Emine Mine Soylu | Plant Pathology | Best Researcher Award

Prof. Dr. Emine Mine Soylu | Plant Pathology | Best Researcher Award

Hatay Mustafa Kemal University | Turkey

Prof. Dr. Emine Mine Soylu is a prominent academic in the field of plant pathology, with a career spanning over three decades dedicated to plant protection, host-pathogen interactions, and disease management strategies in crops. She began her professional journey as a Research Assistant at Akdeniz University and has since contributed significantly to scientific research through both experimental studies and scholarly publications. Her work is widely recognized, with a particular focus on the identification and control of fungal and bacterial diseases in economically important plants. Prof. Soylu has published 54 scientific documents in internationally refereed journals and has amassed a total of 3,749 citations, reflecting the substantial impact of her work in the field. Her h-index is 25, indicating consistent and high-quality contributions to science over the years. Her research includes first reports of various plant diseases in Türkiye and in-depth studies on disease resistance mechanisms and biochemical plant responses. Prof. Soylu’s contributions continue to shape the future of sustainable agriculture and plant health, and her collaborations extend across national and international scientific communities. Her scholarly output and citation metrics demonstrate her strong influence in the field of phytopathology and plant-microbe interactions.

Profiles: Google Scholar | ScopusOrcid

Featured Publications:

  • “Preliminary Characterization of Race-Specific Elicitors From Peronospora parasitica and Its Ability to Elicit Phenolic Accumulation in Arabidopsis”

  • “First Report of Downy Leaf Spot of Walnuts Caused by Microstroma juglandis in Turkey”

  • “Induction of Disease Resistance by the Plant Activator, Acibenzolar-S-methyl (ASM), Against Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) in Tomato Seedlings”

  • “First Report of Powdery Mildew Caused by Erysiphe heraclei on Dill (Anethum graveolens) in Turkey”

  • “Light and Electron Microscopy of the Compatible Interaction Between Arabidopsis and the Downy Mildew Pathogen Peronospora parasitica”

  • “Induction of Defence Related Enzymes and Resistance by the Plant Activator Acibenzolar-S-methyl in Tomato Seedlings Against Bacterial Canker Caused by Clavibacter michiganensis subsp. michiganensis”

  • “First Report of Cercospora Leaf Spot on Swiss Chard Caused by Cercospora beticola in Turkey”

  • “First Report of Phloeospora Leaf Spot on Mulberry Caused by Phloeospora maculans (=Cylindrosporium maculans) in the Eastern Mediterranean Region of Turkey”

  • “Induction of Disease Resistance and Antioxidant Enzymes by Acibenzolar-S-methyl Against Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) in Tomato”

  • “First Report of Powdery Mildew Caused by Podosphaera phaseoli (syn. Sphaerotheca phaseoli) on Cowpea (Vigna sinensis) in Turkey”

 

 

 

 

 

 

 

 

 

 

Sevgi Kolayli | Microbiology | Best Researcher Award

Ms. Sevgi Kolayli | Microbiology | Best Researcher Award

Ms. Sevgi Kolayli | Karadeniz Technical University | Turkey

Prof. Dr. Sevgi Kolaylı is a distinguished biochemist and food scientist at Karadeniz Technical University, Turkey. With a career spanning over 25 years, she has made pioneering contributions in the fields of antioxidant activity, natural product chemistry, and food biochemistry, especially with respect to bee products such as honey, propolis, and bee bread. Her research explores the biochemical properties and therapeutic potentials of these natural substances, integrating analytical chemistry with toxicology and nutrition. She has authored numerous articles in international journals, demonstrating her scientific leadership and collaborative spirit. Dr. Kolaylı’s work not only furthers academic understanding but also provides practical insights into functional foods, public health, and sustainable agriculture. Recognized for her scientific excellence and innovation, she continues to mentor students and researchers, contributing significantly to science at national and global levels.

Publication Profiles: 

Orcid
Google Scholar
Scopus

Education:

Prof. Dr. Sevgi Kolaylı completed her undergraduate studies in Chemistry at Karadeniz Technical University, Turkey. She pursued postgraduate studies in Biochemistry, earning her Master’s and Ph.D. from the same institution. Her doctoral research focused on the biochemical analysis of natural products and their antioxidant capacities, with a special emphasis on enzymatic activities in fish and bioactive compounds in plant sources. Over the years, she has expanded her academic portfolio by attending international workshops, symposia, and scientific training, continually refining her skills in analytical methods such as chromatography, spectroscopy, and molecular characterization. Her solid educational foundation has enabled her to bridge the gap between traditional biochemical research and applied nutritional science. She remains actively engaged in academic development through her roles in teaching, supervision, and curriculum innovation at Karadeniz Technical University.

Experience:

Prof. Dr. Sevgi Kolaylı has served in various academic and research capacities at Karadeniz Technical University. Starting as a research assistant, she has risen through the academic ranks to become a full professor. Her career includes teaching undergraduate and postgraduate courses in biochemistry, food chemistry, and analytical techniques, while also supervising numerous MSc and PhD theses. Dr. Kolaylı has been a principal investigator in several national and international research projects focused on the bioactivity and safety of food-based natural compounds. She is a respected reviewer for several peer-reviewed journals and has collaborated with researchers from Algeria, Germany, and across Türkiye. Her strong laboratory and analytical experience, combined with leadership in scientific projects, underscore her capacity for impactful research. Additionally, she contributes to scientific committees, journal editorial boards, and serves as an evaluator for research funding bodies.

Research Focus:

Prof. Dr. Sevgi Kolaylı’s research centers on the biochemical evaluation of natural products, particularly those derived from bee-related sources such as honey, propolis, and bee bread. Her investigations focus on antioxidant activity, phenolic content, and bioactive characterization, aiming to understand their therapeutic and nutritional value. She uses advanced analytical techniques (e.g., HPLC, HRMS, spectrophotometry) to identify bioactive compounds and assess their antioxidant, antimicrobial, antiviral, and anticancer potentials. A significant portion of her work has examined regional differences in natural products, correlating botanical origin with chemical composition. Her newer research explores food enrichment using natural antioxidants and toxicity assessments of honey containing grayanotoxins. This multidisciplinary approach integrates food science, toxicology, and molecular biology, contributing to the development of functional foods and nutraceuticals. Prof. Kolaylı’s scientific vision is geared towards advancing public health through safe, natural, and effective bioactive substances.

Publications Top Notes: 

  1.  Comparative study on antioxidant enzyme activities and lipid peroxidation in different fish species – Turkish J. Zoology

  2.  Antioxidant enzymes in freshwater vs. seawater adapted trout – J. Biochem. Mol. Toxicol.

  3.  Chemical & antioxidant properties of cherry laurel fruit – J. Agric. Food Chem.

  4.  Does caffeine bind to metal ions? – Food Chemistry

  5.  Stereoselective photochemistry of methoxy chalcones – Turkish J. Chemistry

  6.  Essential oils of Centaurea spp. and their antimicrobial activity – Phytochemistry

  7.  Photocyclization and microbial activity of chalconoid compounds – J. Photochem. Photobiol. A

  8.  Synthesis of heterocycles as antioxidant/anticancer agents – Archiv der Pharmazie

  9.  Synthesis and antioxidant activities of triazol-5-one derivatives – Indian J. Chemistry

  10.  New triazole derivatives and their antioxidant properties – Asian J. Chemistry

Conclusion:

In conclusion, Prof. Dr. Sevgi Kolaylı exemplifies the qualities of a well-rounded, impactful, and visionary researcher whose work has significantly advanced the understanding of bioactive compounds in food and natural products. Her sustained excellence in publishing, mentoring, and interdisciplinary collaboration makes her highly suitable for the Best Researcher Award. Her ability to combine fundamental biochemical insights with real-world health applications, especially in the areas of antioxidant research and bee product functionality, showcases her as not just a researcher, but a contributor to global health and nutrition science. With minor enhancements in innovation dissemination and global visibility, she can further establish herself as a leading figure in the international scientific community. Based on the strength of her scientific record, impact, and innovation potential, she is a highly deserving nominee for the Best Researcher Award.

