Hansong Dong | Host-Pathogen Interactions | Best Researcher Award

Prof. Hansong Dong | Host-Pathogen Interactions | Best Researcher Award

Prof. Hansong Dong, Shandong Agricultural University, China

Dr. Hansong Dong is a distinguished Professor of Plant Pathology and Doctoral Supervisor at Shandong Agricultural University, China. With a Ph.D. in Plant Pathology, his work spans over four decades, focusing on plant immunity, signal transduction, and the balance between crop growth and defense. A renowned researcher and published poet, Prof. Dong has made seminal contributions to our understanding of aquaporins, hormone signaling, and the molecular interface between host plants and pathogens. His international academic exposure, including time as a Visiting Scholar at Cornell University, has further enriched his scientific insights. In addition to his impactful research, Prof. Dong has mentored numerous graduate students and contributed to agricultural innovation. With numerous high-impact publications in journals like Molecular Plant and New Phytologist, his work is widely recognized. Beyond academia, his literary works reflect a philosophical appreciation of nature and resilience, exemplifying a rare integration of science and art.

Publication Profile: 

Scopus

Education:

Prof. Hansong Dong pursued his undergraduate studies in Plant Protection at Shandong Agricultural University (1978–1982). He continued with his Master’s and Ph.D. in Plant Pathology at Nanjing Agricultural University, completing them in 1985 and 1988, respectively. His academic training provided a solid foundation in plant-microbe interactions, molecular biology, and host defense mechanisms. During his studies, he honed his focus on understanding plant immune responses, laying the groundwork for his future breakthroughs in signaling and aquaporin-mediated defense. His Ph.D. thesis contributed to early models of pathogen-host dynamics in crops, marking the start of a lifelong research trajectory in agricultural biotechnology. His formal education not only established his credibility in plant pathology but also shaped his vision for interdisciplinary research. Prof. Dong’s academic excellence has continued to drive forward key discoveries in the field, making him a leading authority in crop protection and molecular plant immunity in China and internationally.

Experience:

Prof. Dong began his career as a Lecturer in the Department of Plant Pathology at Shandong Agricultural University (1988–1993). He quickly rose through academic ranks—Associate Professor in 1993, and full Professor by 1994. His leadership and research capabilities were recognized early on, leading to a Visiting Scholar position at Cornell University (1997–2000), where he engaged in collaborative projects on plant immune signaling and pathogen effectors. Over his decades of teaching and research, Prof. Dong has supervised numerous doctoral students, published extensively, and shaped academic policy and curriculum in plant pathology. His tenure at Shandong Agricultural University is marked by scientific rigor, mentorship, and impactful agricultural innovations. His ability to bridge laboratory research with field application has contributed significantly to crop disease management strategies in China. Prof. Dong remains actively involved in national and international research initiatives, playing a vital role in advancing molecular plant pathology and crop resilience.

Awards & Honors:

Prof. Hansong Dong has received several prestigious accolades recognizing his early and sustained contributions to science and education. In 1992, he was honored as an Outstanding Young Intellectual and received the Shandong Youth Science and Technology Award, acknowledging his early promise in agricultural research. The same year, he was also named an Excellent Young Teacher, a testament to his pedagogical contributions. In 1993, he was recognized as a New Long March Commando, symbolizing excellence in youth-led scientific advancement in China. These early recognitions paved the way for a prolific academic career that has garnered respect across disciplines. His awards highlight his leadership in scientific innovation, commitment to nurturing the next generation of researchers, and the societal relevance of his work in safeguarding global food security. As both a scientist and educator, Prof. Dong’s accolades reflect his well-rounded excellence and continued influence in plant pathology and agronomic science.

Research Focus:

Prof. Dong’s research focuses on signal transduction in plant disease resistance and the regulation of growth-defense trade-offs in crops. His work investigates the molecular dialogue between plants and pathogens, particularly through the lens of aquaporins, importins, and membrane proteins. He has significantly advanced our understanding of how pathogenic effectors manipulate host splicing and hormone pathways, notably through TAL effectors and NPR1/NPR3 systems in rice. His team applies multi-omics and CRISPR-based editing to engineer resistant crops while minimizing yield penalties, a critical goal in sustainable agriculture. By elucidating the roles of H2O2 transport, type-III secretion systems, and transcriptional regulation, his research offers translational solutions to fungal and bacterial diseases in cereals like rice and wheat. Prof. Dong’s innovative blend of molecular biology, bioinformatics, and field experimentation drives progress toward disease-resilient, high-yield crops. His collaborative, systems-level approach continues to shape modern plant pathology and crop biotechnology.

 Publications Top Notes:

  1. Alternative splicing of OsNPR3… enhances disease susceptibility in riceMolecular Plant, 2025

  2. Plant PI4P is required for bacteria to translocate type-3 effectorsNew Phytologist, 2025

  3. MYB44 regulates PTI via EIN2 and MPK3/6 in ArabidopsisPlant Communications, 2023

  4. Importin β1 mediates nuclear entry of EIN2C against aphidsIJMS, 2023

  5. Phosphorylation of wheat aquaporin enhances growth and defenseMolecular Plant, 2022

  6. Aquaporin OsPIP2;2 links H2O2 signaling to plant defensePlant Physiology, 2022

  7. Editing rice importin IMPα1b sequesters TAL effectorsPhytopathology Research, 2022

  8. Aquaporin modulation intensifies photosynthesis and disease resistancePlant Journal, 2021

  9. OsPIP2;2 facilitates drought tolerance in ricePlant Direct, 2021

  10.  Aquaporin TaPIP2;10 confers dual fungal resistance in wheatPhytopathology, 2021

Conclusion:

Prof. Hansong Dong is highly suitable for the “Best Researcher Award.” His scholarly depth, sustained academic leadership, groundbreaking findings in plant pathology, and dedication to mentoring make him a standout candidate. His career exemplifies a blend of scientific rigor, poetic vision, and global relevance. Recognizing Prof. Dong would not only honor an exceptional researcher but also inspire younger generations in the intersection of science and humanity.

Shima Shafiee | Cell Structure Analysis | Best Researcher Award

Dr. Shima Shafiee | Cell Structure Analysis | Best Researcher Award

Dr. Shima Shafiee, Razi University, Iran

Shima Shafiee is an accomplished Iranian researcher specializing in computer systems architecture and bioinformatics, with a strong focus on machine learning applications in biological data analysis. She recently earned her Ph.D. in Computer Engineering from Razi University, where she focused on predictive modeling of protein-peptide binding interactions. Currently under consideration at the IDEL Lab, Shahid Bahonar University of Kerman, Shima has authored numerous national and international publications. With a rich background in algorithm optimization and artificial intelligence, her research stands at the intersection of computational biology, deep learning, and evolutionary algorithms. Shafiee’s work has contributed to the development of predictive tools in bioinformatics, such as DP-site and SPPPred, and she consistently ranks at the top of her academic cohort. Her ability to integrate traditional computer engineering concepts with advanced biological research makes her a notable candidate for the Best Researcher Award.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. Strong Academic Foundation
    Dr. Shafiee has a stellar academic record, graduating first in her Ph.D. class at Razi University with a CGPA of 3.77 and a thesis grade of 3.98, under the supervision of respected experts in computer engineering and bioinformatics.

  2. Innovative Interdisciplinary Research
    Her research bridges computer systems architecture, machine learning, and bioinformatics, with notable contributions to protein-peptide binding prediction, a critical domain in drug discovery and computational biology.

  3. High-Impact Publications
    She has published in IEEE/ACM Transactions, Applied Soft Computing, and Methods, reflecting both quality and visibility in international forums. Tools like SPPPred and DP-site demonstrate her practical impact in bioinformatics.

  4. Research Originality and Versatility
    Dr. Shafiee has developed hybrid models combining genetic programming, support vector machines, and deep learning, with practical tools and open-source contributions.

  5. Early Recognition and Outreach
    She has been active in academic dissemination since 2015, with selected papers in national and international conferences, showing early promise and consistency.

  6. Teaching and Mentorship
    Through her roles as a lecturer at multiple institutions, she has contributed to academic growth at the grassroots level.

Areas for Improvement:

  1. International Collaboration & Visibility
    While her publication quality is strong, Dr. Shafiee could expand her global visibility through collaborations with international research labs, EU Horizon, or NIH-funded projects.

  2. Post-Ph.D. Grant Applications
    She could benefit from applying for independent research grants or postdoctoral fellowships to lead projects that could shape the future of AI in biology.

  3. Open-Source Software and Data Availability
    While her models are impactful, increased accessibility via open-source repositories (e.g., GitHub) would boost reproducibility and encourage broader adoption.

  4. Industry Impact Metrics
    More emphasis on industry collaborations, patents, or application of models in clinical/biotech settings would enhance translational impact.

