines her excellence in advancing agricultural sciences. Additionally, her significant impact on improving food preservation methods and disease control in fruits and vegetables aligns with the key objectives of the Innovative Research Award.

Areas for Improvement:

While Professor Shi has established herself as a leading expert in her field, further interdisciplinary collaborations with other sectors such as environmental science or food engineering could further enhance the scope and application of her research. Additionally, increased international exposure and collaboration could lead to even greater global recognition and research advancements.

Education:

Professor Jingying Shi’s academic journey is marked by prestigious education and rigorous research experience. She earned her Ph.D. in Postharvest Science of Fruits and Vegetables from South China Agricultural University in 2008. Her undergraduate studies in Food Science and Engineering were completed at Shandong Agricultural University in 2003. Following her doctoral studies, she worked as a postdoctoral researcher at the College of Horticultural Science and Engineering at Shandong Agricultural University from 2009 to 2012. Her academic excellence led her to become an Associate Professor and later a Professor at the same institution. She also had the opportunity to work as a visiting scholar at the University of California, Davis, from February 2017 to February 2018. This international exposure enriched her academic expertise and global perspective on food science research.

Experience:

Professor Jingying Shi has extensive teaching and research experience at Shandong Agricultural University. She is currently serving as a Professor at the College of Food Science and Technology, a position she has held since 2018. Before this, she was an Associate Professor from 2012 to 2018 and a Lecturer from 2008 to 2012 at the same institution. In addition to her academic roles, Professor Shi gained valuable postdoctoral research experience from 2009 to 2012 at the College of Horticultural Science and Engineering, Shandong Agricultural University. Her research contributions are recognized through numerous grants from the National Natural Science Foundation of China and Shandong Province. Furthermore, Professor Shi has served as a peer reviewer for several prestigious journals and participated in many research projects focused on agricultural innovations and postharvest science. Her mentorship and leadership continue to influence the next generation of researchers.

Research Focus:

Professor Jingying Shi’s research primarily focuses on postharvest science, particularly exploring disease resistance mechanisms, quality preservation, and ripening regulation of fruits and vegetables. Her studies aim to enhance the shelf-life and safety of fresh-cut produce while minimizing losses due to spoilage. One of her significant areas of research is understanding the signaling pathways involved in disease resistance in fruits, with a focus on peaches and other perishable crops. She investigates how various compounds, such as nitric oxide and glutamic acid, regulate plant defense responses to fungal pathogens. Another key research area is the development of innovative methods for maintaining the quality of fresh-cut fruits and vegetables, including novel packaging technologies. Professor Shi’s work also addresses the regulation of ripening and senescence processes in harvested produce, contributing to the agricultural industry’s efforts to improve food preservation techniques and reduce waste.

Publications Top Notes:

  1. The PpWRKY22-PpWRKY70 regulatory module enhances resistance to Monilinia fructicola in peach fruit 🍑

  2. PpERF-CRF4 regulates ABA alleviating chilling injury in peach fruit ❄️🍑

  3. Transcriptomic analysis reveals key factors in regulating glutamic acid repression of fresh-cut potato browning 🥔

  4. Methionine represses gray mold of tomato via ethylene synthesis and signal transduction 🍅

  5. Volatile components from Bacillus cereus N4 restrain brown rot in peach fruit 🍑🦠

  6. Sodium chloride and polypropylene packaging maintain fresh-cut ginger quality 🍠

  7. Nitric oxide enhances disease resistance in peach fruit 🍑🌿

  8. HLB emulsifier effect on thyme essential oil release from chitosan films 🌱

  9. Development of novel 1-octen-3-ol-loaded hydrogels to inhibit peach fruit diseases 🍑

  10. Lipopeptides from Bacillus: Classification, application, and activities 🧪

Conclusion:

Professor Jingying Shi is highly deserving of the Research for Innovative Research Award due to her outstanding research achievements and contributions to the field of postharvest science. Her continuous efforts to improve agricultural practices, food quality, and disease management make her an ideal candidate for this award. With her extensive experience and innovative approach, she is set to further shape the future of food science and technology.