 

 

Marwa Aly | Bacterial Extracellular Vesicles | Best Researcher Award

Dr. Marwa Aly | Bacterial Extracellular Vesicles | Best Researcher Award

Dr. Marwa Aly | HB Fuller | United States

Dr. Marwa Aly (published as Marwa Gamal Saad), Ph.D., is a Senior Scientist at H.B. Fuller Company with an impressive interdisciplinary background spanning microbiology, bioengineering, nanotechnology, and biotechnology. She holds dual Ph.D. degrees from Port Said University (with research at Texas A&M University) and Washington State University, where she recently completed a thesis on bacterial extracellular vesicles targeting drug-resistant pathogens. Dr. Aly has authored multiple high-impact publications, secured substantial research funding, and contributed to patent-pending technologies. Her innovative work bridges the gap between microbial research and real-world applications, such as alternative biofuels and novel antimicrobials. With an h-index of 6 and over 250 citations, she has demonstrated consistent scientific impact. Recognized by prestigious awards like the Cougar Cage Award and WSU President’s Leadership Award, Dr. Aly is an emerging thought leader in microbial biotechnology, making her a prime candidate for the Best Researcher Award.

Publication Profiles:

Google Scholar
Scopus
Orcid

Education:

Dr. Marwa Aly holds two Doctor of Philosophy degrees in advanced scientific disciplines. She earned her first Ph.D. in Botany from Port Said University, Egypt, with collaborative research at Texas A&M University, USA. Her research focused on sustainable biofuel production from microalgae using nanotechnology and genetic engineering. She recently completed a second Ph.D. in Engineering from Washington State University, USA. Her dissertation investigated bacterial extracellular vesicles and their potential as next-generation antimicrobials against drug-resistant pathogens. Dr. Aly’s dual doctoral qualifications reflect her interdisciplinary expertise and commitment to solving complex global challenges. Her educational journey is marked by innovation, academic rigor, and successful translation of research into real-world impact.

Research Experience:

As a Graduate Assistant at Washington State University in Dr. Wen-Ji Dong’s Lab, Dr. Aly has pioneered research on microbial extracellular vesicles (EVs), securing a provisional patent and winning $100,000 in Cougar Cage funding. Her work involves in vitro and in vivo analysis of EVs from Pseudomonas aeruginosa, exploring their antimicrobial action, especially against Candida auris and drug-resistant pathogens. She also studies the role of ferroptosis in EV-mediated treatment strategies and has led proteomic profiling of bacterial biofilms. In her earlier Ph.D. work, she developed methods for microalgae-based biodiesel production using advanced microfluidics and nanotechnology. Her multidisciplinary research blends microbiology, chemical engineering, and biotechnology to address critical challenges in public health and sustainable energy. Her scientific contributions are recognized globally, making her a strong contender for research excellence.

Awards and Honors:

Dr. Marwa Aly has received multiple prestigious accolades recognizing her leadership, innovation, and research excellence. She was a winner of the ISEV Image Competition, celebrating creativity in extracellular vesicle research. She received the Cougar Cage Award from Washington State University for her promising EV-based antimicrobial proposal. Her leadership and academic excellence earned her the WSU President’s Award for Leadership and recognition as a WSU Woman of Distinction. These awards highlight not only her scientific contributions but also her dedication to community engagement, mentorship, and cross-disciplinary collaboration. Her ability to secure competitive funding, publish impactful research, and innovate at the intersection of biology and engineering underscores her qualifications for the Best Researcher Award.

Research Focus:

Dr. Marwa Aly’s research centers on extracellular vesicles (EVs) and their potential to combat antimicrobial resistance. Her recent focus is on stage-dependent EVs produced by Pseudomonas aeruginosa and algae, exploring their ability to disrupt biofilms and trigger ferroptosis in pathogenic organisms. Her research includes proteomic analysis, biofilm interaction studies, and in vivo wound infection models, advancing the understanding of EVs as therapeutic agents. Additionally, she has conducted microfluidic-based studies for biofuel optimization, developing innovative devices to study microalgae growth under various environmental conditions. Her work is grounded in translational science, bridging lab discoveries with industrial applications such as bioenergy and infection control. By integrating microbiology, bioengineering, and nanotech, she is at the forefront of next-generation biotechnologies, making substantial contributions to public health, sustainability, and microbial sciences.

Publications Top Notes:

  1. Algal Biofuels: Current Status and Key Challenges – Energies

  2. Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques – Biosensors

  3. Evaluation of Storage Stability for Biocrude Derived from Hydrothermal Liquefaction of Microalgae – Energy & Fuels

  4. High-Throughput Screening of Chlorella Vulgaris Growth Kinetics in Microfluidics – Biomolecules

  5. Droplet-based Microfluidic Gradient for Chlorella Growth under Nitrogen & Temp Stress – Algal Research

  6. Impact of Nitrogen Regime on Fatty Acid Profiles of Algae for Biofuel – Acta Botanica Hungarica

  7. Dual Roles of Conditional Extracellular Vesicles from Pseudomonas Biofilms – Biofilm

  8. Phytochemical Screening and Antimicrobial Activity of Egyptian Green Algae – Journal of Medicinal Plants Studies

  9. Nitrogen Concentration Impact on Algal Biomass, Lipids & Biofuel Yield – IJSTR

  10. Challenges of Biodiesel Production from Oscillatoria sp. – IJAR

Conclusion:

In conclusion, Dr. Marwa Aly (Marwa Gamal Saad) is a highly qualified, driven, and impactful researcher who has made significant contributions across several vital scientific areas, from microbial therapeutics to renewable biofuels. Her dual-Ph.D. credentials, publication record, patent-pending research, competitive grant success, and multiple recognitions make her an excellent candidate for the Best Researcher Award. While she can further enhance her profile through increased international engagement and publication output, her current achievements already distinguish her as a rising leader in the fields of biotechnology, microbiology, and bioengineering. She is not only suitable but highly recommended for this recognition.

Shahab Uddin | Microbiology | Best Researcher Award

Mr. Shahab Uddin | Microbiology | Best Researcher Award

Mr. Shahab Uddin | Department of Life Sciences, Lanzhou University | China

Shahab Uddin, is a dedicated and accomplished microbiologist with a strong background in microbial ecology, molecular biology, and nanotechnology. He is currently pursuing a Ph.D. in Microbiology at Lanzhou University, China, where he is engaged in cutting-edge research involving antibiotic-conjugated magnetic nanoparticles for periodontitis diagnosis. With numerous international publications in high-impact journals and experience across microbiology, mechanobiology, and neuroinflammation research, Shahab is recognized for his exceptional technical skills and scientific contributions. His career has spanned various research institutions, including Sungkyunkwan University in South Korea, where he conducted pivotal studies on nanoparticles and microbial pathogens. Driven by scientific curiosity and a collaborative spirit, Shahab continues to contribute to advancements in microbial and biomedical research. Fluent in English, Urdu, and proficient in scientific communication, he is an ideal candidate for the Best Researcher Award, representing both innovation and perseverance in the life sciences.