Education:

Shima Shafiee completed her Ph.D. in Computer Engineering (2016–2024) from Razi University, specializing in Computer Systems Architecture. Her dissertation titled “Application of learning-based models in predicting of protein-peptide binding interactions” earned her a thesis grade of 3.98/4.00 and an overall CGPA of 3.77. She worked under the guidance of Dr. Abdolhossein Fathi and Dr. Ghazaleh Taherzadeh, focusing on bioinformatics using deep learning, ensemble learning, and evolutionary algorithms. Prior to her Ph.D., she was ranked third in her Master’s program (2015). Shafiee’s educational background is rooted in computational problem-solving, algorithm development, and cross-disciplinary research involving biological data. Her consistent academic excellence and high-ranking performance culminated in her being recognized as the top Ph.D. student in 2025, a testament to her dedication and scholarly capabilities. Her education blends rigorous theory with innovative applied research, making her exceptionally well-prepared for high-impact contributions in academia and industry.

Experience:

Shima Shafiee’s experience spans both academic and applied computer engineering roles. She began her journey with an internship at Kimia Pardaz Pars Company (2013). Between 2015 and 2016, she served as a lecturer for computer fundamentals at Fajr High School and Al-Zahra Seminary School in Jiroft, where she taught introductory computer science to pre-university students. These experiences highlight her foundational teaching skills and outreach to educational institutions in her community. Her major academic contribution began during her Ph.D., where she collaborated with IDEL Lab and contributed to developing tools like SPPPred and DP-site, combining genetic programming, support vector machines, and deep learning to predict protein-peptide binding regions. Her experience uniquely blends educational outreach, algorithmic development, and publication-driven research in machine learning, optimization, and computational biology, reflecting her versatility and impact across the scientific and academic spectrum.

Awards & Honors:

Shima Shafiee has earned multiple distinctions recognizing her academic and research excellence. In 2015, she was named the third-place student in her Master’s program, demonstrating early academic excellence. Her continuous dedication to research and scholarship led her to be recognized as the first-place student in her Ph.D. program in 2025. One of her papers was selected at the 2nd International Congress of Electrical Engineering, Computer Science, and Information Technology (2015), highlighting the innovation and relevance of her early research in optimization algorithms. Her high publication output, including appearances in top-tier venues like IEEE/ACM Transactions on Computational Biology and Bioinformatics and Applied Soft Computing, reflects a consistent standard of excellence. These honors collectively showcase her as a standout figure in her field, with both academic and applied contributions acknowledged at national and international levels.

Research Focus:

Shima Shafiee’s research lies at the intersection of machine learning, bioinformatics, and computational systems engineering. Her primary focus is the prediction of protein-peptide binding interactions using intelligent algorithms such as genetic programming, ensemble models, and deep learning techniques. She has proposed several innovative hybrid models combining sequence-based and structure-based features to identify critical interaction residues. Her doctoral thesis and publications have led to the development of tools like SPPPred and DP-site, which aid in biological sequence analysis, with applications in drug discovery, protein function prediction, and biomedical engineering. Shafiee also has a strong background in optimization algorithms, especially particle swarm optimization (PSO), applied to computationally intensive problems like bin packing. Her ability to blend theoretical computing with practical biological data analysis makes her contributions valuable to both computational scientists and biologists, and positions her as a leading candidate for research recognition awards in AI and bioinformatics.

Publications Top Notes: 

  • 🧠 SPPPred: sequence-based protein-peptide binding residue prediction using genetic programming and ensemble learning (IEEE/ACM TCBBS, 2022)

  • 🔍 Prediction of protein–peptide-binding amino acid residues regions using machine learning algorithms (CSICC, 2021)

  • 🧬 Combination of genetic programming and SVM-based prediction of protein-peptide binding sites (Journal of Computing and Security, 2021)

  • 🧪 Prediction of protein–peptide binding residues using classification algorithms (IEEE Bioengineering Conf, 2020)

  • 🧠 A Review of the Uses of AI in Protein Research (Peptide Science Conf, 2019)

  • 🤖 DP-site: dual deep learning method for protein-peptide interaction site prediction (Methods, 2024)

  • 🧬 Protein-peptide interaction region prediction using generative sampling & ensemble DL (Applied Soft Computing, 2025)

  • 🧠 Comparing classification vs. segmentation predictors in protein-peptide interaction (CSICC, 2025)

  • 🧬 Leveraging structure-based and learning-based predictors in protein-peptide interaction (ICCKE, 2024)

  • 📘 Application of learning-based models in protein-peptide binding (Ph.D. Dissertation, 2024)

Conclusion:

Dr. Shima Shafiee is a highly suitable candidate for the Best Researcher Award based on her academic excellence, interdisciplinary research achievements, and consistent contributions to the fields of artificial intelligence and bioinformatics. Her ability to bridge computer science and biological challenges has resulted in meaningful and applicable solutions. She has displayed originality, depth, and foresight in her work, developing novel methods that align with modern computational biology trends.

Sukanta Nath | Cancer Research | Distinguished Scientist Award

Dr. Sukanta Nath | Cancer Research | Distinguished Scientist Award

Dr. Sukanta Nath, Atal Bihari Vajpayee Regional Cancer Centre, India

Dr. Sukanta Nath is a dedicated Research Scientist with over 13 years of experience in molecular biology, virology, and cancer research. He currently serves at the Atal Bihari Vajpayee Regional Cancer Centre, Agartala, Tripura, where he has led several impactful studies in oral cancer patient care. Holding a Ph.D. in Biotechnology from Gauhati University, Dr. Nath has consistently demonstrated excellence in scientific inquiry, especially in clinical intervention studies. His collaborative works with clinical and academic experts have produced over 10 peer-reviewed publications in reputed journals. Dr. Nath’s research emphasizes evidence-based nursing practices, molecular diagnostics, and the improvement of post-surgical outcomes in cancer patients. Known for his commitment to translational research, Dr. Nath is playing a pivotal role in bridging molecular science with patient-centered care in North-East India. His multidimensional expertise and scholarly contributions make him a deserving candidate for recognition as a Distinguished Scientist.

Publication Profile: 

Scopus

Strengths for the Award:

  1. Extensive Research Experience:
    With over 13 years of hands-on experience in molecular biology, cancer research, and virology, Dr. Nath has a well-established research career that aligns with the award’s standards.

  2. Focused Contributions to Cancer Research:
    His work at Atal Bihari Vajpayee Regional Cancer Centre has significantly contributed to oral cancer patient management, particularly through randomized intervention studies improving postoperative recovery and mental health.

  3. High Research Output:
    He has authored or co-authored 10+ peer-reviewed publications, many of which focus on novel and under-explored aspects such as nursing intervention in cancer care—a progressive and human-centered approach.

  4. Multidisciplinary Approach:
    Dr. Nath bridges molecular diagnostics, clinical research, and public health, evident in his work on HPV molecular epidemiology and AML treatment reviews.

  5. Collaborative and Institutional Impact:
    His collaborations with clinicians, nurses, and academic institutions highlight his team-oriented and translational research vision, helping integrate academic outputs into real-world healthcare.

Areas for Improvement:

  1. International Exposure:
    Dr. Nath could enhance his academic profile with international fellowships, collaborative projects, or presentations at global conferences, which would add broader recognition and perspective to his impactful regional work.

  2. Grant Acquisition & Leadership Roles:
    Documented principal investigator roles or research funding/grant awards would strengthen his leadership credentials in scientific research.

  3. Recognition & Awards:
    While he has a commendable publication record, more national or state-level recognitions, fellowships, or memberships in professional bodies (like ICMR, DBT, etc.) would boost his candidacy for national-level honors.

Education:

Dr. Sukanta Nath’s academic foundation is rooted in the biological sciences, beginning with a B.Sc. in Botany, Zoology, and Physiology from Calcutta University (2003, First Class). He went on to complete his M.Sc. in Biotechnology from Utkal University in 2006, securing First Class (67%). His research potential culminated in a Ph.D. in Biotechnology from Gauhati University, awarded in 2018, where he specialized in molecular biology and translational biomedical science. His education reflects a progressive mastery of theoretical and applied biotechnology, allowing him to engage in complex interdisciplinary research. Despite modest early academic challenges in higher secondary and matriculation, Dr. Nath’s academic trajectory sharply ascended, reflecting perseverance and intellectual growth. His doctoral training equipped him with specialized skills in molecular diagnostics, research design, and bioanalytical tools, which now form the backbone of his professional research work in cancer and infectious disease.

Professional Experience:

Dr. Nath is presently serving as a Research Scientist at the Atal Bihari Vajpayee Regional Cancer Centre, Tripura, since April 2020, where he conducts pivotal research on postoperative outcomes and interventions in oral cancer patients. Previously, he worked as a Research Associate at the College of Fisheries, Central Agricultural University, Tripura (2018–2019), contributing to institutional-level biotech projects. In 2017–2018, he served as a Molecular Scientist and Quality Manager at Agility Diagnostics Pvt. Ltd., Delhi, a NABL-accredited molecular diagnostics lab, where he gained valuable experience in molecular testing and lab quality control. With over 13 years of interdisciplinary experience, Dr. Nath has successfully combined clinical and molecular biology expertise, making impactful contributions to oncology, diagnostics, and public health. His adaptability across academic, clinical, and industry environments illustrates his wide-ranging capabilities as a biomedical researcher and project leader.