 

 

 

Mrinal Saha | Cell Structure Analysis | Cell Biology Research Award

Dr. Mrinal Saha | Cell Structure Analysis | Cell Biology Research Award

Dr. Mrinal Saha , University of Oklahoma , United States

Dr. Mrinal C. Saha is a Professor at the School of Aerospace and Mechanical Engineering at the University of Oklahoma. He earned his PhD in Mechanical Engineering and Mechanics from Old Dominion University in 2001. With extensive experience in academia and research, Dr. Saha has made significant contributions to advanced materials and sensor technologies, including the development of self-powered sensors and environmental remediation technologies. His professional journey includes serving as Associate Professor and Assistant Professor at the University of Oklahoma. He is a seasoned researcher and innovator, holding patents and receiving various best paper awards. Throughout his career, he has been involved in interdisciplinary research, collaborating with experts across various fields to enhance engineering applications in structural health monitoring and nanocomposite technologies.

Publication Profile: 

Scopus

Strengths for the Award:

Mrinal C. Saha’s expertise in mechanical engineering, especially in material science and sensor technology, is highly relevant for interdisciplinary applications, including those in cell biology research. His research has focused on advanced materials such as composite structures, nanocomposites, and self-powered sensors, which could have implications for biosensors and medical devices used in cell biology. His work on embedding sensors in structures and developing multifunctional electrodes is particularly pertinent to cellular monitoring and bioengineering applications. Moreover, his collaborations with prominent researchers, as well as funding from various high-profile sources, demonstrate his ability to lead innovative projects with significant implications for multiple fields.

Areas for Improvement:

While Mrinal C. Saha’s work has an obvious focus on material science and mechanical engineering, his direct experience in cell biology research is less evident. Bridging the gap between his materials-focused research and cell biology could further enhance his suitability for the Cell Biology Research Award. Expanding his network to include collaborations with biologists and bioengineers could help integrate his expertise with biological research directly.

Education:

Dr. Mrinal C. Saha’s educational journey reflects his strong foundation in mechanical engineering. He obtained his PhD in Mechanical Engineering and Mechanics from Old Dominion University, Virginia, USA, in 2001. Before that, he earned an MS in Mechanical Engineering from Tuskegee University, Alabama, USA, in 1996. His academic journey began at the Bangladesh University of Engineering and Technology (BUET), Dhaka, where he completed both his MS and BS in Mechanical Engineering in 1992 and 1988, respectively. His education at BUET equipped him with a solid technical background that has supported his contributions to research in advanced composite materials, sensors, and nanotechnology. Dr. Saha’s academic credentials and his continuous pursuit of knowledge have played a crucial role in shaping his research career, allowing him to make significant strides in the field of mechanical engineering.

Experience:

Dr. Mrinal C. Saha brings a wealth of experience to his role as a Professor at the University of Oklahoma’s School of Aerospace and Mechanical Engineering. With a career spanning over two decades, Dr. Saha has held various academic positions, starting as an Assistant Professor in 2006, advancing to Associate Professor in 2012, and ultimately becoming a full Professor in 2018. Throughout his tenure at OU, he has been involved in cutting-edge research and educational development in the areas of structural health monitoring, additive manufacturing, and nanocomposites. Prior to his current role, Dr. Saha contributed to research initiatives at Tuskegee University, collaborating on high-profile projects with the National Science Foundation and the Federal Aviation Administration. His leadership and collaborative research efforts have resulted in numerous funded projects, publications, and significant technological advancements in aerospace and mechanical engineering.

Awards and Honors:

Dr. Mrinal C. Saha has earned multiple prestigious awards and recognitions for his research and academic contributions. He has been honored with best paper awards for his exceptional work in the areas of nanocomposite materials, sensors, and additive manufacturing. In addition to this, Dr. Saha holds a patent and has been involved in another patent disclosure, demonstrating his innovative contributions to the field. His research achievements have been recognized both nationally and internationally, underscoring his expertise and impact in mechanical and aerospace engineering. Dr. Saha’s work on embedded sensors, multifunctional electrodes, and self-powered technologies has led to significant advances in structural health monitoring and materials science. These accolades not only reflect his research capabilities but also his role as a leader in advancing engineering solutions for real-world applications. Dr. Saha’s continued success in securing research funding and publishing influential papers speaks to his academic excellence.

