Mohammad reza Atashzar | Cancer stem cell | Best Researcher Award

Dr. Mohammad reza Atashzar | Cancer stem cell | Best Researcher Award

Dr. Mohammad reza Atashzar, Dep of immunology, Fasa university of medical sciences ( FUMS ), Iran

Dr. Mohammad Reza Atashzar is an Assistant Professor in the Department of Immunology at Fasa University of Medical Sciences (FUMS), Iran. With an enduring passion for tumor immunology, stem cells, vaccine design, and immunotherapy, he has made significant contributions through both basic and translational research. Dr. Atashzar earned his PhD in Immunology from Shahid Beheshti University of Medical Sciences and has since engaged in teaching, mentoring, and publishing extensively in high-impact journals such as The Lancet Oncology, Frontiers in Immunology, and Current Molecular Medicine. His innovative research spans exosome-based therapy, cancer biomarkers, cytokine profiling, and radiogenomics. Dr. Atashzar has also contributed to international collaborations across Germany, Finland, and the UK, showcasing a global outlook in biomedical science. An awardee of the KAI 2022 International Travel Grant and recognized as the Top Researcher at FUMS in 2021, he remains deeply committed to advancing immunological sciences for clinical and therapeutic benefit.

Publication Profile: 

Orcid

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Contributions
    Dr. Atashzar has authored numerous peer-reviewed publications in reputable journals including The Lancet Oncology, Frontiers in Immunology, Current Molecular Medicine, and Computers in Biology and Medicine. His work spans critical fields like cancer immunology, exosome therapy, stem cell immunomodulation, and vaccine research.

  2. High-Impact Publications
    Several of his papers have significant citation counts—556 for Frontiers in Immunology, 284 for Journal of Cellular Physiology, and 207 for The Lancet Oncology, reflecting strong influence and relevance in the scientific community.

  3. International Recognition and Collaborations
    He has participated in international conferences (UK, China, Korea, Denmark, Spain, Italy) and collaborated with global institutions such as the University of Helsinki, University of Kiel, and GBD Collaborators, demonstrating a global research footprint.

  4. Innovation and Patents
    He has contributed to translational science through a published book on immunopharmacology and a pending patent for a microbiology loop sterilizer device, showing practical application of his research.

  5. Awards and Editorial Involvement
    Recognized with the International Travel Award (KAI 2022) and Top Researcher of FUMS (2021), and serving on editorial boards of scientific journals—further affirming his active role in academic development and peer review.

  6. Interdisciplinary Research Scope
    His research merges clinical immunology, oncology, AI-based prognostic tools, and cellular therapy, making his work not only innovative but also future-oriented.

⚠️ Areas for Improvement:

  1. Increase in First or Senior Author Publications
    While his contributions are numerous, strengthening his authorship role in key studies would amplify his recognition as a principal investigator.

  2. Patent Commercialization & Technology Transfer
    Moving from patent design to real-world implementation or licensing could significantly raise the translational value of his research.

  3. Higher Grant Involvement
    More participation in national/international grant-funded programs or consortiums would enhance the scale and visibility of his research.

  4. Focused Research Niche
    Narrowing focus slightly (e.g., prioritizing tumor immunology or exosome-based therapies) could help build a globally recognized brand in a specialized field.

🎓 Education:

Dr. Atashzar completed his undergraduate and master’s studies in Immunology at Shiraz University of Medical Sciences (SUMS), Shiraz, Iran. Building on his foundational expertise, he pursued his PhD in Immunology at Shahid Beheshti University of Medical Sciences, Tehran. His doctoral thesis—“Investigation of the Effects of B16F10 Derived Exosomes Enriched with miRNA-211 in Induction of Antitumor Response in the Mouse Model of Melanoma”—reflected his early interest in cancer immunotherapy and translational research. Throughout his academic journey, Dr. Atashzar displayed a strong inclination toward exploring novel immune pathways and cell-based therapies. His formal education has laid a robust foundation for his ongoing work in immunological sciences, particularly in relation to tumor microenvironment, cytokine profiling, exosomes, and vaccine innovation. He has also undertaken continuous learning through collaborations and international scientific conferences, allowing him to integrate cutting-edge methodologies into his research and teaching repertoire.