Awards and Honors:

While specific named awards are not listed in the provided resume, Dr. Sukanta Nath’s contributions have earned peer recognition through frequent lead and co-author roles in high-impact publications. His ongoing collaboration with clinicians, epidemiologists, and nursing researchers has positioned him as a sought-after expert in cancer-related intervention studies in North-East India. He has been an instrumental figure in pioneering randomized clinical studies assessing fatigue, anxiety, and quality of life in post-surgical oral cancer patients—work that has been accepted in internationally indexed journals. His contributions to the molecular epidemiology of HPV in Indian women also reflect national relevance. The volume and scope of his work, alongside a sustained publication record, underline a distinguished career in translational cancer research. Nomination for the Distinguished Scientist Award is a well-aligned recognition of his achievements and continued potential to contribute at the national level.

Research Focus:

Dr. Nath’s primary research interest lies in molecular biology, oncology, and virology, with a strong emphasis on translational studies that impact patient care. He has led intervention-based research evaluating the role of nursing and clinical protocols in improving postoperative recovery among oral cancer patients. His work assesses anxiety, fatigue, and quality of life post-surgery using evidence-based methodologies. Dr. Nath has also contributed significantly to molecular epidemiology, particularly studying the distribution of high-risk HPV genotypes among women in North-East India. His experience in diagnostics and biotech allows him to approach clinical problems from both biomedical and molecular perspectives, making his research integrative and impactful. The focus on nursing intervention studies, rarely explored in Indian cancer centers, demonstrates his commitment to holistic cancer care. His future goals involve scaling such studies to wider patient populations and contributing to national cancer care protocols.

Publications Top Notes:

  1. 📘 Effectiveness of a supportive educational intervention on pain and physical function among patients undergone abdominal surgery: A randomized controlled trial

  2. 📗 Effectiveness of comprehensive nursing intervention on alleviating postoperative fatigue and anxiety in patients with oral cancer

  3. 📕 Molecular epidemiology and genotype distribution of genital high-risk human papillomavirus among women in North–East India

  4. 📙 Effectiveness of Nursing Interventions on Anxiety among Postoperative Oral Cancer Patients in Regional Cancer Centre, Tripura

  5. 📒 Importance of Nursing Intervention in Alleviating Post-Surgical Fatigue for Patients with Oral Cancer

  6. 📓 Does comprehensive nursing intervention improve post-surgical anxiety in patients with oral cancer?

  7. 📔 Post-Surgical Evaluation of Quality of Life in Patients with Oral Cancer: An Intervention Study from India

  8. 📚 Assessment of Fatigue and Quality of Life amongst Post-Operative Oral Cancer Patients: A Randomized Case Control Study

  9. 📙 Effect of Comprehensive Nursing Intervention on Anxiety and Quality of Life in Postoperative Patients with Oral Cancer

  10. 📗 Prognosis and Treatment in Acute Myeloid Leukemia: A Comprehensive Review

Conclusion:

Dr. Sukanta Nath has demonstrated dedicated service, innovative research, and strong scientific output in the fields of molecular biology and oncology, particularly with a patient-centric approach to oral cancer care. His work addresses a critical healthcare challenge in North-East India and proposes practical solutions backed by rigorous research methodologies.

 

Mohammad reza Atashzar | Cancer stem cell | Best Researcher Award

Dr. Mohammad reza Atashzar | Cancer stem cell | Best Researcher Award

Dr. Mohammad reza Atashzar, Dep of immunology, Fasa university of medical sciences ( FUMS ), Iran

Dr. Mohammad Reza Atashzar is an Assistant Professor in the Department of Immunology at Fasa University of Medical Sciences (FUMS), Iran. With an enduring passion for tumor immunology, stem cells, vaccine design, and immunotherapy, he has made significant contributions through both basic and translational research. Dr. Atashzar earned his PhD in Immunology from Shahid Beheshti University of Medical Sciences and has since engaged in teaching, mentoring, and publishing extensively in high-impact journals such as The Lancet Oncology, Frontiers in Immunology, and Current Molecular Medicine. His innovative research spans exosome-based therapy, cancer biomarkers, cytokine profiling, and radiogenomics. Dr. Atashzar has also contributed to international collaborations across Germany, Finland, and the UK, showcasing a global outlook in biomedical science. An awardee of the KAI 2022 International Travel Grant and recognized as the Top Researcher at FUMS in 2021, he remains deeply committed to advancing immunological sciences for clinical and therapeutic benefit.

Publication Profile: 

Orcid

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Contributions
    Dr. Atashzar has authored numerous peer-reviewed publications in reputable journals including The Lancet Oncology, Frontiers in Immunology, Current Molecular Medicine, and Computers in Biology and Medicine. His work spans critical fields like cancer immunology, exosome therapy, stem cell immunomodulation, and vaccine research.

  2. High-Impact Publications
    Several of his papers have significant citation counts—556 for Frontiers in Immunology, 284 for Journal of Cellular Physiology, and 207 for The Lancet Oncology, reflecting strong influence and relevance in the scientific community.

  3. International Recognition and Collaborations
    He has participated in international conferences (UK, China, Korea, Denmark, Spain, Italy) and collaborated with global institutions such as the University of Helsinki, University of Kiel, and GBD Collaborators, demonstrating a global research footprint.

  4. Innovation and Patents
    He has contributed to translational science through a published book on immunopharmacology and a pending patent for a microbiology loop sterilizer device, showing practical application of his research.

  5. Awards and Editorial Involvement
    Recognized with the International Travel Award (KAI 2022) and Top Researcher of FUMS (2021), and serving on editorial boards of scientific journals—further affirming his active role in academic development and peer review.

  6. Interdisciplinary Research Scope
    His research merges clinical immunology, oncology, AI-based prognostic tools, and cellular therapy, making his work not only innovative but also future-oriented.

⚠️ Areas for Improvement:

  1. Increase in First or Senior Author Publications
    While his contributions are numerous, strengthening his authorship role in key studies would amplify his recognition as a principal investigator.

  2. Patent Commercialization & Technology Transfer
    Moving from patent design to real-world implementation or licensing could significantly raise the translational value of his research.

  3. Higher Grant Involvement
    More participation in national/international grant-funded programs or consortiums would enhance the scale and visibility of his research.

  4. Focused Research Niche
    Narrowing focus slightly (e.g., prioritizing tumor immunology or exosome-based therapies) could help build a globally recognized brand in a specialized field.

🎓 Education:

Dr. Atashzar completed his undergraduate and master’s studies in Immunology at Shiraz University of Medical Sciences (SUMS), Shiraz, Iran. Building on his foundational expertise, he pursued his PhD in Immunology at Shahid Beheshti University of Medical Sciences, Tehran. His doctoral thesis—“Investigation of the Effects of B16F10 Derived Exosomes Enriched with miRNA-211 in Induction of Antitumor Response in the Mouse Model of Melanoma”—reflected his early interest in cancer immunotherapy and translational research. Throughout his academic journey, Dr. Atashzar displayed a strong inclination toward exploring novel immune pathways and cell-based therapies. His formal education has laid a robust foundation for his ongoing work in immunological sciences, particularly in relation to tumor microenvironment, cytokine profiling, exosomes, and vaccine innovation. He has also undertaken continuous learning through collaborations and international scientific conferences, allowing him to integrate cutting-edge methodologies into his research and teaching repertoire.

🧪 Professional Experience:

Dr. Mohammad Reza Atashzar currently serves as an Assistant Professor of Immunology at Fasa University of Medical Sciences, with additional teaching responsibilities at Larestan University of Medical Sciences. He has accumulated over a decade of experience in academic instruction and biomedical research. His research portfolio includes multiple funded projects, notably in cancer immunology, cytokine regulation, diabetes-related immune responses, and exosome-based therapeutics. Dr. Atashzar has worked closely with international teams in Germany, Finland, and the UK, facilitating interdisciplinary approaches and innovations in clinical immunology. He is an editorial board member for reputed journals such as The International Journal of Neuroscience and Journal of International Medical Research. In parallel, he actively contributes to conference presentations worldwide, covering topics from cancer stem cells to immune biomarkers. His hands-on laboratory experience, combined with a global research network, enables him to lead and mentor in advanced areas like CAR-T cell therapy and personalized immunotherapy.

🧬 Research Focus:

Dr. Atashzar’s research is centered on tumor immunology, exosome-based therapies, cancer stem cells, CAR-T cell technology, cytokine profiling, and immunopharmacology. He has a keen interest in how immune cells—particularly T cells, NK cells, and regulatory B cells—can be harnessed for cancer therapy. His notable projects have explored the immunomodulatory effects of miRNA-enriched exosomes, the role of TLR4 polymorphisms in diabetes, and cytokine alterations in addiction and radiation-exposed individuals. He is also pioneering in translational research areas such as vaccine design, radiogenomics, and bio-immune device development. Dr. Atashzar integrates bioinformatics and machine learning for predictive modeling, evident in his contributions to COVID-19 prognostic modeling using CT radiomics. His work is driven by the goal of personalized immunotherapy and the identification of novel biomarkers for cancer progression and immune regulation. Through interdisciplinary collaborations, he aims to bridge the gap between immunological research and clinical application.