Research Focus:

Dr. Mrinal C. Saha’s research focuses on the development of advanced materials, self-powered sensors, and innovative manufacturing techniques. His work spans a wide range of areas, including nanocomposite materials, 3D printing, and multifunctional electrodes for environmental remediation and structural health monitoring. He specializes in the design and characterization of high-performance composite structures and sensors, emphasizing flexibility, sensitivity, and durability for various engineering applications. One of his primary research interests is the integration of embedded sensors into materials for real-time damage detection and monitoring. His work on electrospun nanofibers, piezoelectric nanogenerators, and flexoelectric sensors has led to groundbreaking advancements in self-powered systems for aerospace, automotive, and biomedical industries. Dr. Saha’s research is multidisciplinary, blending mechanical engineering, materials science, and sensor technologies to address challenges in the design and performance of smart structures and sustainable engineering solutions.

Publications Top Notes:

  1. Mondal, A., Saha, M.C., Rhule, D. (2025). Experimental Investigation of In-Plane Compressive Characteristics of 3D-Printed Carbon Fiber-Reinforced Epoxy Composite Honeycomb Cores 🏗️📑
  2. Mondal, A., Saha, M.C. (2025). Characterization of In-plane Compressive Response of Triangular Honeycomb Carbon Fiber Epoxy Composites 🧱📚
  3. Maity, K., Saha, M.C. (2025). Design of Flexible and Ultrasensitive 3D Printed Flexoelectric Sensors for Self-Powered Damage Detection ⚡🔧
  4. Mondal, A., Saha, M.C., Maity, K., Altan, M.C., Liu, Y. (2023). Analysis of Fiber Flow, Fiber Orientation, and Void Formation in Material Extrusion of Short Carbon Fiber Epoxy Composites 🧵📊
  5. Rhule, D., Mondal, A., Saha, M.C., Cummings, L., Robison, T. (2023). Effect of Silica and Mixing Time on Microstructures and Properties of Porous Polymer Composite 🧪🧬
  6. Mondal, A., Saha, M.C. (2023). 3D Printing and Characterization of Carbon Fiber Epoxy Composites 🖨️🔬

Conclusion:

Mrinal C. Saha’s background in materials science, sensor technology, and advanced manufacturing methods makes him a strong candidate for the Cell Biology Research Award, provided there is a greater focus on integrating his research with biological applications. His innovative work in sensors and nanocomposites could significantly contribute to advancing biosensors, tissue engineering, and other cell biology-related fields.

Mogana Das Murtey | Cancer Cell Biology | Best Researcher Award

Dr. Mogana Das Murtey | Cancer Cell Biology | Best Researcher Award

Dr. Mogana Das Murtey , Universiti Sains Malaysia , Malaysia

Dr. Mogana Das Murtey is a Senior University Lecturer at Universiti Sains Malaysia (USM), with extensive expertise in cancer biology, microscopy, and toxicology. She holds a Ph.D. in Molecular and Cellular Biology from USM, where she also earned her Master of Science in Pathology. With more than a decade of teaching experience, Dr. Murtey has contributed significantly to scientific research and education. Her research has focused on cancer prevention, particularly through natural products, and includes groundbreaking studies in toxicology and microscopy techniques. She is a committed mentor and has published extensively in international journals, with multiple awards for her innovative contributions to science. She is an active member of various professional organizations, including the Royal Microscopy Society (UK), and regularly serves as a reviewer for leading journals. Dr. Murtey is dedicated to advancing scientific knowledge in the fields of cancer research and microscopy.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Extensive Research Experience:

    • Dr. Murtey has significant experience in cancer biology, microscopy, and toxicology, with notable contributions to these fields. His research is regularly published in peer-reviewed journals, such as the Journal of Oncology, Asian Pacific Journal of Cancer Prevention, and Oxidative Medicine and Cellular Longevity.
    • He has contributed as both first and corresponding author in reputable journals, demonstrating leadership and a high level of responsibility in his research endeavors.
    • His work spans multiple cancer types, including breast cancer, cervical cancer, and salivary gland carcinoma, showing both depth and breadth in his research areas.
  2. Innovative Approaches in Cancer Chemoprevention:

    • Dr. Murtey has worked on several groundbreaking studies, particularly in the area of natural product chemoprevention, such as using paddy husk and other plant-based materials to fight cancer. His research could potentially impact public health by offering new, cost-effective cancer treatments or prevention strategies.
    • He has intellectual property (copyright) for novel techniques, including immunogold techniques for scanning electron microscopy, showcasing his contribution to advancing scientific methods.
  3. Teaching and Mentorship:

    • As a Senior University Lecturer, Dr. Murtey has a strong commitment to teaching, having taught a variety of courses in oral biology, histology, and medical sciences, mentoring the next generation of scientists.
    • He has been an academic leader, holding positions like course coordinator and serving on multiple committees within his institution, further highlighting his administrative and leadership qualities.
  4. Recognition and Awards:

    • He has been recognized for his innovative research, including winning gold medals for his work on prostate disease chemoprevention and other health-related innovations.
    • His consistent recognition in prestigious events and competitions reflects the high regard in which his work is held by peers and experts in the field.
  5. Research Grants:

    • Dr. Murtey has secured significant research funding, including bridging and short-term grants from Universiti Sains Malaysia, for projects that involve cutting-edge research on cancer prevention and treatment.
  6. International Collaboration and Publication:

    • His research has international reach, evidenced by publications in global journals and his participation in conferences and symposiums. Furthermore, he serves as a reviewer for multiple respected journals, adding to his credibility and influence within the academic community.

Areas for Improvement:

  1. Increased Focus on Collaborative Research:

    • While Dr. Murtey has a strong individual publication record, more large-scale collaborative projects or multi-disciplinary research could further enhance his impact, particularly in advancing the translation of his findings into clinical or public health applications.
  2. Broader Outreach and Impact:

    • His work, although recognized in academia, could benefit from a stronger outreach strategy aimed at translating his findings into broader societal benefits. This could include partnerships with industry, public health organizations, or policymakers to implement his research at a larger scale.
  3. Grant Diversification:

    • Expanding beyond institutional and national grants to attract more international or industry-backed funding could further solidify his position as a global leader in his field. Additionally, incorporating more collaborative grants with researchers across different fields or industries may provide more extensive funding opportunities.

Education:

Dr. Mogana Das Murtey pursued her academic journey at Universiti Sains Malaysia (USM), where she completed her Ph.D. in Molecular and Cellular Biology (2013-2018). Her research focused on cancer biology and cellular mechanisms, making significant contributions to the understanding of cancer prevention. Prior to her doctoral studies, Dr. Murtey earned a Master of Science in Pathology from USM (2009-2013), where she specialized in understanding diseases at the cellular and molecular levels. She also holds a Bachelor’s degree in Biomedicine (Honours) from Management and Science University (2005-2009), where she first developed her passion for biomedical sciences. Dr. Murtey’s educational background has provided her with a solid foundation in both the theoretical and practical aspects of biomedical research, and she has continually applied her knowledge through teaching, mentoring, and extensive research in her field.

Experience:

Dr. Mogana Das Murtey has over a decade of teaching and research experience in the field of molecular and cellular biology. She is a Senior University Lecturer at Universiti Sains Malaysia (USM), where she has been since 2019. Throughout her career, Dr. Murtey has taught a variety of pathology and oncology-related courses, including Oral Biology, Oral Histology, and Basic Medical Sciences. Her role also includes supervising research projects at both the undergraduate and graduate levels. Before her current position, Dr. Murtey taught part-time at several institutions, including Sultan Abdul Halim Muadzam Shah International Islamic University and Allianze University College of Medical Sciences. In addition to her academic roles, she has been an active researcher, publishing numerous articles in peer-reviewed journals and contributing to groundbreaking work in cancer research and toxicology. Her work has led to several prestigious research grants and collaborations both locally and internationally.