🧪 Professional Experience:

Dr. Mohammad Reza Atashzar currently serves as an Assistant Professor of Immunology at Fasa University of Medical Sciences, with additional teaching responsibilities at Larestan University of Medical Sciences. He has accumulated over a decade of experience in academic instruction and biomedical research. His research portfolio includes multiple funded projects, notably in cancer immunology, cytokine regulation, diabetes-related immune responses, and exosome-based therapeutics. Dr. Atashzar has worked closely with international teams in Germany, Finland, and the UK, facilitating interdisciplinary approaches and innovations in clinical immunology. He is an editorial board member for reputed journals such as The International Journal of Neuroscience and Journal of International Medical Research. In parallel, he actively contributes to conference presentations worldwide, covering topics from cancer stem cells to immune biomarkers. His hands-on laboratory experience, combined with a global research network, enables him to lead and mentor in advanced areas like CAR-T cell therapy and personalized immunotherapy.

🧬 Research Focus:

Dr. Atashzar’s research is centered on tumor immunology, exosome-based therapies, cancer stem cells, CAR-T cell technology, cytokine profiling, and immunopharmacology. He has a keen interest in how immune cells—particularly T cells, NK cells, and regulatory B cells—can be harnessed for cancer therapy. His notable projects have explored the immunomodulatory effects of miRNA-enriched exosomes, the role of TLR4 polymorphisms in diabetes, and cytokine alterations in addiction and radiation-exposed individuals. He is also pioneering in translational research areas such as vaccine design, radiogenomics, and bio-immune device development. Dr. Atashzar integrates bioinformatics and machine learning for predictive modeling, evident in his contributions to COVID-19 prognostic modeling using CT radiomics. His work is driven by the goal of personalized immunotherapy and the identification of novel biomarkers for cancer progression and immune regulation. Through interdisciplinary collaborations, he aims to bridge the gap between immunological research and clinical application.

📚 Publications Top Notes:

  1. 🧬 Cancer stem cells: A review from origin to therapeutic implicationsJournal of Cellular Physiology

  2. 🧪 Tumor‐Derived Exosomes Enriched by miRNA‐211a Promote Antitumor Immune Response in B16F10 Tumor‐Bearing MiceAPMIS

  3. 🔬 The effects of tumor-derived exosomes enriched with miRNA-211a on B16F10 cellsContemporary Oncology

  4. 💉 The effects of type 2 diabetes mellitus on organ metabolism and the immune systemFrontiers in Immunology

  5. 🧠 Pyrin and hematopoietic interferon-inducible nuclear protein domain proteins: innate immune sensors for cytosolic and nuclear DNACritical Reviews in Immunology

  6. 🧪 Reduced levels of T-helper 17-associated cytokines in serum of breast cancer patientsCentral European Journal of Immunology

  7. 🧫 The Role of IL‐6, IL‐10 and CRP in Gastrointestinal CancersCell Biology International

  8. 🌍 The global burden of adolescent and young adult cancer in 2019The Lancet Oncology

  9. 🖥️ COVID-19 prognostic modeling using CT radiomic features and ML algorithmsComputers in Biology and Medicine

  10. 🌡️ Mesenchymal stromal cells in bone marrow niche of multiple myelomaCancer Cell International

📌 Conclusion:

Dr. Mohammad Reza Atashzar is highly suitable for the Best Researcher Award. His body of work reflects a deep commitment to scientific advancement in cancer immunology, immunotherapy, and bio-innovation. He combines strong academic output with international engagement, cross-disciplinary impact, and teaching contributions. With growing influence in both research and translational domains, Dr. Atashzar is poised to further elevate biomedical research in Iran and globally.

Zhi Guo | Stem Cell Research | Best Researcher Award

Prof. Dr Zhi Guo | Stem Cell Research | Best Researcher Award

Prof. Dr Zhi Guo | Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital | China

Dr. Zhi Guo is a distinguished expert in hematology with over 25 years of clinical and academic experience. Currently serving as Director, Academic Leader, Chief Physician, and Professor at the Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, he has been instrumental in advancing hematologic malignancy treatments in China. With extensive expertise in hematopoietic stem cell transplantation, Dr. Guo has successfully performed more than 1,300 transplant cases. He began his career at the PLA Army General Hospital, serving there for nearly two decades before transitioning to his current role. A prolific researcher, he has authored over 10 peer-reviewed publications and five books, contributing substantially to the understanding of CAR-T therapy, gut microbiota, and transplantation immunology. He is an active member of major national and international hematology associations and plays a vital role in formulating clinical consensus and guidelines in China.