📚 Publications Top Notes:

  1. 🧬 Cancer stem cells: A review from origin to therapeutic implicationsJournal of Cellular Physiology

  2. 🧪 Tumor‐Derived Exosomes Enriched by miRNA‐211a Promote Antitumor Immune Response in B16F10 Tumor‐Bearing MiceAPMIS

  3. 🔬 The effects of tumor-derived exosomes enriched with miRNA-211a on B16F10 cellsContemporary Oncology

  4. 💉 The effects of type 2 diabetes mellitus on organ metabolism and the immune systemFrontiers in Immunology

  5. 🧠 Pyrin and hematopoietic interferon-inducible nuclear protein domain proteins: innate immune sensors for cytosolic and nuclear DNACritical Reviews in Immunology

  6. 🧪 Reduced levels of T-helper 17-associated cytokines in serum of breast cancer patientsCentral European Journal of Immunology

  7. 🧫 The Role of IL‐6, IL‐10 and CRP in Gastrointestinal CancersCell Biology International

  8. 🌍 The global burden of adolescent and young adult cancer in 2019The Lancet Oncology

  9. 🖥️ COVID-19 prognostic modeling using CT radiomic features and ML algorithmsComputers in Biology and Medicine

  10. 🌡️ Mesenchymal stromal cells in bone marrow niche of multiple myelomaCancer Cell International

📌 Conclusion:

Dr. Mohammad Reza Atashzar is highly suitable for the Best Researcher Award. His body of work reflects a deep commitment to scientific advancement in cancer immunology, immunotherapy, and bio-innovation. He combines strong academic output with international engagement, cross-disciplinary impact, and teaching contributions. With growing influence in both research and translational domains, Dr. Atashzar is poised to further elevate biomedical research in Iran and globally.

Sharmil Suganya.R | Biotechnology | Best Researcher Award

Prof. Sharmil Suganya.R | Biotechnology | Best Researcher Award

Prof. Sharmil Suganya.R, Government College of Engineering, India

Prof. R. Sharmil Suganya is a dedicated academic and researcher currently serving as Assistant Professor (Senior Scale) in the Department of Electrical and Electronics Engineering (Bio-Engineering Division) at the Government College of Engineering, Salem. With over 17 years of academic experience, she has significantly contributed to multidisciplinary fields, especially biocorrosion, eco-friendly inhibitors, and biomedical instrumentation. She began her teaching career at Bharath University and later joined GCE, Salem, where she continues to mentor students and contribute to research and innovation. Her scholarly work spans numerous national and international journals and conferences, and she has co-authored over 15 papers and earned accolades through patents and impactful publications. She is well-recognized in academia with profiles on Vidwan, ORCID, and Google Scholar. Her work is marked by a strong commitment to sustainable, application-oriented research and technological innovation.

Publication Profile: 

Google Scholar

🌟 Strengths Supporting Award:

  1. Diverse Interdisciplinary Research
    Prof. Suganya bridges Biotechnology, Biomedical Instrumentation, Environmental Chemistry, and Embedded Systems—reflecting her adaptability and wide impact across disciplines.

  2. Rich Publication Record

    • Peer-reviewed journals: >15 high-quality papers including Web of Science, UGC Care, Scopus, and SCI journals.

    • Recent impactful studies: Publications in Journal of Molecular Structure, Scientia Iranica, Bulletin of the Chemical Society of Ethiopia, etc.

    • Design Patents: UK patents for a Fluorometer and a Distillation Apparatus, showing innovation beyond academics.

  3. Applied and Sustainable Research Focus

    • Contributions to green inhibitors, corrosion prevention, eco-friendly water treatment, and energy-efficient designs show her commitment to sustainability.

    • Projects like Irrigation Monitoring Systems and Induction Motor Monitoring show a hands-on engineering application.

  4. Collaborative Spirit and Mentorship

    • Multiple co-authored works with students and peers indicate strong mentorship and team leadership.

    • Research involving simulation, design, and in vitro experiments demonstrates technical skill and guidance in both computational and experimental domains.

  5. Long-standing Service & Institutional Contribution
    Over 15 years of service in Tamil Nadu Engineering Education (including DOTE & GCE Salem) reflects dedication to academic growth and public education.

🔧 Areas for Improvement:

  1. Funding and Sponsored Projects

    • While publications and patents are notable, securing national/international research grants (e.g., DST, SERB, DBT, AICTE) would significantly enhance her research stature.

  2. International Collaboration

    • Expanding collaboration with foreign universities or research groups can elevate her global research impact and visibility.

  3. Citation Metrics & H-index

    • Although her Google Scholar profile shows productivity, citation metrics could be improved through more high-impact, open-access publications and targeted dissemination.

  4. Technology Transfer / Start-up Engagement

    • Converting patents into commercial products or licensing would further reflect translational research excellence.

🎓 Educational Background:

Prof. R. Sharmil Suganya holds a B.Tech. in Biotechnology from Bharathidasan University (2004), securing First Class with 72%. She pursued her postgraduate studies in M.Sc. Biomedical Instrumentation Science at Loyola College, Chennai (Madras University) in 2006, graduating with distinction (82%). Further enhancing her academic credentials, she earned an M.S. by Research in Faculty of Technology from Anna University through the Government College of Engineering, Salem, completing it with a successful viva voce on 24.06.2020. Her multidisciplinary academic foundation combines life sciences, engineering, and technology, enabling her to bridge research across biotechnology, biomedical engineering, and electrical systems. Her educational path reflects her strong grounding in both theory and applied research, making her a versatile contributor to both academia and industry-oriented innovation.

🧑‍🏫 Academic Experience:

Prof. Sharmil Suganya began her career in 2006 as a Lecturer at Bharath University, Chennai, gaining nearly two years of foundational teaching experience. In 2008, she was appointed as an Assistant Professor via redeployment at the Directorate of Technical Education, Chennai, serving for over six years. Since 2014, she has been a part of GCE, Salem, now totaling over 17 years of teaching experience as of 2025. Her roles have included curriculum development, research mentorship, lab design, and departmental initiatives. She has guided numerous student projects, contributed to research publications, and participated in sponsored national conferences and TEQIP-funded programs. Her long tenure and steady progression demonstrate a career built on academic rigor, professional integrity, and a passion for engineering education with a bioengineering focus.

🔬 Research Focus:

Prof. R. Sharmil Suganya’s research encompasses biocorrosion, eco-friendly corrosion inhibitors, biomedical sensors, instrumentation systems, and environmental sustainability. Her core focus lies in microbe-induced corrosion (MIC) in metals, particularly mild steel and galvanized steel, and its mitigation using green inhibitors such as Trachyspermum ammi and C. sativum. She integrates materials science, chemical kinetics, and simulation-based approaches like molecular docking and MD simulation in her investigations. Her collaborative and interdisciplinary research has resulted in impactful publications across Web of Science, Scopus, and UGC Care journals, along with patents in distillation and fluorometry technologies. She is also active in IoT-based monitoring systems and instrumentation applications in agriculture and industry, thus contributing to the smart systems domain. Her work has real-world applicability, particularly in the sustainable engineering and bioengineering sectors, making her a strong contender for the Best Researcher Award.

📚 Publications Top Notes: 

  1. 📘 Investigation on MIC of Mild Steel inhibited by Trachyspermum ammi in cooling tower water – Int’l Conf. 2019

  2. 📙 Impedance Study on MIC in Mild Steel immersed in Cooling Tower Water – ETES ’19

  3. 🧪 Adsorption of Hexavalent Chromium from aqueous solution using Ocimum Tenuiflorum stem – Asian J. Res. 2017

  4. 🔍 Investigation on MIC on Mild Steel using Trachyspermum ammi in Cooling Tower Water – JSER, 2021

  5. 🌿 Biocorrosion and inhibition by a green inhibitor on Mild Steel – IJIRSET, 2021

  6. 🚜 Irrigation Monitoring System using NodeMCU & Blynk app – IJIRSET, 2021

  7. ⚙️ Remote Condition Monitoring & Fault Alert System of Induction Motor – IJIREEICE, 2020

  8. 💡 Design of Energy Efficient Lighting Loads in EEE Block at GCE – IJIREEICE, 2020

  9. 🧫 Removal of Methylene Blue using low-cost absorbents – Desalination & Water Treatment, 2023

  10. 🧪 Biocorrosion on Mild Steel and inhibition by C. Sativum – AIMS Mol. Sci, 2024

🏁 Conclusion:

Prof. R. Sharmil Suganya is highly suitable for recognition through a Best Researcher Award. Her record reflects a balanced portfolio of:

  • Innovative interdisciplinary research

  • Student mentorship and collaboration

  • Sustainable and application-oriented work

  • Continued publication and patenting efforts

With enhanced funding pursuits and international networking, she can further scale her impact. Nevertheless, her existing contributions are outstanding in both depth and breadth, making her a strong candidate for this honor.