Publication Profiles: 

Google Scholar
Orcid

Education:

Shahab Uddin began his academic journey in Pakistan, completing his M.Phil. in Microbiology from Quaid-I-Azam University, Islamabad. During his postgraduate studies, he specialized in microbial ecology and environmental microbiology. His thesis work laid the foundation for his deeper interest in microbial mechanisms and genetic interactions. He further advanced his academic credentials by enrolling in the Ph.D. Microbiology program at Lanzhou University, China. His doctoral research focuses on the application of nanotechnology in microbial diagnostics, specifically using magnetic nanoparticles for periodontal disease detection. Over the years, he has enhanced his technical skills in qPCR, molecular cloning, bioaerosol sampling, and nanoparticle synthesis. His education has been enriched by international collaborations and interdisciplinary exposure, especially in mechanobiology and neuroinflammation. Shahab’s education reflects a blend of foundational microbiology and cutting-edge biomedical research, enabling him to tackle complex scientific challenges with innovation and precision.

Experience:

Shahab Uddin has worked as a Research Assistant at Lanzhou University, actively contributing to a nanotechnology-driven project aimed at improving periodontitis diagnostics through magnetic nanoparticle conjugation. His work bridges microbiology, nanotechnology, and diagnostics, showcasing his interdisciplinary expertise. He has also conducted research under Prof. Sungsu Park at the 4DBM Laboratory, Sungkyunkwan University, South Korea, where he was responsible for nucleic acid extraction, synthesis of biocompatible nanoparticles, and detection of airborne pathogens. These roles reflect his strong command over laboratory techniques such as qPCR, microbial culturing, and nanoparticle formulation. His involvement in multiple international collaborations and multi-disciplinary projects highlights his ability to adapt and contribute meaningfully to diverse research environments. His excellent work ethic, dedication to scientific rigor, and impressive publication record position him as a highly experienced and innovative researcher, making him a suitable candidate for recognition such as the Best Researcher Award.

Awards and Honors:

Shahab Uddin has received notable academic recognitions throughout his career. During his early education, he was awarded a fellowship by Islamia Model College, Timergara, which covered his tuition and admission fees. He received a laptop through the Prime Minister’s Laptop Scheme at the University of Peshawar, acknowledging his academic merit and performance. His consistent involvement in internationally recognized research projects and publications in top-tier journals has brought him visibility and respect within the scientific community. His work on microbial calcium carbonate precipitation, nanoparticle toxicity, and Parkinson’s disease treatments has earned accolades in both ecological and biomedical research circles. Beyond formal awards, his participation in collaborative research in China and South Korea is a testament to his growing international reputation. These honors reflect his commitment to scientific advancement and his ability to represent his country and field at a global level.

Research Focus:

Shahab Uddin’s research focuses on the interface of microbiology, nanotechnology, and biomedical science. His doctoral work involves using antibiotic-conjugated magnetic nanoparticles for rapid and precise preconcentration of periodontal bacteria, a novel approach for periodontitis diagnosis. He has also investigated the neuroinflammatory effects of fusion proteins, the role of nicotine in neuroprotection in Parkinson’s disease, and microbial-induced calcium carbonate precipitation for environmental applications. Shahab’s interests include mechanobiology, microbial genetics, and pathogen detection using qPCR. He is particularly passionate about translating microbial research into diagnostic and therapeutic applications. His collaborations with institutions in South Korea and China reflect a global perspective and adaptability in interdisciplinary research. With a portfolio that includes molecular biology, environmental microbiology, and advanced nanomaterials, Shahab’s work stands at the forefront of modern microbiological science. His research bridges basic science and applied solutions, aiming to contribute to global health, sustainable environments, and innovative diagnostics.

Publications Top Notes: 

  1. A comparative study on HSA and α-MSH fusion proteins for anti-neuroinflammatory effectsNeuropeptides

  2. Rigid linker peptides enhance stability and anti-inflammatory efficacy of HSA-α-MSH fusionsBiotechnology Journal

  3. Autophagy and UPS pathway in nicotine-induced protection for Parkinson’s diseaseExperimental Brain Research

  4. Nicotine-mediated therapy in transgenic C. elegans model for Parkinson’sFrontiers in Aging Neuroscience

  5. Microbially induced calcium carbonate precipitation to improve soil mechanicsEcological Engineering

  6. Psychrotolerant Serratia marcescens HI6 characterization from glacierApplied Ecology & Environmental Research

  7. Retrospective study on tuberculosis incidence in Dir Lower, PakistanHospital Pharmacy

  8. Mechanobiological analysis of nanoparticle toxicityNanomaterials

  9. Microfabricated devices to study tensile stress on cells and tissuesBioChip Journal

  10. Incidence of HBV, HCV, HIV among blood donors in PeshawarPopulation

Conclusion:

In conclusion, Shahab Uddin is an outstanding and promising researcher with a broad and impactful academic portfolio. His contributions span critical scientific areas including microbial pathogenesis, nanotechnology-enabled diagnostics, and neurodegenerative disease models. His dedication, innovation, and consistency in research make him highly deserving of recognition through the Best Researcher Award. While there is scope for leadership expansion and broader outreach, his current achievements—especially his multi-disciplinary publications and international collaborations—are commendable and reflect a researcher who is not only productive but also forward-thinking. Granting him this award would not only honor his contributions but also inspire continued scientific excellence and innovation in microbiology and beyond.

Alejandro Rojas | Immunology Cellular Interactions | Best Researcher Award

Assist. Prof. Dr. Alejandro Rojas | Immunology Cellular Interactions | Best Researcher Award

Assist. Prof. Dr. Alejandro Rojas | Austral University of Chile | Germany

Dr. Alejandro Alfredo Rojas Fernández is a distinguished Chilean molecular biotechnologist and neuroscientist, currently serving as CEO of Berking Theranostics UG in Hamburg, Germany, and Assistant Professor at the Universidad Austral de Chile. With over two decades of research spanning neurodegeneration, immunology, and viral pathogenesis, Dr. Rojas-Fernández has emerged as a leading expert in molecular diagnostics and theranostics. His innovative work has significantly impacted global health, notably through his contributions to SARS-CoV-2 research and senolytic therapies. A dual academic and entrepreneur, he bridges fundamental science and clinical application, actively publishing in top-tier journals such as Nature Aging, Molecular Psychiatry, and Journal of Cell Biology. Fluent in interdisciplinary collaboration, his efforts have been internationally recognized with multiple honors. With a passion for translational science, Dr. Rojas-Fernández continues to inspire the next generation of biomedical innovators through mentorship and leadership in biotechnology and neuroscience.

Publication Profile:

Orcid

Education:

Dr. Alejandro Rojas-Fernández earned his PhD in Biology from the University of Konstanz, Germany (2006–2010), where his research focused on the regulation of Hdm2/HdmX-mediated ubiquitination and neddylation—mechanisms central to protein stability and cancer biology. Prior to his doctorate, he completed his engineering degree in Molecular Biotechnology (2004–2005) and his B.Sc. in Molecular Biotechnology Engineering (2000–2004) at the Faculty of Sciences, University of Chile—one of Latin America’s leading research institutions. His multidisciplinary education integrates molecular biology, neurobiology, immunology, and translational medicine, equipping him with the foundational and advanced tools to tackle complex biomedical challenges. Dr. Rojas-Fernández’s academic training has been marked by academic excellence and international mobility, enabling him to collaborate and lead research projects across Europe and Latin America.

