Mai Kadry | Biochemistry | Best Researcher Award

Assist. Prof. Dr. Mai Kadry | Biochemistry | Best Researcher Award

Assist. Prof. Dr. Mai Kadry  , NRC , Egypt

Dr. Mai Osman Mohamed Kadry is an Assistant Professor at the Therapeutic Chemistry Department of the National Research Centre in Egypt, specializing in molecular and biochemical research. With over two decades of experience, she has contributed significantly to the advancement of therapeutic chemistry. Dr. Kadry obtained her PhD in Biochemistry from Cairo University in 2016, focusing on oxidative injury mitigation through antioxidants. She has authored and co-authored multiple articles in prestigious journals. Her research is driven by a passion for finding therapeutic solutions to biochemical challenges, with a focus on molecular mechanisms and drug development.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Mai Osman Mohamed Kadry has made significant contributions to the field of therapeutic chemistry, particularly in molecular and biochemical research. As an Assistant Professor at the National Research Centre (NRC), her dedication to scientific advancement is evident in her research on oxidative stress, drug-induced toxicity, and the potential of nanotechnology to mitigate such effects. Her work has been published in high-impact journals, showcasing her expertise in areas like cancer research, biochemistry, and drug development. Additionally, her comprehensive teaching experience in academic settings has strengthened her ability to impart knowledge to the next generation of researchers.

Areas for Improvement:

Although Dr. Kadry’s work is impressive, her research could further benefit from exploring more collaborative projects across different research centers and incorporating a broader range of interdisciplinary approaches. Engaging with cutting-edge technologies such as AI-driven drug discovery or multi-omics data analysis could significantly expand her impact on therapeutic chemistry.

Education:

Dr. Mai Kadry’s academic journey began with a Bachelor’s degree in Pharmaceutical Sciences from Ain Shams University, graduating with honors in 2003. She later pursued an MSc in Pharmaceutical Sciences with a focus on Biochemistry from Helwan University in 2008. Her doctoral research at Cairo University led to a PhD in Biochemistry in 2016, where she studied the amelioration of oxidative stress induced by titanium dioxide nanoparticles in mice. This educational foundation has equipped her with a robust understanding of biochemistry, molecular biology, and drug therapy.

Experience:

Dr. Mai Kadry has a distinguished career at the National Research Centre (NRC) in Egypt, starting as an Assistant Researcher in 2004 and advancing to Assistant Professor in 2021. Over the years, she has contributed to groundbreaking research in therapeutic chemistry, particularly in the area of oxidative stress and drug toxicity. Dr. Kadry has also taught pharmacognosy at the Faculty of Pharmacy, 6 October University, and served on committees focusing on academic development. Her extensive teaching and research experience positions her as a leader in her field.

Research Focus:

Dr. Mai Kadry’s research focuses on therapeutic chemistry, exploring the molecular mechanisms of drug-induced toxicity, oxidative stress, and potential protective treatments. Her work investigates the impact of nanomaterials like titanium dioxide and their effects on cellular pathways. She also studies the synergistic potential of natural compounds to mitigate damage from toxins, using advanced biochemical methods to evaluate their efficacy. Additionally, Dr. Kadry has a keen interest in cancer research, focusing on autophagy signaling and the development of novel drug formulations.

Publications Top Notes:

  • “Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways” 🧬💉
  • “Inflammatory mediators-induced DNA damage in liver and brain injury: Therapeutic approach of 5-Methoy-N-acetyltryptamine” 🧠💊
  • “Necroptosis and autophagy in cisplatinum-triggered nephrotoxicity: Novel insights regarding their prognostic and diagnostic potential” 💊🩺
  • “Resveratrol-based nano-formulations as an emerging therapeutic strategy for ovarian carcinoma” 🎗️💡
  • “miR-122-IGF-1R signaling allied through the dysregulated lncRNA MALAT-1 expression in gastric carcinoma” 🧬🦠
  • “Reciprocal crosslink among MeCP2/BDNF/CREB signaling pinpointed in autism spectrum disorder” 🧠🔬
  • “CRISPR-Cas9 genome and long non-coding RNAs as a novel diagnostic index for prostate cancer therapy” 🧬🧬
  • “Collaboration of Hprt/K-RAS/c-Myc mutation in the oncogenesis of T-lymphocytic leukemia” 🩸⚗️
  • “Thioctic acid shield against lipopolysaccharide depression and endoplasmic reticulum stress: GR7M/Homer/ATF6 signaling” 🧬🛡️
  • “Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy” 🧬🎗️

Conclusion:

Dr. Mai Osman Mohamed Kadry stands out as an exemplary researcher in her field. Her focus on therapeutic chemistry, particularly in relation to oxidative stress, toxicity, and nanotechnology, positions her as a promising candidate for the Researcher of the Year Award. Through her continued contributions and potential for further interdisciplinary collaboration, she will likely continue to make pivotal advancements in the field of molecular and biochemical research.