Bilal Ahmad MIr | Microbial Cell Biology | Best Researcher Award

Mr.Bilal Ahmad MIr | Microbial Cell Biology | Best Researcher Award

Mr.Bilal Ahmad MIr | Jeonbuk National University | South Korea

Bilal Ahmad Mir is a dedicated Ph.D. scholar at the NSCL Lab, Jeonbuk National University, South Korea, with a strong focus on artificial intelligence, machine learning, and computational sciences. Born on May 7, 1993, Bilal has a diverse academic and research background encompassing data science, deep learning, computational biology, and chemistry. He combines technical acumen with innovative thinking to solve real-world scientific problems. Fluent in English, Urdu, and Kashmiri, Bilal’s research is published in leading international journals. He is well-versed in programming languages such as Python, R, MATLAB, and Java, and excels in cloud computing technologies. His scholarly contributions span predictive modeling, neural networks, and intelligent systems. His enthusiasm for technological advancements and interdisciplinary research positions him as a strong candidate for prestigious research awards, reflecting both his scientific rigor and passion for discovery.

Publication Profile:

Google Scholar

✅ Strengths for the Award:

  1. Interdisciplinary Expertise:
    Bilal’s work spans artificial intelligence, deep learning, computational biology, and chemistry, reflecting strong interdisciplinary depth. He has applied advanced ML models like CNNs, LSTMs, and GRUs across bioinformatics and synthetic chemistry, showing his adaptability and scientific creativity.

  2. Research Publications:
    He has published in high-impact journals such as Journal of Molecular Biology, Computational Biology and Chemistry, and Sustainability. These works demonstrate novelty and real-world relevance, e.g., sustainable solar energy prediction and enhancer identification in genomics.

  3. Technical Proficiency:
    Bilal is proficient in multiple programming languages (Python, R, MATLAB, Java, etc.) and research tools, which enhances his capability to design, implement, and optimize advanced computational models.

  4. Academic Progression:
    His academic journey from a B.Sc. through MCA to a Ph.D. in South Korea demonstrates commitment to continuous learning and global academic engagement.

  5. Early Research Experience:
    His MCA project on real-time facial recognition using Raspberry Pi and GSM modules showed practical innovation, integrating software and hardware for applied AI.

⚠️ Areas for Improvement:

  1. Citation and Impact Metrics:
    While Bilal has strong publications, more details on citations, h-index, or conference presentations would strengthen his profile for global competitive awards.

  2. Leadership in Projects:
    Future applications should highlight any mentoring, project leadership, or grant involvement, which are important indicators of research independence.

  3. Community Contribution:
    Participation in open-source contributions, academic societies, or organizing workshops/seminars would further showcase his community engagement and outreach efforts.

  4. Formal Language Polishing:
    Refinement in presenting his resume/CV with consistent formatting and professional tone would improve the impression in award submissions.

🎓 Education:

Bilal Ahmad Mir began his academic journey with a B.Sc. in Mathematics, Electronics, and IT from Sri Pratap College, Srinagar, graduating with 60% in 2016. He then pursued an MCA (Master of Computer Applications) at the Islamic University of Science and Technology, Awantipora, where he excelled in courses like algorithms, AI, ML, data structures, and cloud computing, graduating with a CGPA of 7.76/10 in 2019. He is currently enrolled as a Ph.D. scholar at Jeonbuk National University, South Korea, in the Department of Electronics and Information Engineering. His doctoral work at the NSCL Lab integrates deep learning, computational chemistry, and molecular biology, contributing to high-impact publications. His solid academic foundation and continued pursuit of knowledge equip him with the interdisciplinary expertise necessary to tackle complex computational and AI challenges in life sciences and beyond.

🧪 Experience:

Bilal’s academic and research journey spans across domains of intelligent systems, AI, and computational biology. During his MCA, he completed a dissertation on a real-time “Intelligent Face Recognition System” using Raspberry Pi and Eigenface recognition, integrating image processing with GSM modules. As a Ph.D. researcher at NSCL Lab in South Korea, he has been involved in multiple projects focusing on neural networks, such as CNNs, LSTMs, and GRUs, for bioinformatics and organic chemistry applications. His hands-on experience in deep learning, data preprocessing, and predictive modeling has resulted in several peer-reviewed journal publications. He is proficient in Python, MATLAB, R, and Java and is experienced with research tools used for analyzing genetic and chemical data. Bilal’s versatility across both hardware (e.g., Raspberry Pi) and software research platforms positions him as a highly capable and adaptable scientist in the interdisciplinary field of AI-powered scientific research.

🏆 Awards and Honors:

Bilal Ahmad Mir has received multiple accolades that highlight his academic potential and creative engagement in both academic and extracurricular domains. He secured the 1st rank in a national-level quiz competition organized during the Digital India Week in 2015, reflecting his strong grasp of technical knowledge and current affairs. During his post-graduate studies, he was honored with the title of “Mr. Fresher” for the MCA batch of 2016 at the Islamic University of Science and Technology, recognizing his leadership and interpersonal qualities. His growing contribution to impactful scientific research has earned him recognition among academic peers. With peer-reviewed publications in top-tier journals and ongoing contributions to AI-driven biological and chemical modeling, Bilal is on a trajectory of continued academic success. These honors reflect both his intellect and his dedication to continuous learning and innovation, making him a strong contender for prestigious awards such as the Best Researcher Award.

🔬 Research Focus:

Bilal Ahmad Mir’s research focus lies at the confluence of artificial intelligence, deep learning, and life sciences. He applies cutting-edge machine learning techniques—particularly CNNs, LSTMs, and GRUs—to computational biology and chemistry, aiming to solve intricate molecular problems. His key research areas include enhancer identification, RNA modification prediction, and retrosynthetic pathway modeling. Through deep learning architectures and stacked ensemble models, he enhances the accuracy of biological predictions and synthesis pathway generation. His recent work also explores sustainable energy research, applying AI to predict recombination losses in perovskite solar cells. Bilal’s interdisciplinary work is distinguished by its practical application to genomics, cheminformatics, and renewable energy, blending technical rigor with scientific curiosity. His aim is to use AI not only for theoretical insights but also for impactful innovations in healthcare, sustainable energy, and synthetic biology. This makes him a versatile and forward-thinking researcher in the modern AI landscape.

📚 Publication Titles Top Notes:

  1. 🧬 Improving enhancer identification with a multi-classifier stacked ensemble model – Journal of Molecular Biology, 2023

  2. 🔄 Sb-net: Synergizing CNN and LSTM networks for uncovering retrosynthetic pathways in organic synthesis – Computational Biology and Chemistry, 2024

  3. 🔋 Toward Sustainable Solar Energy: Predicting Recombination Losses in Perovskite Solar Cells with Deep Learning – Sustainability, 2025

  4. 🧪 GRU-Based Prediction of RNA 5-Hydroxymethylcytosine Modifications – 정보 및 제어 논문집

🧾 Conclusion:

Bilal Ahmad Mir is a highly promising and emerging researcher in the AI-bioinformatics interface. His dedication to interdisciplinary research, proven publication record, and hands-on approach to complex problems make him a strong candidate for the Best Researcher Award. With ongoing contributions, especially in deep learning for biology and sustainable energy, and with slight enhancements in scientific communication and visibility, he is on a trajectory toward impactful global research leadership.

Lingyan Zhou | Cell Death Pathway | Best Researcher Award

Dr. Lingyan Zhou | Cell Death Pathway | Best Researcher Award

Dr. Lingyan Zhou , Shandong Provincial Hospital Affiliated to Shandong First Medical University , China

Dr. Lingyan Zhou is a dedicated neuroscientist and clinician specializing in the pathogenesis of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. Currently serving in the Department of Neurology at Shandong Provincial Hospital affiliated with Shandong First Medical University, Dr. Zhou holds a doctorate and has made notable contributions to neurodegeneration research through high-impact publications and cutting-edge studies. Her work focuses on molecular mechanisms such as protein aggregation, homocysteinylation, and neuroprotection, with particular attention to α-synuclein and DJ-1. Dr. Zhou has co-authored more than 15 peer-reviewed articles in top-tier journals like Nature Communications, Science Advances, and Aging Cell, earning recognition for her insights into disease-modifying pathways. A researcher with a strong translational focus, she bridges the gap between bench and bedside, aiming to develop therapeutic strategies that can mitigate or reverse neurodegenerative processes. Her commitment to science and patient-centered research makes her a strong candidate for the Best Researcher Award.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record in High-Impact Journals
    Dr. Zhou has consistently published in top-tier journals such as Nature Communications, Science Advances, Aging Cell, and Movement Disorders, reflecting the significance and innovation of her work. Many of these are Q1 journals with high impact factors.