Experience:

Dr. Rojas-Fernández brings over 20 years of experience in translational biomedical research, academia, and biotech innovation. As CEO of Berking Theranostics UG, he spearheads the development of personalized diagnostic platforms and therapeutics, with a focus on neurodegenerative and inflammatory diseases. In his role as Assistant Professor at Universidad Austral de Chile (20% appointment), he leads the Medical Biotechnology Laboratory within the Centre for Interdisciplinary Studies on the Nervous System (CISNe), contributing to scientific training and cutting-edge research. He previously trained and collaborated at institutions such as the University of Dundee, University of Queensland, and University of Constance, advancing molecular mechanisms of SUMOylation, proteostasis, inflammasome biology, and viral-host interactions. His interdisciplinary expertise allows him to translate complex cellular insights into tangible clinical applications, and his leadership has resulted in high-impact publications, product pipelines, and strategic biotech partnerships in Europe and Latin America.

Awards and Honors:

Dr. Rojas-Fernández has received multiple prestigious honors recognizing his innovative biomedical research. In February 2025, he was named “Innovator of the Month” by Hamburg Invest for groundbreaking biotech contributions in Germany. He was awarded the Medal of the City of Valdivia for his vital role in controlling the SARS-CoV-2 pandemic, one of the highest local honors in Chile. Additionally, he received the 2nd of October Medal for Science and Innovation, recognizing his scientific leadership in Chile’s Los Ríos region. These accolades underscore his impact on global public health, neurodegenerative research, and biotechnology entrepreneurship. His consistent recognition reflects a career dedicated to translational excellence, fostering international collaboration, and advancing science for the benefit of society. His scientific achievements continue to inspire innovation and interdisciplinary approaches within the global scientific community.

Research Focus:

Dr. Alejandro Rojas-Fernández’s research centers on cellular stress responses, ubiquitin/SUMO signaling, neurodegeneration, and host-pathogen interactions. A core focus is the molecular crosstalk between autophagy, protein quality control, and inflammasome activation in brain and immune cells. He has made significant advances in understanding the effects of SARS-CoV-2 on microglia, mechanisms of senescence in aging brains, and nanobody-based viral neutralization. His studies also explore the intersection of endoplasmic reticulum stress and neurodegenerative pathways, using high-content screening and proteomics to uncover therapeutic targets. He actively translates molecular insights into diagnostics and theranostic tools, positioning him at the forefront of personalized medicine. As CEO of a biotech startup, he is developing platforms that integrate biomarker discovery with AI for neuroinflammation profiling. His research bridges fundamental biology and clinical applications, promoting innovative therapies for Alzheimer’s, Parkinson’s, cancer, and viral infections.

Publications Top Notes: 

  1. Negative Modulation of Macroautophagy by Stabilized HERPUD1…Front Cell Dev Biol, 2022

  2. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia…Mol Psychiatry, 2022

  3. The p97/VCP segregase is essential for arsenic-induced degradation of PML…J Cell Biol, 2023

  4. Lack of Parkinsonian Pathology after Proteasome Inhibitor Injection…Front Aging Neurosci, 2021

  5. NSPA modulates postsynaptic NMDAR stability…BMC Biol, 2020

  6. Role of PSMD14 in Golgi-to-ER transport and APP processingCells, 2020

  7. WDR90 in NLRC4 inflammasome and Salmonella resistanceDev Comp Immunol, 2019

  8. Proteomic identification of APC interaction partnersMol Cancer Res, 2019

  9. DHX15 regulates CMTR1-dependent gene expressionLife Sci Alliance, 2018

  10.  Membrane ruffling by polarized stim1 and orai1Sci Reports, 2017

Conclusion:

Dr. Alejandro Alfredo Rojas Fernández stands out as a pioneering researcher who consistently delivers scientifically rigorous, socially impactful, and clinically relevant work. His career spans critical sectors—basic research, applied biotechnology, and public health—making him a model example of the translational scientist. With accolades from both European and Latin American institutions and a track record of high-impact publications, Dr. Rojas exemplifies what it means to be a globally relevant and community-driven scientist. His work during the COVID-19 pandemic, innovations in molecular neuroscience, and leadership in therapeutic biotechnology underscore his immense value to the global research community. In conclusion, he is not only a suitable but a highly deserving candidate for the Best Researcher Award.

Hansong Dong | Host-Pathogen Interactions | Best Researcher Award

Prof. Hansong Dong | Host-Pathogen Interactions | Best Researcher Award

Prof. Hansong Dong, Shandong Agricultural University, China

Dr. Hansong Dong is a distinguished Professor of Plant Pathology and Doctoral Supervisor at Shandong Agricultural University, China. With a Ph.D. in Plant Pathology, his work spans over four decades, focusing on plant immunity, signal transduction, and the balance between crop growth and defense. A renowned researcher and published poet, Prof. Dong has made seminal contributions to our understanding of aquaporins, hormone signaling, and the molecular interface between host plants and pathogens. His international academic exposure, including time as a Visiting Scholar at Cornell University, has further enriched his scientific insights. In addition to his impactful research, Prof. Dong has mentored numerous graduate students and contributed to agricultural innovation. With numerous high-impact publications in journals like Molecular Plant and New Phytologist, his work is widely recognized. Beyond academia, his literary works reflect a philosophical appreciation of nature and resilience, exemplifying a rare integration of science and art.

Publication Profile: 

Scopus

Education:

Prof. Hansong Dong pursued his undergraduate studies in Plant Protection at Shandong Agricultural University (1978–1982). He continued with his Master’s and Ph.D. in Plant Pathology at Nanjing Agricultural University, completing them in 1985 and 1988, respectively. His academic training provided a solid foundation in plant-microbe interactions, molecular biology, and host defense mechanisms. During his studies, he honed his focus on understanding plant immune responses, laying the groundwork for his future breakthroughs in signaling and aquaporin-mediated defense. His Ph.D. thesis contributed to early models of pathogen-host dynamics in crops, marking the start of a lifelong research trajectory in agricultural biotechnology. His formal education not only established his credibility in plant pathology but also shaped his vision for interdisciplinary research. Prof. Dong’s academic excellence has continued to drive forward key discoveries in the field, making him a leading authority in crop protection and molecular plant immunity in China and internationally.

Experience:

Prof. Dong began his career as a Lecturer in the Department of Plant Pathology at Shandong Agricultural University (1988–1993). He quickly rose through academic ranks—Associate Professor in 1993, and full Professor by 1994. His leadership and research capabilities were recognized early on, leading to a Visiting Scholar position at Cornell University (1997–2000), where he engaged in collaborative projects on plant immune signaling and pathogen effectors. Over his decades of teaching and research, Prof. Dong has supervised numerous doctoral students, published extensively, and shaped academic policy and curriculum in plant pathology. His tenure at Shandong Agricultural University is marked by scientific rigor, mentorship, and impactful agricultural innovations. His ability to bridge laboratory research with field application has contributed significantly to crop disease management strategies in China. Prof. Dong remains actively involved in national and international research initiatives, playing a vital role in advancing molecular plant pathology and crop resilience.

Awards & Honors:

Prof. Hansong Dong has received several prestigious accolades recognizing his early and sustained contributions to science and education. In 1992, he was honored as an Outstanding Young Intellectual and received the Shandong Youth Science and Technology Award, acknowledging his early promise in agricultural research. The same year, he was also named an Excellent Young Teacher, a testament to his pedagogical contributions. In 1993, he was recognized as a New Long March Commando, symbolizing excellence in youth-led scientific advancement in China. These early recognitions paved the way for a prolific academic career that has garnered respect across disciplines. His awards highlight his leadership in scientific innovation, commitment to nurturing the next generation of researchers, and the societal relevance of his work in safeguarding global food security. As both a scientist and educator, Prof. Dong’s accolades reflect his well-rounded excellence and continued influence in plant pathology and agronomic science.