 

 

 

Irena Roterman | Protein structure | Best Researcher Award

Irena Roterman | Protein structure | Best Researcher Award

Prof. Irena Roterman , Jagiellonian University – Medical College , Poland

Irena Roterman-Konieczna is a distinguished biochemist specializing in bioinformatics and protein structure. With a PhD in biochemistry from the Nicolaus Copernicus Medical Academy Krakow, she has held significant academic positions, including Professor of Medical Sciences at Jagiellonian University. Irena is recognized for her innovative contributions, particularly the fuzzy oil drop model, which emphasizes environmental influence on protein folding. She has published extensively, contributing to the understanding of protein dynamics and interactions. As a committed educator, she has guided numerous PhD students and served as the Chief Editor for the journal Bio-Algorithms and Med-Systems. Her work continues to impact the fields of protein folding, membrane proteins, and systems biology.

Publication Profile

Scopus

Strengths for the Award

Irena Roterman-Konieczna’s extensive academic background and innovative contributions to the field of bioinformatics and protein structure make her an exceptional candidate for the Best Researcher Award. Her pioneering work on the fuzzy oil drop model has provided critical insights into the environmental influences on protein folding. With a prolific publication record of 149 articles, she has consistently advanced the understanding of protein dynamics, particularly in membrane proteins and chaperonins. Additionally, her role as Chief Editor of the journal Bio-Algorithms and Med-Systems demonstrates her leadership in the scientific community. Her commitment to mentoring future researchers is evident through her advisory work with 15 PhD students, ensuring the continued growth of the field.

Areas for Improvement

While Irena’s contributions to theoretical models are significant, there may be opportunities to further integrate experimental validation into her research. Collaborating with experimentalists could enhance the practical applications of her models, particularly in understanding real-world protein behavior. Additionally, increasing outreach to interdisciplinary fields could broaden the impact of her research on medicine and biotechnology.

Education

Irena Roterman-Konieczna completed her basic education in theoretical chemistry at Jagiellonian University in 1974. She earned her PhD in biochemistry in 1984, focusing on the structure of the recombinant IgG hinge region at the Nicolaus Copernicus Medical Academy in Krakow. Following her doctoral studies, Irena undertook postdoctoral research at Cornell University from 1987 to 1989 in Harold A. Scheraga’s group, where she analyzed force fields in molecular modeling programs like Amber and Charmm. In 1994, she achieved habilitation in biochemistry at Jagiellonian University’s Faculty of Biotechnology and later attained the title of Professor of Medical Sciences in 2004. This strong educational foundation laid the groundwork for her extensive research and contributions to the field of biochemistry and bioinformatics.

Experience

Irena Roterman-Konieczna has a robust academic and research background spanning several decades. She has held key academic positions at Jagiellonian University, where she is currently a Professor of Medical Sciences. Irena’s postdoctoral research at Cornell University deepened her expertise in molecular modeling and protein interactions. Throughout her career, she has authored numerous publications and books, significantly advancing the understanding of protein folding and structure. As Chief Editor of the journal Bio-Algorithms and Med-Systems from 2005 to 2020, she played a vital role in disseminating research in the field. Additionally, she has supervised 15 PhD students, fostering the next generation of researchers. Irena’s collaborative efforts and advisory roles in various projects highlight her commitment to scientific advancement and education in biochemistry and bioinformatics.

Research Focus

Irena Roterman-Konieczna’s research centers on bioinformatics, particularly in understanding protein structure and dynamics. Her innovative fuzzy oil drop model explores the role of environmental factors in protein folding, proposing that external force fields influence hydrophobic core formation and overall structure. Irena investigates the effects of membrane environments on protein behavior, examining how hydrophobic factors can alter folding dynamics. Her work also delves into chaperonins and their role in facilitating proper protein folding under varying conditions. Additionally, she explores domain-swapping structures and their implications for complex formation in proteins. Irena’s research emphasizes the necessity of simulating external force fields in computational protein folding, integrating both internal and external interactions. Her contributions to systems biology and the development of quantitative models for protein behavior continue to advance the field, making significant impacts in both theoretical and practical applications.

Publications Top Notes

  • Chameleon Sequences─Structural Effects in Proteins Characterized by Hydrophobicity Disorder 🌊
  • Transmembrane proteins—Different anchoring systems
  • External Force Field for Protein Folding in Chaperonins─Potential Application in In Silico Protein Folding 💻
  • Structural features of Prussian Blue-related iron complex FeT of activity to peroxidate unsaturated fatty acids 🔬
  • Domain swapping: a mathematical model for quantitative assessment of structural effects 📊
  • Editorial: Structure and function of trans-membrane proteins 🧬
  • Model of the external force field for the protein folding process—the role of prefoldin 🌐
  • Role of environmental specificity in CASP results 📈
  • Ab initio protein structure prediction: the necessary presence of external force field as it is delivered by Hsp40 chaperone 🔍
  • Secondary structure in polymorphic forms of alpha-synuclein amyloids 🧪

Conclusion

Irena Roterman-Konieczna’s innovative research, leadership in academia, and dedication to mentorship position her as a strong contender for the Best Researcher Award. Her groundbreaking work in bioinformatics not only advances scientific understanding but also lays the groundwork for future discoveries in protein dynamics and interactions. Recognizing her contributions would not only honor her achievements but also inspire ongoing research in the field.