Awards and Honors:

Dr. Mogana Das Murtey has been recognized with multiple awards for her innovative contributions to science. She won the Art Science Competition 2023 organized by the School of Medical Sciences, USM, for her outstanding scientific innovation. She also received a Gold Medal for her research on the chemopreventive agent “Pamentm: New Chemopreventive Agent for Prostate Disease” at the SIRIM Invention, Innovation & Technology Expo 2022. Additionally, Dr. Murtey received the Gold Medal at the Virtual International Research and Innovation Symposium and Exhibition (RISE 2021) at Universiti Tun Hussein Onn Malaysia. Her work has been acknowledged for its impact on advancing cancer research, particularly in cancer prevention through natural products. These awards reflect her commitment to excellence in research and innovation. Dr. Murtey’s achievements underscore her leadership in the academic and research communities.

Research Focus:

Dr. Mogana Das Murtey’s research primarily focuses on cancer biology, toxicology, and microscopy, with a special emphasis on the chemopreventive potential of natural products. Her research aims to identify new ways to prevent and treat various types of cancer, particularly through the use of natural compounds. She has been involved in groundbreaking studies on the pharmacological potentials of paddy waste products, such as husk and straw, in preventing cancer. Dr. Murtey’s work also includes exploring the role of microscopy techniques, such as scanning electron microscopy and immunogold labeling, to study cellular structures in detail. She has also contributed significantly to the understanding of toxicological effects and how certain substances impact cellular function. Her research has been widely published, and she continues to lead projects that explore the intersection of molecular biology, cancer prevention, and environmental science.

Publication Top Notes:

  1. Chemopreventive Potential of Paddy Waste: A Promising Approach Against Benign Prostate Hyperplasia in Spontaneously Hypertensive Rats 🌾💡
  2. Chemoprevention of Natural Products Against Oral Cancer: A Comprehensive Review 🍃🦷
  3. Negative Staining: Forgotten Technique in Microbiology 🧫🔬
  4. Chemopreventive Activity of Two Varieties of Freeze-Dried Coconut Water Against Cervical Cancer Cells, HeLa 🥥🧪
  5. Evaluation of Effect of Honey Sugars Analogue Therapy Against Breast Cancer Induced by 1-Methyl-1-Nitrosourea in In Vivo Breast Cancer Model 🍯🎗️
  6. Effect of Silymarin as an Adjunct Therapy in Combination with Sofosbuvir and Ribavirin in Hepatitis C Patients: A Miniature Clinical Trial 💊🔬
  7. Development of Myocardial Infarction in Rat Model of Diet-Induced Hypercholesterolemia 🐀💔
  8. Gliclazide in Binary and Ternary Systems Improves Physicochemical Properties, Bioactivity, and Antioxidant Activity 💊🌿
  9. Life Science Sample Preparations for Scanning Electron Microscopy 🔬💡
  10. The Phytochemical Analysis and Pharmacological Potentials of Husk and Straw as Paddy Waste Products 🌾🍃

Conclusion:

Dr. Mogana Das Murtey is an exemplary candidate for the “Best Researcher Award” due to his profound contributions to cancer biology, particularly in the areas of chemoprevention and innovative microscopy techniques. His extensive publication record, innovative research methodologies, intellectual property contributions, and recognition from peers and institutions provide compelling evidence of his excellence. While there are areas where increased collaboration and broader outreach could further enhance his career, his consistent track record of success and leadership in both research and teaching positions him as a strong contender for the award.

Weikuan Gu | Cancer Cell Biology | Best Researcher Award

Prof. Weikuan Gu | Cancer Cell Biology | Best Researcher Award

Prof. Weikuan Gu , UTHSC , United States

Weikuan Gu is a Professor at the University of Tennessee Health Science Center, specializing in biomedical research with a focus on disease modeling, genetic factors influencing health, and drug efficacy. After earning his MS and Ph.D. from Cornell University, he worked on eye diseases, osteoporosis, and genetics before joining UTHSC in 2002. His contributions in AI applications for biomedical research are noteworthy. He has developed the Principal Law of Lifespan (PLOSP) theory and has been recognized for his leadership in various international collaborative projects. With a significant role in numerous NIH-funded studies, his research continues to push boundaries in understanding disease mechanisms and therapeutics.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. Extensive Research Experience: Professor Weikuan Gu has over two decades of experience in biomedical research, demonstrating expertise across a wide array of disease models, drug efficacy, and genetic factors influencing health. His work spans a variety of high-impact fields such as ophthalmology, osteoporosis, arthritis, and genomics, showcasing a strong commitment to advancing understanding in multiple medical domains.