Research Focus:

Prof. Dong’s research focuses on signal transduction in plant disease resistance and the regulation of growth-defense trade-offs in crops. His work investigates the molecular dialogue between plants and pathogens, particularly through the lens of aquaporins, importins, and membrane proteins. He has significantly advanced our understanding of how pathogenic effectors manipulate host splicing and hormone pathways, notably through TAL effectors and NPR1/NPR3 systems in rice. His team applies multi-omics and CRISPR-based editing to engineer resistant crops while minimizing yield penalties, a critical goal in sustainable agriculture. By elucidating the roles of H2O2 transport, type-III secretion systems, and transcriptional regulation, his research offers translational solutions to fungal and bacterial diseases in cereals like rice and wheat. Prof. Dong’s innovative blend of molecular biology, bioinformatics, and field experimentation drives progress toward disease-resilient, high-yield crops. His collaborative, systems-level approach continues to shape modern plant pathology and crop biotechnology.

 Publications Top Notes:

  1. Alternative splicing of OsNPR3… enhances disease susceptibility in riceMolecular Plant, 2025

  2. Plant PI4P is required for bacteria to translocate type-3 effectorsNew Phytologist, 2025

  3. MYB44 regulates PTI via EIN2 and MPK3/6 in ArabidopsisPlant Communications, 2023

  4. Importin β1 mediates nuclear entry of EIN2C against aphidsIJMS, 2023

  5. Phosphorylation of wheat aquaporin enhances growth and defenseMolecular Plant, 2022

  6. Aquaporin OsPIP2;2 links H2O2 signaling to plant defensePlant Physiology, 2022

  7. Editing rice importin IMPα1b sequesters TAL effectorsPhytopathology Research, 2022

  8. Aquaporin modulation intensifies photosynthesis and disease resistancePlant Journal, 2021

  9. OsPIP2;2 facilitates drought tolerance in ricePlant Direct, 2021

  10.  Aquaporin TaPIP2;10 confers dual fungal resistance in wheatPhytopathology, 2021

Conclusion:

Prof. Hansong Dong is highly suitable for the “Best Researcher Award.” His scholarly depth, sustained academic leadership, groundbreaking findings in plant pathology, and dedication to mentoring make him a standout candidate. His career exemplifies a blend of scientific rigor, poetic vision, and global relevance. Recognizing Prof. Dong would not only honor an exceptional researcher but also inspire younger generations in the intersection of science and humanity.

Kwaghgba Elijah Gbabe | Cell Structure Analysis | Best Researcher Award

Dr. Kwaghgba Elijah Gbabe | Cell Structure Analysis | Best Researcher Award

Dr. Kwaghgba Elijah Gbabe | Nigerian Stored Products Research Institute | Nigeria

Engr. Dr. Kwaghgba Elijah Gbabe is a seasoned Senior Research Officer at the Nigerian Stored Products Research Institute (NSPRI), Ilorin, Nigeria. With over nine years of progressive research experience, he specializes in food processing, postharvest technology, and agricultural nanotechnology. He is a trailblazer in developing electrospun hexanal nanofiber matrices aimed at extending the shelf-life of fruits such as bananas, mangoes, and tomatoes. His research integrates innovative preservation technologies to enhance food quality and sustainability. A COREN-certified engineer and postgraduate fellow, Dr. Gbabe has collaborated internationally, notably with the Centre for Agricultural Nanotechnology in India. With extensive publications and conference contributions, he is an advocate of research-driven food security and sustainable packaging. He brings a multidisciplinary edge to the evolving field of agricultural innovation, focusing on reducing postharvest losses and increasing storage efficiency in sub-Saharan Africa.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Innovative Research in Agricultural Nanotechnology

    • Pioneered the development of electrospun hexanal nanofiber matrices for fruit shelf-life extension — an emerging and impactful technology in food preservation.

  2. Strong Publication Record 

    • Over a dozen peer-reviewed journal articles and conference papers published across international and national platforms with DOIs, indicating high-quality scholarly contribution.

  3. Hands-On International Collaboration 

    • Completed a research internship at TNAU, India, and collaborated with renowned global experts like Prof. K.S. Subramanian in nanoscience.

  4. Multi-disciplinary Skills 

    • Expertise in advanced instrumentation (FTIR, GC-MS, SEM, TEM) and statistical tools (R, SPSS) shows broad technical competence.

  5. Real-world Application & Societal Impact 

    • Focuses on postharvest technologies to reduce food losses, enhance food safety, and support smallholder farmers and artisans.

  6. Leadership and Mentorship

    • Supervises junior staff, fabricators, and trainees, and contributes to capacity building through training workshops.

  7. Recognized Academic Achievement 

    • Recipient of the Benue State University Postgraduate Fellowship (2020–2025).

Areas for Improvement:

  1. Technology Commercialization and Patenting

    • While research output is strong, translating research into commercial products or patents could increase impact.

  2. Broader International Visibility

    • Participation in more international consortia or grants (e.g., EU Horizon, USAID, FAO) could elevate the global footprint.

  3. Expanded Multidisciplinary Outreach

    • Could integrate more with biotech and AI in agri-research, especially in smart packaging and AI-driven postharvest solutions.

Education:

Dr. Gbabe is currently pursuing his Ph.D. in Food Processing and Technology at Benue State University, Makurdi (2020–2025), with a research focus on developing electrospun hexanal nanofiber matrices for fruit preservation. He holds a Master of Engineering in Agricultural and Environmental Engineering from the University of Agriculture, Makurdi (2017–2019), where his thesis explored eco-building materials using rice husk and sawdust. His undergraduate and professional training background is further enhanced by a Certificate in Computer Appreciation (2010), an internship at the Centre for Agricultural Nanotechnology, TNAU, India (2023), and registration with COREN (2024). Dr. Gbabe is also a member of the Nigerian Institution of Agricultural Engineers (NIAE-M2207), demonstrating a strong foundation in both academic knowledge and regulatory standards in engineering and food technology. His educational pursuits reflect a consistent drive toward sustainability, innovation, and technological adaptation in agricultural systems.

Experience:

Dr. Gbabe serves as a Senior Research Officer at NSPRI since 2016, where he leads projects on postharvest technology, storage engineering, and food shelf-life enhancement. His duties span experimental design, research data analysis, technical report writing, equipment fabrication supervision, and stakeholder training. He has been instrumental in developing novel postharvest technologies and electrospun hexanal nanofiber matrices for fruit preservation. In 2023, he completed a research internship at the Centre for Agricultural Nanotechnology, TNAU, India, gaining hands-on experience in nanotoxicity, food nanotechnology, and biosafety. Dr. Gbabe is known for his interdisciplinary collaboration, capacity-building initiatives, and extensive field and lab-based research. He also coordinates training programs for artisans, farmers, and students. His rich professional journey is marked by impactful project execution, community-focused technology dissemination, and consistent contributions to national and international research publications.