  2. Focused Research on Neurodegeneration
    Her core focus on the molecular basis of Alzheimer’s and Parkinson’s disease, especially novel mechanisms like N-homocysteinylation, STAT1-PARP1, and microRNA signaling, demonstrates depth and relevance to global health priorities.

  3. Translational Impact
    Her research bridges basic science and clinical application, particularly through studies on neuroprotection, early disease biomarkers, and potential therapeutic targets.

  4. Early Career Excellence
    Despite being in the early stages of her career, Dr. Zhou has already authored or co-authored over 17 peer-reviewed publications, many as first or corresponding author, which is exceptional at this stage.

  5. Multidisciplinary Collaborations
    Dr. Zhou’s collaborations with experts across genetics, immunology, bioinformatics, and neurology highlight her integrative approach to complex diseases.

  6. International Visibility
    Multiple articles are indexed in PubMed, Crossref, and DOIs, showing her research has international academic presence and reach.

⚠️ Areas for Improvement:

  1. Greater International Exposure
    While her publication record is strong, further participation in international neuroscience conferences, workshops, or global consortia would enhance visibility and foster leadership roles.

  2. Grant Leadership and Independent Funding
    As she progresses, securing independent research funding and leading grant-funded projects will further demonstrate research independence and strengthen her candidacy for top-tier awards.

  3. Mentorship and Teaching Roles
    Involvement in structured mentorship or supervision of Ph.D./postdoctoral researchers could be better highlighted to show contributions to research training and capacity building.

  4. Innovation Translation Pathway
    Filing patents or initiating translational collaborations with biotech/pharma could underline the practical applicability of her findings.

🎓 Education:

Dr. Lingyan Zhou received her doctorate from Wuhan University, one of China’s leading research institutions, between September 2020 and June 2023. During her Ph.D. training, she developed expertise in molecular neuroscience and translational medicine, with a specific focus on the pathological mechanisms underlying Parkinson’s and Alzheimer’s diseases. Her research explored cellular stress pathways, protein misfolding, and epigenetic regulation in neurodegeneration, leading to multiple first-author publications in high-impact journals. Her academic background provided a solid foundation in experimental techniques such as immunohistochemistry, gene expression analysis, and in vivo disease modeling. The interdisciplinary approach at Wuhan University enriched her understanding of both clinical neurology and basic neuroscience. This rigorous academic training has equipped Dr. Zhou with the analytical and research skills necessary for advancing innovation in neurodegenerative disease treatment.

🧪 Experience:

Since July 2023, Dr. Lingyan Zhou has been serving in the Department of Neurology at Shandong Provincial Hospital affiliated with Shandong First Medical University, where she engages in both clinical practice and translational neuroscience research. Prior to that, she completed her doctoral studies at Wuhan University, where she developed a deep interest in the role of homocysteine metabolism and genetic regulation in Parkinson’s disease. Over her career, she has collaborated with multidisciplinary teams to investigate molecular and cellular mechanisms of neurodegeneration and published extensively in internationally recognized journals. Her current position allows her to continue high-impact research while mentoring junior colleagues and participating in multi-center studies. Her combined experience in basic research, clinical neurology, and academic collaboration has established her as a key contributor in the field of neurodegenerative diseases, positioning her well for leadership roles and research recognition such as the Best Researcher Award.

🧠 Research Focus:

Dr. Lingyan Zhou’s research is centered on understanding the molecular and cellular mechanisms that drive neurodegenerative diseases, with an emphasis on Alzheimer’s and Parkinson’s disease. Her work has shed light on pathological protein modifications, such as N-homocysteinylation of α-synuclein and DJ-1, which contribute to protein aggregation and neurotoxicity. Additionally, she investigates the neuroprotective roles of vitamins, retinoic acid, and microRNAs in slowing disease progression. Dr. Zhou is also exploring how infectious diseases like SARS-CoV-2 may trigger or exacerbate neurological disorders, expanding the understanding of systemic factors in brain health. Her studies leverage both in vitro and in vivo models to unravel pathways involving STAT1, PARP1, and Notch signaling. By identifying potential therapeutic targets and biomarkers, her research aims to guide the development of novel treatment strategies that could improve outcomes for patients suffering from movement disorders and cognitive decline.

📚 Publications Top Notes:

  1. 🧪 N-homocysteinylation of alpha-synuclein promotes its aggregation and neurotoxicityAging Cell (2022)

  2. 🧠 Association of vitamin B2 intake with cognitive performance in older adults: a cross-sectional studyJ Transl Med (2023)

  3. 🧬 Homocysteine and Parkinson’s diseaseCNS Neurosci Ther (2023)

  4. 🧴 Retinoic Acid Prevents alpha-Synuclein Preformed Fibrils-Induced Toxicity via Inhibiting STAT1-PARP1 SignalingMol Neurobiol (2023)

  5. 🧫 N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson’s diseaseAging Cell (2024)

  6. 🦠 SARS-CoV-2: Underestimated damage to nervous systemTravel Med Infect Dis (2020)

  7. 💊 Potential therapeutic drugs for ischemic stroke based on bioinformatics analysisInt J Neurosci (2019)

  8. 🧬 PTPN22 Gene Polymorphisms and Stroke SusceptibilityDis Markers (2019)

  9. 🧪 IL-18 Gene Polymorphisms and Risk of Ischemic Stroke: A Meta-analysisNeuroreport (2019)

  10. 🚬 Aromatic hydrocarbon receptor links smoking and rheumatoid arthritisClin Exp Rheumatol (2020)

🧾 Conclusion:

Dr. Lingyan Zhou demonstrates an exceptional trajectory for a young neuroscience researcher. Her deep and original contributions to unraveling molecular mechanisms in neurodegeneration, particularly Parkinson’s and Alzheimer’s disease, make her highly deserving of recognition. The breadth and quality of her publication record—combined with her translational outlook—signal a rising star in neurodegenerative disease research.

yu chen | Molecular Mechanisms Signaling | Best Researcher Award

Prof. yu chen | Molecular Mechanisms Signaling | Best Researcher Award

Prof. yu chen , Chengdu University of Technology , China

Prof. Yu Chen is a leading researcher in the field of perovskite solar cells, with a particular emphasis on interfacial engineering and charge transport materials. He is currently a Principal Investigator at the Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering. His academic journey spans top institutions in China, culminating in a Ph.D. from Nanjing University of Science and Technology under the guidance of Prof. Shenli Zhang and Prof. Wenhua Zhang. Prof. Chen has co-authored numerous high-impact journal articles, including in Nature Communications, Advanced Materials, and Chemical Engineering Journal, significantly contributing to the field of renewable energy. His innovative approaches to improving stability and efficiency in perovskite photovoltaics have earned him national recognition. Prof. Chen’s work blends academic rigor with practical innovation, aiming to push the boundaries of solar cell technologies toward commercial viability and sustainability.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  • High-impact Publications: Prof. Chen has published extensively in top-tier journals such as Nature Communications, Advanced Materials, Angewandte Chemie, and Advanced Functional Materials, indicating global recognition and scientific rigor.

  • Cutting-edge Research Focus: His work on perovskite solar cells, especially on buried interface engineering, inorganic transport layers, and molecular self-assembly, addresses fundamental and applied challenges in next-generation photovoltaic technologies.

  • Innovation & Application: Techniques like guanylation reaction for MACl removal and ion compensation strategies demonstrate a deep understanding of material-device interplay and have direct implications for industrial application.

  • Leadership & Funding: As a Principal Investigator at Chengdu University of Technology, leading national-level projects (e.g., Qomolangma Talent Program), Prof. Chen has proven both scientific leadership and funding competitiveness.

  • International Collaboration: His co-authorship with global leaders such as Prof. Shengzhong Liu and Prof. Wenhua Zhang strengthens his international research presence.

⚠️ Areas for Improvement:

  • Broader Research Diversification: While his specialization in perovskites is a clear strength, expanding into hybrid systems (e.g., tandem solar cells with silicon or organic-inorganic integration) could elevate his interdisciplinary impact.

  • Industry Partnership: Greater collaboration with industrial partners or startups could accelerate the commercial translation of his innovations.

  • International Fellowships or Visiting Positions: Engaging in international academic exchanges or fellowships (e.g., Marie Curie, Humboldt) could further enhance global visibility.

🎓 Education:

Prof. Yu Chen completed his Ph.D. in Materials Science from Nanjing University of Science and Technology (2019–2023) under the supervision of Prof. Shenli Zhang and Prof. Wenhua Zhang. During this period, he focused on advanced interfacial design and ion migration in perovskite solar cells. He earned his M.Eng. in Chemical Engineering from Changzhou University (2016–2019), mentored by Prof. Ningyi Yuan and Prof. Wenhua Zhang, where he laid the foundation for his research on inorganic materials. His academic journey began with a B.Eng. in Materials Science from Pujiang University (2012–2016), under the supervision of Prof. Jian Huang. This strong and progressive academic background empowered Prof. Chen with a multi-scale understanding of materials synthesis, structural engineering, and device-level optimization — skills now central to his research on high-efficiency photovoltaic technologies.