  2. Innovative Research Leadership: Professor Gu has been instrumental in leading and contributing to groundbreaking research, including his development of the Principal Law of Lifespan (PLOSP). His ability to innovate, especially in applying AI to biomedical research, positions him at the forefront of cutting-edge science and technology.

  3. Funded Projects & International Collaborations: He has secured substantial funding for his projects, totaling millions of dollars, and has led many high-profile international collaborations. This speaks to the global relevance and potential impact of his work, as well as his ability to manage large-scale research initiatives.

  4. Research Output and Citations: With 175 published scientific papers and multiple accepted articles in prestigious journals such as Cancer Letters and Ecotoxicology and Environmental Safety, his research continues to have a significant impact on the scientific community. His most recent work on AI applications and its implications for public health and disease diagnosis are particularly notable.

  5. Contribution to Education and Training: Professor Gu has played a key role in training future researchers, as evident from his leadership in the Gene Discovery Microarray Core at UTHSC and his involvement in several research education collaborations internationally. His contributions to scientific training are essential for developing the next generation of researchers.

Areas for Improvement:

  1. Broader Public Outreach: While Professor Gu’s research has made significant contributions to the scientific community, there is room to enhance the visibility of his work among broader audiences, including policy makers, healthcare professionals, and the general public. Public engagement with his AI-focused research could improve the real-world application of his findings, especially in public health.

  2. Interdisciplinary Collaboration: Although his collaborations are already diverse, fostering even more interdisciplinary collaborations with experts from areas like data science, engineering, and social sciences could expand the scope of his research, especially in areas like AI and healthcare.

Education:

Dr. Gu completed his MS and Ph.D. from Cornell University, where he specialized in molecular genetics. His academic journey focused on genetic disorders, particularly in disease modeling and understanding complex genetic mechanisms. His research provided foundational insights into eye diseases and osteoporosis, leading to his early work at Loma Linda University and later at the University of Tennessee Health Science Center. His vast academic knowledge enables him to merge genetic research with cutting-edge technologies, including AI applications in biomedical research, paving the way for transformative healthcare solutions.

Experience:

Dr. Weikuan Gu has a rich career that spans over two decades in biomedical research. His early work at Loma Linda University involved osteoporosis and genetic studies in human and mouse models. Since joining the University of Tennessee Health Science Center in 2002, his research expanded to disease modeling, drug efficacy, and the role of genetics in health. He has been a principal investigator and co-investigator in numerous NIH-funded projects, specializing in genetic factors influencing diseases like osteoarthritis, fibrotic diseases, and stroke. Additionally, he is involved in AI-based research, advancing the integration of AI in biomedical research methodologies.

Research Focus:

Dr. Weikuan Gu’s research is centered on understanding disease mechanisms and therapeutic strategies, with a focus on genetic and molecular factors. His work spans glaucoma therapy, fibrotic diseases, and AI in biomedical research. He is the lead on various NIH-funded projects, investigating genetic regulation in conditions like osteoarthritis and stroke. One of his innovative contributions is the Principal Law of Lifespan (PLOSP), a theory aimed at understanding the aging process. His multidisciplinary approach, combining traditional genetic research with modern technologies such as AI, positions him at the forefront of cutting-edge biomedical research.

Publications Top Notes:

  1. “Generating Research Hypotheses to Overcome Key Challenges in the Early Diagnosis of Colorectal Cancer – Future Application of AI” 🧬
  2. “Alarm: Retracted Articles on Cancer Imaging Are Not Only Continuously Cited by Publications but Also Used by ChatGPT to Answer Questions” 💻
  3. “Evaluation of the Potential Value of Artificial Intelligence (AI) in Public Health Using Fluoride Intake as the Example” 🤖

Conclusion:

Professor Weikuan Gu is an exceptionally qualified candidate for the Best Researcher Award. His extensive experience, leadership in innovative research, impressive body of published work, and commitment to advancing both scientific discovery and education make him a standout candidate. While there are opportunities for further enhancing public outreach and expanding interdisciplinary collaborations, his ongoing contributions to AI in biomedicine and genetic research firmly establish him as a leader in his field.