Research Focus:

Dr. Gbabe’s research is centered on postharvest loss reduction, sustainable food preservation, and agricultural nanotechnology. He is pioneering the use of electrospun hexanal nanofiber matrices to extend the shelf-life of perishable fruits like bananas, mangoes, and tomatoes—a major advancement in food storage technology. His work addresses the chemical and biological challenges in postharvest handling, integrating advanced techniques such as FTIR, GC-MS, SEM, and TEM to monitor quality and degradation. He is also exploring green materials for packaging and eco-friendly building solutions using agricultural waste like rice husks and sawdust. His international collaboration with TNAU, India, expanded his research in nanotoxicity and food safety. With a focus on experimental design, interdisciplinary innovation, and practical application, Dr. Gbabe contributes to the development of scalable, cost-effective technologies tailored for African agricultural ecosystems. His goal is to enhance food security through intelligent preservation methods and sustainable postharvest engineering.

Publication Top Notes:

  1.  Effect of Hexanal Nano-fiber Matrix on Quality Parameters of Tomato Fruits during Storage

  2.  Development of Novel Hexanal Nano-fibre Matrix by Electrospinning for Shelf-life Extension of Mango Fruits

  3.  Implication of Different Storage Techniques on Physical Attributes of African Okra (Abelmoschus esculentus)

  4.  Maize Grains Milling Efficiency: A Performance Analysis of a Hammer Mill

  5.  Insecticidal and Toxicity Studies of Heliotropium Indicum Leaf Extracts for Stored Grain Pest Control

  6.  Commercial Utilization of Inert Atmosphere Silo for Maize Storage

  7.  Chemical and Physico-chemical Properties of OFSP Chips Dried Using Solar Dryers

  8.  Evaluation of the Use of Rice Husk in Producing Eco-Building Materials

  9.  Pros and Cons of AI Thermal Imaging in Postharvest Handling of Agricultural Products

  10.  Development of Hexanal Electrospun Nano-fiber Matrix for Banana Preservation

Conclusion:

Engr. Dr. Kwaghgba Elijah Gbabe is an exemplary researcher who combines scientific rigor, technological innovation, and practical application in the field of food systems and agricultural engineering. His pioneering work in nanotechnology, coupled with his leadership in postharvest technology, makes him exceptionally deserving of the Best Researcher Award.

Raphael Borie | Gene Regulation Epigenetics | Best Researcher Award

Prof. Dr. Raphael Borie | Gene Regulation Epigenetics | Best Researcher Award

Prof. Dr. Raphael Borie, APHP, France

Dr. Raphaël Borie, born on August 15, 1977, in Paris, France, is a leading expert in pulmonology and genetic respiratory diseases. Currently a University Professor Hospital Practitioner at Bichat Hospital (Paris Cité University), he has consistently contributed to the advancement of respiratory medicine, particularly in the field of interstitial lung diseases (ILDs). His clinical insight, combined with a strong research portfolio, has positioned him as a prominent figure within the OrphaLung network. A dedicated family man with two children, Dr. Borie is widely respected for his integrity, leadership, and commitment to collaborative medicine. His career reflects a unique blend of academic excellence and impactful translational research, bridging the gap between genomics and clinical care in ILD. He is a registered member of the French Medical Council (Ordre des Médecins No. 75/71138), and his research has influenced European clinical guidelines and improved the understanding of rare genetic pulmonary conditions.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Robust Academic Background:
    Dr. Borie holds a PhD in Genetics, Master’s in Physiology, and HDR (habilitation to supervise doctoral research), which underlines his scientific credibility and ability to lead independent research.

  2. Clinical-Research Integration:
    As a University Professor and Hospital Practitioner, he merges frontline patient care with cutting-edge genetic and respiratory disease research.

  3. High Publication Impact:
    With 283 PubMed-indexed articles and an H-index of 60, Dr. Borie’s work demonstrates strong citation influence, indicating widespread recognition and utility in the scientific community.

  4. International Leadership:
    Active in multinational collaborations (e.g., OrphaLung, ERS), he has co-authored major position statements and clinical trials, influencing European respiratory care guidelines.

  5. Innovation in Rare Diseases:
    A recognized expert in familial interstitial lung disease and telomere disorders, his work has led to earlier diagnosis and targeted therapies—critical in fields where few experts exist.

  6. Recognition and Funding:
    He has secured prestigious mobility grants (ERS, Respirology Teachers College)—a marker of trust in his scientific mission and innovation.

🔍 Areas for Improvement:

  • Wider Public Health Translation: While Dr. Borie’s genomic research is exceptional, expanding into real-world health policy implementation could enhance systemic impact.

  • Patient Engagement & Advocacy: Developing patient-oriented tools or registries (e.g., digital apps or platforms for familial lung diseases) may broaden his outreach beyond academia and clinics.

  • Broader Visibility: Although highly cited in professional circles, participation in international keynote talks, editorial leadership, or mainstream health media could elevate his public and professional visibility.

🎓 Education:

Dr. Borie has pursued an extensive and rigorous academic path focused on respiratory and genetic medicine. He obtained his medical degree with specialization in Allergology and Immunopathology in 2006. A year earlier, in 2005, he earned a Master’s degree in Biology and Physiology of Circulation and Respiration. Demonstrating deep interest in genetics, he completed a PhD in Genetics in 2017, contributing significantly to our understanding of genetic underpinnings in pulmonary fibrosis. In 2019, Dr. Borie achieved the prestigious Habilitation à Diriger des Recherches (HDR) from the University of Paris 7, enabling him to supervise doctoral research. His academic background illustrates a powerful integration of clinical expertise and molecular research—providing him with the tools to lead innovative research projects at the intersection of genomics and pulmonology.

🩺 Experience:

Dr. Raphaël Borie has over 15 years of experience in respiratory medicine. From July 2011 to August 2020, he served as a Hospital Practitioner in the Pneumology Department at Bichat Hospital under Professors Aubier and Crestani. Since September 2020, he has been a University Professor Hospital Practitioner in the same department, affiliated with Paris Cité University. He has contributed to patient care, education of medical students and residents, and cutting-edge research. As part of the OrphaLung network, he plays a critical role in advancing diagnostic tools and treatment approaches for rare lung diseases. He is recognized for his collaborative leadership and interdisciplinary contributions across genetics, immunology, and pulmonology. His international collaborations and authorship of over 280 PubMed-indexed publications demonstrate his ongoing commitment to improving patient outcomes through translational research.

🏆 Awards and Honors:

Dr. Borie’s research excellence has been recognized through several prestigious awards and scholarships. In 2017, he received the European Respiratory Society (ERS) Mobility Grant for his work on Identification of Preclinical Markers of Pulmonary Fibrosis, supporting international collaboration and advanced training. The same year, he was also honored with the Respirology Teachers College Mobility Grant, reinforcing his pioneering research on early detection of fibrotic lung disease. His selection for these awards highlights both scientific innovation and dedication to knowledge exchange. His leadership in multi-center studies and involvement in ERS guideline statements further reflect his status as a thought leader in interstitial lung disease. These honors are a testament to his influence in shaping the future of pulmonary genetics and translational respiratory medicine.

🔬 Research Focus:

Dr. Raphaël Borie’s research centers on familial and genetic interstitial lung diseases, particularly the molecular mechanisms behind pulmonary fibrosis, telomere biology, surfactant-related gene variants, and early detection strategies. He works extensively on identifying genetic risk variants (e.g., MUC5B, DSP) and their implications in idiopathic pulmonary fibrosis. Through his participation in the OrphaLung network, he supports genomic screening for hereditary lung disorders and contributes to developing European guidelines. His work bridges genomic medicine and clinical pulmonology, aiming for earlier diagnosis and personalized treatment approaches. He has led and co-authored critical studies on RTEL1 mutations, telomerase complex defects, and familial ILD phenotypes, helping clinicians globally understand the heterogeneity and systemic implications of genetic lung disorders. His collaborative international research ensures his findings are applied in practice to optimize long-term patient care.