💼 Experience:

Since 2023, Prof. Yu Chen has been serving as a Principal Investigator at Chengdu University of Technology’s College of Materials and Chemistry & Chemical Engineering. He leads a research group focused on developing next-generation perovskite solar cells, emphasizing stable, efficient, and scalable photovoltaic systems. Prof. Chen has developed several novel techniques involving inorganic hole/electron transport layers and interfacial dipole engineering. His experience spans fundamental research, technology translation, and academic collaboration with prestigious researchers such as Prof. Shengzhong Liu and Prof. Yihui Wu. He is also the recipient and presiding investigator of projects like the “Qomolangma Talent Introduction Program” and the Youth Foundation of Sichuan Natural Science Foundation. His role combines leadership, mentorship, and high-level experimental research, making him an influential figure in China’s renewable energy academic landscape.

🏅 Awards and Honors:

Prof. Yu Chen has received several prestigious accolades for his outstanding contributions to solar cell research. In 2019, he was honored with the “Excellent Wall Poster Award” at the China Material Conference, recognizing his innovative visualization of research. In 2023, he earned the title of “Outstanding Graduate” from the China Academy of Engineering Physics, showcasing both his academic excellence and research impact. As the Principal Investigator of prominent research programs such as the Qomolangma Talent Introduction Program, he has demonstrated leadership and vision. His work has been continuously supported by competitive grants, including the Youth Foundation of the Sichuan Natural Science Foundation. These honors reflect not only Prof. Chen’s personal achievements but also his potential to lead transformative advancements in solar energy technologies, particularly in high-efficiency, stable, and scalable perovskite solar cells.

🔬 Research Focus:

Prof. Yu Chen’s research focuses on the design and development of highly efficient and stable perovskite solar cells, with specific expertise in buried interface engineering, inorganic charge transport materials, and defect passivation strategies. His work emphasizes inverted perovskite solar architectures, which promise better long-term stability and commercial adaptability. A key aspect of his research is understanding how molecular self-assembly and interfacial dipole regulation can enhance charge extraction and minimize recombination losses. He has developed novel methods to remove residuals, such as MACl, and form stable 2D perovskite structures in situ, improving device performance. By integrating materials chemistry, device physics, and advanced fabrication, Prof. Chen addresses critical bottlenecks in the field. His research not only advances academic understanding but also aligns with industrial needs for reliable and sustainable photovoltaic technologies.

📚 Publication Top Notes:

  1. 🧪 Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cellsNature Communications, 2025

  2. ⚗️ High‐Efficiency Perovskite Solar Cells Enabled by Guanylation Reaction for Removing MACl ResidualAngewandte Chemie Int. Ed., 2025

  3. 🧬 Tailoring Buried Interface and Minimizing Energy Loss by Aluminum Glycinate MoleculesAdvanced Materials, 2025

  4. 🧫 A regulation strategy of self-assembly molecules for achieving efficient inverted perovskite solar cellsPCCP, 2024

  5. 🧠 A Comprehensive Review of Organic Hole‐Transporting Materials for Inverted Perovskite Solar CellsAdvanced Functional Materials, 2024

  6. 🔍 Elimination of Buried Interface Defects for Efficient Wide-Bandgap Perovskite Solar CellsChinese Journal of Chemical Physics, 2023

  7. 🧱 Research Progress of Inorganic Hole Transport Materials in Perovskite Solar CellsJournal of Inorganic Materials, 2023

  8. 🔋 Ion Compensation of Buried Interface Enables Efficient MA‐Free Perovskite Solar CellsAdvanced Functional Materials, 2022

  9. 💊 Defect mitigation using d-penicillamine for stable MA-free perovskite solar cellsChemical Science, 2021

  10. ⚙️ Reducing carrier transport barrier in anode interface enables stable inverted mesoscopic perovskite solar cellsChemical Engineering Journal, 2021

🔚 Conclusion:

Prof. Yu Chen stands out as a highly promising and already accomplished materials scientist. His strong academic record, innovative research on energy materials, leadership in national research programs, and consistent output in prestigious journals make him exceptionally qualified for the Best Researcher Award. While early in his career, his trajectory shows the hallmark of a future leader in clean energy research. With minor expansions in scope and outreach, Prof. Chen is poised to become a central figure in advancing sustainable photovoltaic technologies.

Feng-Zhu Wang | Host-Pathogen Interactions | Best Researcher Award

Assoc. Prof. Dr. Feng-Zhu Wang | Host-Pathogen Interactions | Best Researcher Award

Assoc. Prof. Dr. Feng-Zhu Wang , Sun Yat-sen University , China

Dr. Feng-Zhu Wang is an Associate Professor at the School of Life Science, Sun Yat-sen University, China. He earned his Ph.D. in Botany from the same institution under Prof. Shi Xiao and has focused his research on plant immunity and mycorrhizal symbiosis. After his Ph.D., Dr. Wang pursued postdoctoral research with Prof. Jian-Feng Li, contributing significantly to CRISPR-based gene editing and plant-pathogen interactions. With over 7 co-first-author publications and experience as a corresponding author, he demonstrates both innovation and leadership in plant biology. His research has been published in esteemed journals, including Nature Communications and Trends in Plant Science. Now leading his lab, Dr. Wang is committed to advancing agricultural biotechnology through molecular tools and sustainable practices. His achievements in plant immunity, stress tolerance, and CRISPR tools place him as a key figure in contemporary plant science.

Publication Profile:

Scopus

✅ Strengths for the Award:

  • 🧬 Extensive expertise in plant immunity and symbiotic relationships, critical for sustainable agriculture.

  • 🧪 Consistent high-impact publications in journals like Nature Communications and Trends in Plant Science.

  • 💡 Developed innovative tools like dual-function CRISPR systems, highlighting technological creativity.

  • 👩‍🏫 Strong academic foundation with continuous roles in postdoc, research, and teaching, demonstrating leadership and growth.

  • ✍️ Serves as corresponding or co-first author in multiple works, showing project ownership and contribution depth.

🔍 Areas for Improvement:

  • 🌍 Could benefit from international collaborations to increase global visibility.

  • 🎓 Expanding mentorship activities and outreach could enhance influence on future scientists.

  • 🗣️ More presence in conferences or workshops would elevate public engagement and field leadership.

🎓 Education:

Feng-Zhu Wang completed both his undergraduate and doctoral studies at Sun Yat-sen University, China, a prestigious institution known for life science research. He earned a B.Sc. in Biotechnology between 2009 and 2013, where he developed foundational knowledge in molecular biology and genetics. His Ph.D., pursued from 2013 to 2018 in the Department of Botany under Prof. Shi Xiao, focused on plant stress responses, particularly involving immunity and symbiosis. His educational journey emphasized hands-on lab techniques, scientific writing, and experimental design. Through intensive academic training and mentorship, Dr. Wang cultivated skills in gene regulation, CRISPR-Cas systems, and plant-microbe interactions. This solid academic foundation provided the groundwork for his impactful research contributions and prepared him for advanced exploration into genetic mechanisms driving plant resistance to both biotic and abiotic stresses.

💼 Experience:

Dr. Feng-Zhu Wang’s academic career is firmly rooted in Sun Yat-sen University, where he has continuously advanced through roles in education and research. After completing his Ph.D. in 2018, he undertook postdoctoral training from 2018 to 2024 under Prof. Jian-Feng Li, focusing on advanced molecular biology tools, plant-pathogen interactions, and CRISPR gene editing. He contributed to developing innovative dual-function CRISPR systems and molecular assays for plant biology. In May 2024, he was appointed Associate Professor in the Department of Biology. His experience spans project leadership, scientific writing, collaboration, and mentoring young researchers. As both a co-first and corresponding author on multiple papers, Dr. Wang demonstrates a proactive role in scientific innovation and dissemination. His experience reflects a seamless integration of research development, experimental practice, and academic progression within one of China’s leading universities.

🔬 Research Focus:

Dr. Wang’s research revolves around two main areas: plant immunity mechanisms and mycorrhizal symbiosis, both crucial to improving plant resilience and productivity. He investigates how plants detect and defend against fungal pathogens through receptor-mediated signaling pathways and how beneficial fungi assist plants in nutrient uptake and stress tolerance. His work also dives deep into genetic engineering using CRISPR-Cas systems, developing tools for efficient multigene editing and Cas9-free selection in model organisms like Arabidopsis thaliana. By combining bioinformatics, molecular genetics, and cell biology, Dr. Wang aims to understand how immune responses are regulated and how plants can balance defense and symbiosis. This dual focus supports sustainable agriculture and provides insight into fundamental plant biology. His contributions are not only theoretical but also technological, offering tools that can be used in practical breeding and crop enhancement strategies worldwide.