publication profile:

Scopus

Strengths for the Award:

Dr. Zhi Guo exemplifies the qualities of an outstanding medical researcher and clinician. With nearly 25 years of clinical experience in hematology and over 20 years in hematopoietic stem cell transplantation, he stands out as a national leader in this field. His performance of more than 1,300 transplants, along with a strong academic footprint, including 10 SCI-indexed publications in 2024–2025, demonstrates both depth and innovation in his research. He has also contributed to national expert consensus and clinical guidelines, particularly in CAR-T therapy and intestinal microecology. Dr. Guo’s leadership roles across national academic committees and his active membership in the American Society of Hematology further highlight his international impact and collaborative influence.

Areas for Improvement:

While Dr. Guo’s achievements in clinical practice and research are significant, opportunities exist to increase global visibility by expanding his research collaborations internationally and publishing in higher-impact journals beyond regional scopes. Additionally, while five books have been authored, the addition of patents or translational innovations could enhance his profile in the realm of research commercialization and practical medical technologies.

Education :

Dr. Zhi Guo holds a strong academic background in clinical medicine and medical research. He earned his Bachelor’s degree in Medicine from Tongji Medical College in 2000. Subsequently, he pursued his postgraduate medical studies at the Third Military Medical University, completing it in 2007. His academic journey culminated with the attainment of a Doctor of Medicine (MD) degree from Wuhan University of Science and Technology. His education laid a strong foundation in hematology and clinical research methodologies. Each step in his educational path was marked by an emphasis on academic rigor and clinical competence, preparing him for a leadership role in medical science and hematologic research. His multidisciplinary background has enabled him to integrate clinical insights with advanced laboratory-based innovations, contributing to national-level guidelines and the development of cutting-edge CAR-T cell therapies and transplantation techniques.

Experience :

Dr. Zhi Guo brings nearly 25 years of clinical, academic, and leadership experience in the field of hematology. He began his professional journey at the PLA Army General Hospital, where he served from 2000 to 2018. During this period, he honed his clinical and procedural expertise in managing complex hematologic disorders. Since 2018, he has been leading the Department of Hematology at Huazhong University of Science and Technology Union Shenzhen Hospital as Director, Academic Leader, and Chief Physician. His rich experience includes more than 1,300 hematopoietic stem cell transplantations, encompassing autologous, allogeneic, and CAR-T integrated therapies. His leadership extends beyond clinical care, as he also mentors postgraduate medical students and leads multiple national and institutional research projects. Dr. Guo’s practical experience is balanced with his strategic contributions to medical consensus formulation and research-driven policy initiatives in cancer and immune-hematological disorders.

Research Focus :

Dr. Zhi Guo’s research centers on hematologic malignancies and hematopoietic stem cell transplantation, particularly the integration of cellular immunotherapy such as CAR-T cell treatments. His recent work includes pioneering anti-CD19, anti-CD7, and anti-BCMA CAR-T therapies for lymphomas and leukemias. Additionally, he has investigated the interplay between microbiota and immune modulation in transplantation, highlighting the role of gut and oral microbiomes in patient outcomes. His contributions have influenced the development of clinical guidelines for microbiota-related diagnostics and treatments in oncology. With more than 10 high-impact journal publications and ongoing projects in translational medicine, Dr. Guo’s work combines laboratory innovation with patient-centered applications. He has also authored expert consensus documents and national guidelines, helping shape China’s hematology and transplantation protocols. His commitment to interdisciplinary collaboration, clinical innovation, and translational research underscores his leading role in advancing modern hematology.