📚Publications Top Notes:

  • 🧬 High risk of lung cancer in surfactant-related gene variant carriersEur Respir J, 2024

  • 📄 European Respiratory Society Statement on Familial Pulmonary FibrosisEur Respir J, 2022

  • 🧪 Colocalization of Gene Expression and DNA Methylation with Genetic Risk VariantsAm J Respir Crit Care Med, 2022

  • 🧬 RTEL1 mutations and their phenotypic variabilityEur Respir J, 2019

  • 💊 Safety and efficacy of pirfenidone in telomerase mutation carriersEur Respir J, 2018

  • 🌐 Diagnosis and follow-up of familial ILD: International surveyBMC Pulmonary Med, 2025

  • 🧬 New 2023 ACR/EULAR APS criteria performance in young patientsLetter, 2025

  • 🫁 A non-resolving cough: a case of familial pulmonary fibrosisBreathe, 2025

  • 🧬 PFMG2025: Genomic medicine in French healthcare systemReview, 2025

  • 💊 Efficacy of CFTR modulators in ABCA3-deficiency ILDOpen Access, 2025

  • 🧠 Neurological manifestations in VEXAS syndromeJournal of Neurology, 2025

  • 💉 Real-life use of PEXIVAS reduced-dose regimen in vasculitisAnn Rheum Dis, 2025

  • 🧫 Recurrent respiratory papillomatosis with lung involvementEur Respir J, 2025

  • 🔍 RA-ILD: genetics to clinical overviewReview, 2025

  • 👶 Childhood ILD survivors in adulthood: European studyEur Respir J, 2025

🧾 Conclusion:

Dr. Raphaël Borie exemplifies the ideal candidate for the Best Researcher Award. His excellence spans across clinical expertise, academic distinction, and international research leadership, especially in genetic and familial interstitial lung diseases—a field with enormous unmet need. His consistent scholarly output, impactful collaborations, and patient-focused studies highlight a unique blend of depth and innovation. While further expansion into public health frameworks and patient engagement tools would be valuable, his profile already reflects a world-class researcher with transformative contributions to pulmonary medicine.

Yang Liu | Cell Migration Studies | Best Researcher Award

Prof. Dr. Yang Liu | Cell Migration Studies | Best Researcher Award

Prof. Dr. Yang Liu, Taiyuan University of Technology Institute of Biomedical Engineering CHINA, China

Dr. Yang Liu is an Associate Professor at the Institute of Biomedical Engineering, Taiyuan University of Technology, China. Since joining in 2013, Dr. Liu has focused on biomechanics, particularly the mechanical mechanisms involved in skin tissue damage and healing processes during traumatic events like burns and radiotherapy. Her interdisciplinary work bridges molecular, cellular, and tissue-level studies to better understand the interplay between mechanical factors and skin regeneration. Her research also extends into the development and structural optimization of biomedical materials such as tissue-engineered skins and advanced dressings. Dr. Liu has led several research and teaching reform projects, obtained a patent transformation, and contributed to national and provincial-level scientific investigations. Her innovative work in tissue engineering and skin trauma treatment continues to contribute significantly to biomedical science and material engineering.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Specialized Expertise
    Dr. Liu focuses on biomechanics in disease development, particularly related to cutaneous trauma (e.g., burns, radiotherapy), a niche but critical area in biomedical engineering.

  2. Material Innovation
    Her work in developing tissue-engineered skin and antibacterial dressings demonstrates applied innovation with potential clinical relevance.

  3. Project Leadership
    Successfully led and participated in multiple competitive research projects funded by national and provincial bodies, indicating trust in her scientific vision and capabilities.

  4. Research Productivity
    Though early in recognition, Dr. Liu has already co-authored several peer-reviewed journal articles in reputable publications like Scientific Reports and Placenta, which reflect growing academic contribution.

  5. Translational Research
    Her involvement in a patent achievement transformation shows a commitment to moving research beyond the lab into real-world applications.

🔧 Areas for Improvement:

  1. Citation Impact and Indexing
    The provided articles currently have 0 citations, and there is no citation index or h-index reported. Increasing publication visibility and citation impact should be a future focus.

  2. Global Recognition and Collaboration
    There is no mention of international collaboration, editorial roles, or professional memberships, which would enhance credibility and reach.

  3. Documented Industry Linkages
    Despite some project engagement with enterprises, more evidence of sustained industry partnerships or commercialization success would strengthen the application.

  4. Books, Patents, and Conferences
    Absence of published books, patents in process, or keynote roles in international conferences limits the academic portfolio breadth.

🎓 Education:

Although specific degree details are not listed, Dr. Yang Liu has built a strong academic foundation that supports her expertise in biomedical engineering and biomechanics. Her academic journey is closely aligned with her professional role at Taiyuan University of Technology, which is known for its technical research capabilities. Dr. Liu’s knowledge spans skin tissue biology, mechanical trauma, and biomedical materials science, indicating a background that likely includes degrees in biomedical engineering, bioengineering, or a related field. Her educational experience has equipped her with the skills necessary to conduct high-level research in skin regeneration, materials science, and tissue biomechanics. Additionally, her active participation in national scientific projects and her leadership in academic innovation at the university level point to rigorous formal training and ongoing academic development.

🧪 Experience:

Dr. Yang Liu has over a decade of professional experience in biomedical research since joining the Taiyuan University of Technology in 2013. Her work has revolved around exploring the mechanical and biological factors involved in traumatic skin injury and healing. She has successfully led and contributed to multiple projects, including those funded by the National Natural Science Foundation of China and enterprise collaborations. In addition to her scientific contributions, she has also directed teaching reform projects and a patent transformation, highlighting her dual commitment to both research and education. Her experience includes a strong focus on interdisciplinary collaboration across biology, materials science, and mechanical engineering. This breadth of experience has allowed her to develop innovative biomedical materials, such as tissue-engineered skin and functional skin dressings, aimed at improving clinical treatment outcomes for burn injuries and other trauma-related skin conditions.

🔬 Research Focus:

Dr. Yang Liu’s research centers on the biomechanics of skin tissue damage and healing, with an emphasis on cutaneous trauma from burns and radiotherapy. Her work investigates how mechanical forces impact skin at multiple biological levels—molecular, cellular, tissue, and animal models. A major portion of her research explores biomedical material innovation, particularly tissue-engineered skin, skin dressings, and antibacterial materials. She is particularly focused on understanding how structural and mechanical properties of these materials can improve therapeutic outcomes. Dr. Liu also studies oxidative stress, cell migration, and protein responses under mechanical pressure, making her work crucial to trauma therapy and regenerative medicine. With a patent transformation and multiple research projects to her credit, her research is positioned at the intersection of engineering innovation and clinical application, aiming to reduce complications in skin trauma treatment and enhance recovery efficiency through scientifically engineered materials.