📚 Publications Top Notes:

  1. 🧪 Nepenthes chitinase NkChit2b-1 confers broad-spectrum resistance to chitin-containing pathogens and insects in plantsAdvanced Biotechnology, 2025

  2. 🧬 A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in ArabidopsisaBIOTECH, 2024

  3. 🔍 Hidden prevalence of deletion-inversion bi-alleles in CRISPR-mediated deletions of tandemly arrayed genes in plantsNature Communications, 2023

  4. 🍄 Hide-and-seek: Chitin-triggered plant immunity and fungal counterstrategiesTrends in Plant Science, 2020

  5. 🔗 Split Nano luciferase complementation for probing protein-protein interactions in plant cellsJournal of Integrative Plant Biology, 2020

  6. 🌾 Alternative splicing and translation play important roles in hypoxic germination in riceJournal of Experimental Botany, 2019

  7. 💧 Natural variation in the promoter of rice Calcineurin B-like Protein10 affects flooding tolerance during seed germination among rice subspeciesPlant Journal, 2018

  8. ☣️ OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in riceFrontiers in Plant Science, 2017

🔚 Conclusion:

Dr. Feng-Zhu Wang stands out as a promising and accomplished researcher. With an impressive portfolio of impactful publications and strong academic roots in plant biology, they are highly suitable for the Best Researcher Award. A few enhancements in outreach and collaboration could further elevate their global scientific profile.

SANKALP MISRA | Microbiology | Best Researcher Award

Assist. Prof. Dr. SANKALP MISRA | Microbiology | Best Researcher Award

Assist. Prof. Dr. SANKALP MISRA , Shri Ramswaroop Memorial University , India

Dr. Sankalp Misra is a dedicated microbiologist with a Ph.D. in Microbial Technology, currently working as a Research Associate at CSIR-National Botanical Research Institute (NBRI), Lucknow. Born on November 6, 1988, in India, he has cultivated a robust academic and research career focused on plant-microbe interactions and sustainable agriculture. Fluent in both English and Hindi, Dr. Misra has consistently demonstrated a commitment to addressing real-world agricultural challenges through microbiological innovations. His research explores the symbiotic relationships between soil microbes and plants, particularly under stress conditions such as salinity and drought. With a host of fellowships, awards, and scientific publications to his name, Dr. Misra is not only a prolific researcher but also a valued contributor to India’s agricultural biotechnology community. He is a life member of the Association of Microbiologists of India and continues to contribute actively to scientific dialogue and applied research in microbial ecology.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Experience
    Over 10 years of continuous research in microbial biotechnology, especially plant-microbe interactions, bioremediation, and stress physiology, primarily under the CSIR-NBRI—a top-tier research institution in India.

  2. Focused Scientific Contributions
    His Ph.D. work on salt-tolerant plant growth-promoting rhizobacteria (PGPR) addresses crucial agricultural challenges, with implications in sustainable farming and climate-resilient agriculture.

  3. Prolific Publication Record
    Co-authored over 15 research papers and book chapters in high-impact journals and internationally reputed publishers (Springer, Wiley, Academic Press).

  4. Nationally Recognized Fellowships & Awards

    • ICMR Research Associate & Senior Research Fellowship

    • Gold Medalist in B.Sc.

    • Multiple Best Poster Awards in national and international conferences

    • Consistent CSIR-UGC NET success (31st and 47th ranks)

  5. Professional Engagement
    Holds a Life Membership in The Association of Microbiologists of India, reflecting his active involvement in the scientific community.

  6. Interdisciplinary Expertise
    Skilled in proteomics, metagenomics, microbial ecology, and plant stress biology, showcasing an ability to tackle complex problems from multiple biological angles.

⚙️ Areas for Improvement:

  1. International Exposure
    While the research is nationally strong, global collaborations or international fellowships could further elevate the impact and visibility of his work.

  2. Grant Leadership & Independent Projects
    Leading funded projects as a Principal Investigator (PI) would demonstrate further maturity in research leadership and scientific management.

  3. Patent/Technology Transfer
    Translating research into patents, bio-formulations, or industry partnerships could bridge the lab-to-land gap, enhancing the practical application of his findings.

🎓 Education:

Dr. Sankalp Misra completed his Ph.D. in Microbial Technology from CSIR-NBRI, focusing on the “Characterization of salt tolerant plant growth promoting rhizobacteria from different agro-climatic zones of Uttar Pradesh.” Guided by Dr. Puneet Singh Chauhan, his doctoral work laid a foundation in microbial stress biology. He qualified the prestigious CSIR-UGC NET in both 2013 (47th rank) and 2014 (31st rank), showcasing strong academic competence. He also cleared the CET-Ph.D in 2012. His undergraduate studies were marked by excellence, earning a Gold Medal in B.Sc., emphasizing his early commitment to academic rigor. These achievements underline his solid foundation in microbiology, plant biology, and biotechnological research. Throughout his educational journey, Dr. Misra has consistently demonstrated a deep curiosity for microbial applications in agriculture and an aptitude for integrating advanced scientific methods to address pressing challenges in crop sustainability and soil health.

💼 Experience:

Dr. Sankalp Misra has over a decade of research experience in plant-microbe interactions. He is currently an ICMR-Research Associate at CSIR-NBRI since October 2019. Prior roles include ICMR-Senior Research Fellow and several project fellowships at CSIR-NBRI from 2013 to 2019. These positions allowed him to work on key projects involving soil microbiomes, salt and drought stress in plants, and bioremediation. His extensive hands-on experience ranges from lab-based experiments to field applications, focusing on sustainable and ecological approaches in agriculture. He has significantly contributed to the development of microbial formulations and transgenic studies aimed at improving crop resilience. His continuous association with CSIR-NBRI reflects a stable and productive research career. Each role has helped him refine his techniques in molecular biology, microbiome analysis, and biotechnological innovation, making him a competent and valuable researcher in environmental microbiology and sustainable agricultural practices.

🏅 Awards and Honors:

Dr. Misra has received multiple accolades recognizing his scientific excellence. He was awarded the prestigious ICMR Research Associateship (Oct 2019) and Senior Research Fellowship (July 2019), reflecting national-level recognition. His scientific presentations have earned him Best Poster Awards in major conferences, including the 3rd National Seminar on Life Sciences (NSCTLS-2021) and the 6th International Conference on Plants and Environmental Pollution (ICPEP-6, 2018). Academically, he secured top ranks in CSIR-UGC NET (31st in 2014 and 47th in 2013) and earned a Gold Medal in B.Sc., demonstrating exceptional merit throughout his academic and research career. His commitment is further underscored by his life membership in The Association of Microbiologists of India (AMI). These achievements highlight his consistent dedication, peer recognition, and leadership potential in the fields of microbiology and agricultural biotechnology.

🔍 Research Focus:

Dr. Sankalp Misra’s research centers on plant-microbe interactions, especially under environmental stress like salinity and drought. He explores rhizobacteria that promote plant growth and mitigate stress through mechanisms such as ACC deaminase production, metabolomic reprogramming, and soil microbial community enhancement. His interests extend to soil metagenomics, microbial proteomics, and bioremediation, all aimed at achieving sustainable agriculture. A key aspect of his work involves isolating and characterizing stress-tolerant microbes from diverse agro-climatic zones, using them to enhance crop resilience and productivity. His work contributes to global efforts in climate-resilient farming, making him a notable figure in applied agricultural microbiology. He has co-authored numerous high-impact publications and book chapters that explore these themes, confirming his deep engagement in cutting-edge microbial biotechnology.

📚 Publications Top Notes:

  1. 🌱 Enhancement of Drought Tolerance in Transgenic Arabidopsis thaliana Plants Overexpressing Chickpea Ca14-3-3 Gene

  2. 🦠 Novel trends in endophytic applications for plant disease management

  3. 🌍 Rhizobacteria‐Mediated Bioremediation: Insights and Future Perspectives

  4. 🌾 Endospheric Microbiome-Assisted Alteration in the Metabolomic Profiling of Host towards Abiotic Stress Mitigation

  5. 🧬 Revealing the complexity of protein abundance in chickpea root under drought-stress using comparative proteomics

  6. 🔬 Characterization of alkalotolerant Alcaligenes and Bacillus strains for mitigating alkaline stress in Zea mays

  7. 🌿 Drought tolerant Ochrobactrum sp. inoculation helps maintain homeostasis in Zea mays under water stress

  8. ⚗️ ACC deaminase-producing Bacillus spp. mitigate salt stress and enhance Zea mays growth

  9. 🧪 Exploration of Soil Resistome Through a Metagenomic Approach

  10. 🍃 Essential Oils: Potential Application in Disease Management

📝 Conclusion:

Dr. Sankalp Misra is an excellent and deserving candidate for the Best Researcher Award. His consistent contributions to microbial biotechnology, evidenced by a strong portfolio of peer-reviewed publications, government fellowships, and research impact, make him stand out in his field. His work is not only academically significant but also socially and environmentally relevant in addressing global issues like soil degradation, crop yield loss due to climate stress, and sustainable agriculture.