Publications Top Notes:

  1. 🧬 In vitro validation of anti-CD19 CAR-T cells with LSD1 shRNA for DLBCLFront Immunol, 2025

  2. 🩸 Case of T-ALL treated with chemo + anti-CD7 CAR-T (retroviral vector)Front Immunol, 2025

  3. 👶 Shaping oral/intestinal microbiota & immunity in first 1,000 days of lifeFront Pediatr, 2025

  4. 💩 Fecal microbiota transplantation in acute GVHD treatmentJ Cancer Res Ther, 2024

  5. 🔬 Chinese consensus on gut microecology lab standardsExp Ther Med, 2024

  6. 🧪 2024 Chinese guidelines for intestinal microecology in cancerJ Cancer Res Ther, 2024

  7. 🧫 First MM case treated with ASCT + anti-BCMA CAR-T (retrovirus)Heliyon, 2024

  8. 🧾 Rapid response in relapsed FL to anti-CD19 CAR-T with CMVInt Immunopharmacol, 2024

  9. 🦷 Prognostic impact of oral microbiome in cancer survival – meta-analysisSyst Rev, 2024

  10. 🧍‍⚕️ Expert consensus on gut microbiome & hematopoietic stem cell transplantationClin Transplant, 2024

Conclusion:

In conclusion, Dr. Zhi Guo is highly suitable for the Best Researcher Award. His combination of clinical excellence, academic leadership, and impactful research in hematology and stem cell transplantation positions him among the top contributors in this specialized field. With ongoing research in CAR-T cell therapies, microbiota influence on transplantation, and immuno-oncology, Dr. Guo continues to shape the future of hematologic cancer care. Recognizing his contributions with this award would be both fitting and encouraging for continued innovation in this vital area of medicine.

 

Xingting Guo | Stem Cell Research | Best Researcher Award

Assist. Prof. Dr. Xingting Guo | Stem Cell Research | Best Researcher Award

Assist. Prof. Dr. Xingting Guo , Peking University Third Hospital , China

Dr. Xingting Guo is a dedicated postdoctoral fellow at the National Institute of Biological Sciences (NIBS), Beijing, where she has been working since 2018. With a strong academic foundation in biochemistry and molecular biology, her research delves into stem cell biology, cellular differentiation, and tumorigenesis using Drosophila and mouse models. Her expertise lies in integrating genetics, biochemistry, single-cell sequencing, and bioinformatics to unravel mechanisms of cell fate specification and intestinal homeostasis. Dr. Guo has co-authored several high-impact publications and has presented her research at both national and international conferences. Her contributions have significantly advanced our understanding of enteroendocrine cells (EECs), tissue identity, and inter-organ communication. Passionate and detail-oriented, she is actively contributing to biomedical sciences with a vision to translate fundamental biology into therapeutic insights. Her work is paving the way for novel treatments for metabolic diseases and cancers.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Innovative Research Focus: Dr. Guo has made pioneering contributions in stem cell biology, particularly in understanding cell fate specification, enteroendocrine diversity, and tumor suppression using Drosophila and murine models.

  2. Multidisciplinary Skillset: She integrates genetics, high-throughput sequencing, bioinformatics, organoid culture, and in vivo models, showcasing deep technical expertise.

  3. High-Impact Publications: Co-first author in multiple peer-reviewed journals, including Cell Reports, Nature Communications, and FEBS Journal.

  4. Leadership in Research: From graduate researcher to postdoctoral fellow, she has led multiple independent projects, contributing novel findings to developmental and regenerative biology.

  5. International Recognition: Regular presenter at top-tier conferences globally, including the European Drosophila Research Conference and Annual Drosophila Research Conference (USA).

  6. Research Funding: Successfully secured National Natural Science Foundation of China funding, reflecting scientific merit and recognition.

🔍 Areas for Improvement:

  1. Broader Collaboration: Expanding collaborations outside her current institute or internationally may enhance the translational reach and impact of her research.

  2. Mentorship Roles: While her research is strong, formal mentorship roles (e.g., supervising Ph.D. students) or teaching contributions could further demonstrate leadership.

  3. Clinical Translation: Though her mouse model work touches on therapeutic discovery, publishing more translational or clinical-facing studies could boost her impact in applied biomedical research.

🎓 Education:

Dr. Xingting Guo earned her Ph.D. in Biochemistry and Molecular Biology from the College of Life Sciences at Beijing Normal University (2012–2018), where she began her in-depth research on stem cell biology and tissue differentiation in Drosophila. Prior to this, she completed her Bachelor’s degree in Biological Engineering at Nanjing Agricultural University (2008–2012), where she was honored with multiple scholarships for academic excellence. Throughout her education, she developed a robust foundation in molecular biology, genetics, and developmental biology, equipping her with the skills to tackle complex biological questions. Her academic journey has been characterized by continuous academic excellence, curiosity-driven research, and a commitment to uncovering the molecular mechanisms of health and disease. Her education laid the groundwork for her successful transition to cutting-edge postdoctoral research in developmental biology and regenerative medicine.