📚 Publications Top Notes:

  1. 🧴🧬 Preparation and characterization of nano-silver/graphene oxide antibacterial skin dressingScientific Reports, 2025

  2. 🔬⛽ Experimental study on liquid products and pore structure characteristics of anthracite saturated by supercritical CO₂Gas Science and Engineering, 2025

  3. 🧠💥 The regulatory role of the nuclear scaffold protein Emerin on the migration of amniotic epithelial cells and oxidative stress in a pressure environmentPlacenta, 2025

  4. 🛠️🔥 Annealing Response of Cold-rolled Ti₂AlNb Based Alloy Foil in Different Phase RegionsTezhong Zhuzao Ji Youse Hejin (Special Casting and Nonferrous Alloys), 2025

📝 Conclusion:

Dr. Yang Liu shows significant promise as a biomedical researcher, with a clear, focused research trajectory, practical outputs (materials for skin regeneration), and consistent project engagement at institutional and national levels. While her global visibility and citation metrics are currently limited, her research has high translational potential in trauma medicine and biomedical materials, making her a strong emerging contender for the Best Researcher Award—especially under a category recognizing early- to mid-career researchers with impactful applied science work.

Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada, Osaka Metropolitan University, Japan

Naoki Harada is an Associate Professor at Osaka Metropolitan University, Japan, with extensive expertise in molecular biology, biochemistry, endocrinology, and nutrition. He earned his Ph.D. in Life Sciences from Osaka Prefecture University in 2007. Over the past two decades, Harada has made significant contributions to understanding the physiological and biochemical mechanisms underpinning metabolic diseases, particularly type 2 diabetes. His research, characterized by high citation impact (H-index of 25), centers on pancreatic β-cell function and metabolic regulation. He has published 77 peer-reviewed articles and holds a patent related to therapeutic interventions. Harada has collaborated with leading scientists like Professors Hiroshi Inui and Ryoichi Yamaji, strengthening his academic footprint in both national and international circles. A member of multiple scientific societies, Harada continues to influence the field through impactful research, industry collaboration, and educational leadership.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Consistent Research Output

    • 77 peer-reviewed publications in reputable journals (SCI, Scopus).

    • Recent high-impact studies published in Journal of Biological Chemistry, Scientific Reports, and FASEB BioAdvances.

    • Active research profile with an H-index of 25 and over 1,785 citations.

  2. Innovative Scientific Contributions

    • Identified REDD2 as a novel therapeutic target for type 2 diabetes—bridging basic research with translational medicine.

    • Works across disciplines such as molecular biology, endocrinology, and nutritional biochemistry.

  3. Project Leadership & Industry Engagement

    • Led or participated in 14 major research projects.

    • 5 consultancy/industry-based projects, reflecting application-oriented research.

  4. Academic and Collaborative Network

    • Strong academic collaborations with Professors Hiroshi Inui and Ryoichi Yamaji.

    • Member of prestigious scientific societies (e.g., Japanese Biochemical Society, Japan Society of Nutrition and Food Science).

  5. Scientific Versatility

    • Contributions span fundamental mechanisms (e.g., oxidative stress, insulin signaling) to dietary interventions (e.g., mogrol, oleamide).

    • Demonstrates ability to bridge molecular insights with systemic physiological outcomes.

⚙️ Areas for Improvement:

  1. International Visibility and Engagement

    • Expanding participation in international conferences and editorial boards could elevate his global scientific standing.

    • Pursuing cross-border collaborations would further enrich the translational value of his work.

  2. Commercialization and Patent Activity

    • While one patent is noted, increased focus on intellectual property development and biomedical commercialization could further validate his applied research strength.

  3. Outreach and Communication

    • More active public science communication (e.g., webinars, policy advocacy, media coverage) would amplify the societal impact of his research.

🎓 Education:

Naoki Harada received his Ph.D. in Life Sciences from Osaka Prefecture University, Osaka, Japan, in September 2007. His doctoral studies laid the foundation for his interdisciplinary research in molecular biology, biochemistry, and endocrinology. Harada’s academic path was driven by a keen interest in the cellular and molecular mechanisms underlying metabolic regulation, particularly in relation to glucose homeostasis and pancreatic function. His education provided him with a solid grounding in experimental techniques, critical thinking, and scientific communication, which have become hallmarks of his later work. The institution, known for excellence in biosciences, enabled Harada to cultivate a strong research acumen. His academic training was complemented by exposure to applied research, linking basic science with clinical and nutritional applications—an approach that he has continued to emphasize throughout his career. His strong educational background plays a pivotal role in his current research endeavors and professional development.

💼 Experience:

Dr. Naoki Harada began his academic career in 2008 as an Assistant Professor at the Graduate School of Life and Environmental Sciences, Osaka Prefecture University. He was promoted to Lecturer in 2015, and subsequently to Associate Professor in 2019. Since 2022, he has served as Associate Professor at the Graduate School of Agriculture, Osaka Metropolitan University. Harada has consistently combined teaching with intensive research, mentoring graduate students while advancing his lab’s focus on metabolic diseases and endocrine physiology. His experience includes leading 14 research projects, consulting on 5 industry-linked nutrition initiatives, and co-authoring over 75 scientific papers. His experience reflects a blend of academic leadership, scientific innovation, and multidisciplinary collaboration. Notably, Harada’s role in identifying REDD2 as a therapeutic target exemplifies his contribution to translational science. He maintains strong academic partnerships and actively contributes to several professional societies, making him a respected figure in Japan’s scientific community.

🔬 Research Focus:

Naoki Harada’s research is at the intersection of molecular biology, endocrinology, and nutrition science, with a particular focus on pancreatic β-cell physiology and glucose metabolism. He investigates how oxidative stress, hormonal signals, and metabolic regulators influence insulin secretion and β-cell viability. One of his pivotal contributions is identifying the REDD2 gene as a negative regulator of β-cell function, offering novel therapeutic targets for type 2 diabetes mellitus. His studies also explore nutrient-sensing pathways, G-protein-coupled receptors, and hormonal modulation of energy metabolism. Harada’s recent work delves into the effects of dietary compounds like mogrol and oleamide on metabolic health, linking molecular mechanisms to real-world dietary interventions. His ability to bridge bench science with clinical and nutritional applications sets his research apart. Through collaborations with leading experts and high-impact publications, Harada continues to advance knowledge in the prevention and treatment of metabolic disorders.

📚 Publications Top Notes:

  • 🧬 REDD2 confers pancreatic β-cell dysfunction in high-fat diet-fed miceJournal of Biological Chemistry, 2025

  • 🦷 Androgens suppress ST3GAL1/4, modulating mucin glycosylation and microbiota in miceBioscience, Biotechnology, and Biochemistry, 2025

  • 🍟 CRTC1 in MC4R cells regulates dietary fat intakeFASEB BioAdvances, 2024

  • 💉 Insulin reduces ER stress-induced apoptosis in INS-1 β-cellsPhysiological Reports, 2024

  • 🍬 Mogrol activates GPBAR1 and insulin secretion, alleviates hyperglycemiaScientific Reports, 2024

  • 🔥 Androgen receptor suppresses β-adrenoceptor-mediated thermogenesisJournal of Biological Chemistry, 2022

  • 🏥 Age-dependent sex differences in NAFLD in TSOD and db/db micePLOS ONE, 2022

  • 🐭 Dietary oleamide attenuates obesity in caged miceBioscience, Biotechnology, and Biochemistry, 2022

  • 🌿 Curcumin targets GPR55 receptornpj Science of Food, 2022

  • 💪 Oleamide rescues muscle atrophy in small-caged miceBritish Journal of Nutrition, 2021

🧾 Conclusion:

Dr. Naoki Harada demonstrates a clear trajectory of research excellence, grounded in scientific rigor and driven by impactful biomedical questions. His ability to identify molecular mechanisms (e.g., REDD2’s role in β-cell dysfunction) and propose therapeutic directions sets him apart as a leading academic in metabolic disease research. His publication record, industry collaborations, and professional memberships underscore a mature and influential academic career.