💼 Experience:

Dr. Guo began her research career at NIBS Beijing as a graduate student in 2012, transitioning into a postdoctoral fellow in 2018 under the mentorship of Dr. Rongwen Xi. Her research primarily uses Drosophila intestinal systems and murine models to explore the regulation of cellular identity, differentiation, and plasticity. She has led multiple projects on tumor suppression, transcriptional regulation, and enteroendocrine diversity using advanced techniques like genetic manipulation, single-cell RNA sequencing, and organoid cultures. Additionally, she contributes to translational research by identifying drug targets for diabetes-related therapy by reprogramming intestinal cells into insulin-producing β-cells. Her interdisciplinary approach and long-standing expertise in stem cell biology highlight her versatility and innovation in research. Her consistent progression from graduate student to independent researcher reflects her strong scientific rigor and leadership in high-impact studies.

🏆 Awards and Honors:

Dr. Xingting Guo has been recognized for her academic excellence and scientific contributions through numerous honors. During her Ph.D., she was awarded the First Class Academic Scholarship for two consecutive years (2014–2016). As an undergraduate, she earned the prestigious Cyrus Tang Scholarship four times, along with the First Class Scholarship at Nanjing Agricultural University. In recent years, she has taken on the role of a peer reviewer for Bio-protocols, highlighting her engagement with the scientific community. Dr. Guo’s research excellence has led her to represent her work at top-tier conferences, including the Annual Drosophila Research Conference (USA) and the European Drosophila Research Conference (Switzerland). Her contributions were also supported by a grant from the National Natural Science Foundation of China (Grant No. 3210050518), demonstrating her ability to secure competitive funding. These accolades mark her as a rising star in molecular and developmental biology.

🔬 Research Focus:

Dr. Guo’s research focuses on the molecular regulation of stem cell differentiation, cellular identity maintenance, and neuroendocrine cell plasticity using Drosophila and mouse models. She investigates how transcription factors such as ttk69 influence enteroendocrine (EEC) specification, tissue homeostasis, and tumor suppression. Using cutting-edge tools like CRISPR, single-cell transcriptomics, and in vivo lineage tracing, she deciphers how intestinal stem cells differentiate into diverse terminal cell types. Her recent work explores how intestinal EECs regulate systemic physiology via neuropeptides in response to environmental cues like starvation and mating. In parallel, she studies cell-fate reprogramming in mammals to identify potential therapeutic strategies for diabetes by inducing insulin-producing cells in the gut. By bridging basic biology with translational goals, her work contributes to regenerative medicine, oncology, and metabolic disease research.

📚 Publications Top Notes:

  • 🧠 Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor, Nature Communications, 2024

  • 🔍 The Specification and Function of Enteroendocrine Cells in Drosophila and Mammals: A Comparative Review, FEBS Journal, 2021

  • 🧬 A Switch in Tissue Stem Cell Identity Causes Neuroendocrine Tumors in Drosophila Gut, Cell Reports, 2020

  • 🧫 The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells, Cell Reports, 2019

  • 🧬 Division of Labor: Roles of Groucho and CtBP in Notch-Mediated Lateral Inhibition, Stem Cell Reports, 2019

  • 📘 Signaling Pathways Regulating Stem Cells, Book Chapter, Springer, 2015

  • 🛑 Ttk69 acts as a master repressor of enteroendocrine cell specification, Development, 2015

  • 🧪 EGFR and Notch signaling regulate gastric stem cells, Cell Research, 2014

  • 🧠 Sox9 Ortholog Regulates Intestinal Homeostasis and Regeneration in Drosophila, Cell Reports, 2020

🧾 Conclusion:

Dr. Xingting Guo is a highly qualified and deserving candidate for the Best Researcher Award. Her exceptional track record in stem cell biology, cellular reprogramming, and disease modeling makes her a rising star in the life sciences. With a unique combination of technical excellence, scientific innovation, and publication strength, she has already made a significant impact on our understanding of intestinal cell biology and endocrine regulation. Addressing a few career development aspects—like expanding collaborative networks and clinical translation—will make her an even more formidable leader in the field. Given her achievements, potential, and contributions, she is strongly recommended for this prestigious honor.