Lijuan Deng | Molecular Mechanisms Signaling | Molecular Cell Biology Award

Mrs. Lijuan Deng | Molecular Mechanisms Signaling | Molecular Cell Biology Award

Mrs. Lijuan Deng , Zhongshan Institute for Drug Discovery , China

Lijuan Deng is a passionate graduate student researcher at the Zhongshan Institute for Drug Discovery in China, specializing in the molecular mechanisms underlying metabolic diseases. Her scientific curiosity centers on gene regulation, signaling pathways, and metabolic dysregulation in disease progression, particularly metabolic-associated fatty liver disease (MASLD). Her translational approach blends experimental models and bioinformatics to bridge basic science and therapeutic innovation. Lijuan has already co-authored a publication in The FASEB Journal, identifying CDKN1A as a key regulator in MASLD. She is also the inventor of a patent-pending technique for nascent RNA labeling in extracellular vesicles. Through collaborations with clinical researchers and a solid foundation in molecular biology techniques, she is positioning herself as a rising talent in cell biology. Her work promises to advance understanding and treatment of metabolic diseases.

Publication Profile:

Orcid

āœ… Strengths for the Award:

  1. Innovative Research: Lijuan Deng has significantly contributed to the understanding of MASLD (Metabolic-Associated Steatotic Liver Disease) by identifying CDKN1A as a key regulatory gene through integrated transcriptomic analysis and experimental validation.

  2. Translational Focus: Her research bridges molecular biology and clinical application, enhancing its impact in drug discovery and disease diagnostics.

  3. Publication Record: She is the first author of a peer-reviewed article published in The FASEB Journal (SCI-indexed), showcasing her ability to conduct and communicate high-quality research.

  4. Patent Innovation: She holds a pending patent for a novel method involving nascent RNA labeling in extracellular vesicles, showing her drive toward technological advancement and biomedical innovation.

  5. Collaborative Approach: Active collaboration with the Department of Endocrinology at Shenzhen Second People’s Hospital reflects strong interdisciplinary and clinical integration.

🧩 Areas for Improvement:

  1. Expanded Publication Portfolio: Increasing the number of peer-reviewed articles will strengthen her academic visibility and impact.

  2. Professional Networking: Engagement in international cell biology societies or conferences and obtaining professional memberships can support broader recognition and growth.

  3. Editorial/Leadership Roles: Participation in editorial boards, review panels, or student leadership roles can enrich her professional development profile.

šŸŽ“ Education:

Lijuan Deng is currently pursuing her graduate studies in molecular biology at the Zhongshan Institute for Drug Discovery, where she focuses on translational biomedical research. Her academic foundation includes advanced coursework in biochemistry, molecular genetics, and cellular signaling. Through structured academic training, she has acquired proficiency in modern laboratory methods, including RNA sequencing, qPCR, western blotting, and exosome analysis. Her education emphasizes critical thinking and scientific rigor, enabling her to design experiments, analyze data, and interpret biological outcomes. She regularly participates in academic seminars, journal clubs, and collaborative workshops to refine her scientific acumen. Her thesis research is centered around identifying novel molecular targets in MASLD, a field gaining global relevance. Lijuan’s education is not only shaping her technical capabilities but also nurturing her ambition to contribute to impactful, real-world medical solutions through cell biology research.

šŸ’¼ Experience:

Lijuan Deng has gained extensive laboratory experience as a graduate student researcher at the Zhongshan Institute for Drug Discovery. Her hands-on work includes both cellular and animal models, with a strong focus on metabolic disease mechanisms. She played a key role in identifying CDKN1A as a potential MASLD progression factor, combining transcriptomic data analysis with molecular validation. Additionally, she has worked on exosome-based biomarker discovery and developed a patent-pending method for nascent RNA labeling. She collaborates with the Department of Endocrinology at Shenzhen Second People’s Hospital, providing a clinical dimension to her work. Though early in her career, her contributions to translational research are already making an impact. She is skilled in molecular biology, gene expression profiling, and therapeutic target screening. Her research experience has been shaped by interdisciplinary collaboration, scientific publications, and the ambition to innovate within the field of molecular cell biology.

🧬 Research Focus:

Lijuan Deng’s research is primarily focused on the molecular underpinnings of metabolic-associated fatty liver disease (MASLD), a key manifestation of metabolic syndrome. She investigates how dysregulated genes, signaling networks, and lipid metabolism contribute to disease initiation and progression. A major highlight of her work is identifying CDKN1A as a potential risk factor in MASLD using integrated bioinformatics and experimental techniques. Additionally, she explores the utility of extracellular vesicles as carriers of diagnostic biomarkers and therapeutic molecules. Her patent-pending work involves a novel method for labeling nascent RNA within exosomes, opening possibilities for tracking dynamic RNA communication in disease contexts. Her research strategy merges molecular biology with disease modeling, aiming to bridge laboratory discoveries with potential therapeutic strategies. Through strong collaborations and a translational research outlook, Lijuan is dedicated to uncovering actionable insights that can inform drug development for complex metabolic disorders.

šŸ“š Publications Top Notes:

  • 🧾 “Identification of CDKN1A as a potential key risk factor in MASLD progression.” – The FASEB Journal, 2025. DOI: 10.1096/fj.202402942R

🧾 Conclusion:

Lijuan Deng stands out as an emerging researcher with strong foundations in molecular cell biology and a clear orientation toward translational science. Her innovative work in MASLD, combined with an SCI publication and a pending patent, make her a highly suitable and promising candidate for the Molecular Cell Biology Award. While she is in the early stages of her career, her achievements thus far indicate substantial potential for future contributions to the field.

Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong TanĀ  , Xiangya Hospital, Central South University , China

Professor Zhirong Tan is a leading Chinese expert in pharmacogenomics and clinical pharmacology. Currently a professor at Xiangya Hospital, Central South University, he also serves as the Director of the Pharmacogenetics and Pharmacokinetics Research Laboratory and Deputy Director of the Drug Analysis Center. He has been instrumental in over 300 clinical trials, pushing forward the frontiers of precision medicine, especially in colorectal cancer and Alzheimer’s disease. With over 20 SCI papers, multiple patents, and co-authorship of four books, he’s widely recognized for his work in pharmacokinetics and biomarker discovery. A national GCP and GMP inspector, Prof. Tan actively contributes to pharmaceutical regulation and innovation in China. His academic and industry partnerships reflect a robust foundation in translational research and real-world drug development.

Publication Profile:Ā 

Google Scholar

āœ… Strengths for the Award:

  1. Extensive Research Contributions
    Prof. Zhirong Tan has made outstanding contributions to clinical pharmacology, pharmacogenetics, and metabolomics over two decades. His research has provided critical insights into drug metabolism, biomarker discovery, and precision medicine, especially in colorectal cancer and Alzheimer’s disease.

  2. Prolific Publication Record
    With over 22 SCI-indexed publications (first or corresponding author) and 6 CSCD papers, Prof. Tan’s research has achieved over 3550 citations and an H-index of 33 on Web of Science—evidence of the high impact and recognition of his work.

  3. Strong National & Industry Collaborations
    He has participated in or led 300+ clinical trials and secured 5 “Million+” industry-funded projects, reflecting strong ties with both academia and industry. His leadership in national-level projects, such as the “Major New Drug Development” program, showcases his influence in China’s healthcare innovation.

  4. Intellectual Property and Innovation
    With 3 granted patents and 3 under review, Prof. Tan’s ability to translate research into practical applications is evident. His individualized esomeprazole dosing regimen highlights innovation at the clinical level.

  5. Regulatory & Policy Contributions
    As a national GCP/GMP inspector, he plays a pivotal role in drug trial ethics and compliance in China. He also holds leadership roles in pharmacogenomics committees, further demonstrating his commitment to public health advancement.

  6. Academic Mentorship and Editorial Work
    In addition to research, Prof. Tan contributes as a journal reviewer, co-author of four textbooks, and mentor to the next generation of scientists, reinforcing his role as a thought leader in the field.

šŸ” Areas for Improvement:

  1. International Visibility
    While Prof. Tan’s national presence is remarkable, further international collaborations, invited keynotes at global conferences, or leading roles in global consortia could enhance his visibility and expand the influence of his work.

  2. Broader Publication Range
    Publishing more frequently in top-tier international journals (e.g., Nature, The Lancet, NEJM) would increase the global academic reach of his findings.

  3. Open Science & Data Sharing
    As the field moves toward transparency, incorporating open-access publications and shared data repositories could boost both reproducibility and citations.

šŸŽ“ Education:

Professor Zhirong Tan obtained his Ph.D. from Central South University, a premier Chinese institution, where he laid the groundwork for his expertise in clinical pharmacology and pharmacogenomics. He later pursued postdoctoral research at the School of Pharmacy, University of Maryland, Baltimore, one of the top pharmaceutical research institutions in the United States. This international experience enabled him to gain a global perspective in drug metabolism, biomarker identification, and translational pharmacology. His academic training focused on cutting-edge methodologies such as metabolomics, pharmacokinetics, and precision medicine. Through continuous education and research, he has built a reputation as a highly skilled pharmacologist whose work bridges basic research and clinical applications.

šŸ’¼ Experience:

With a research career spanning over two decades since 1998, Professor Zhirong Tan has led and participated in numerous national-level and provincial-level projects, including China’s National Science and Technology Major Projects. He currently holds multiple leadership positions at Xiangya Hospital, Central South University. Over the years, he has completed major research grants from NSFC, the Hunan Province, and the Ministry of Science and Technology. As a GCP and GMP inspector, Prof. Tan has overseen more than 300 clinical trials, ensuring drug development meets regulatory and ethical standards. His experience also extends to industry collaboration, with successful execution of 5 “Million+” funded projects and influential roles in pharma-academic alliances. A frequent peer reviewer and contributor to international journals, his work influences both the scientific community and regulatory frameworks.

šŸ”¬ Research Focus:

Professor Tan’s primary research focus lies in clinical pharmacology, pharmacogenomics, and metabolomics, particularly for colorectal cancer and Alzheimer’s disease. His work aims to identify and validate biomarkers for disease diagnosis, drug efficacy, and toxicity prediction. A major contributor to China’s “Major New Drug Development” initiative, he has developed personalized esomeprazole dosing regimens by studying genetic polymorphisms, SNPs, and microRNA interactions. His research also explores the pathogenesis of Alzheimer’s disease using metabolomic profiling, offering insights into early detection and potential therapeutics. He applies advanced bioanalytical methods to understand inter-individual variability in drug metabolism and therapeutic response. His projects have real-world clinical implications, transforming how drugs are prescribed, regulated, and monitored. Through his pioneering work, Prof. Tan contributes significantly to the evolution of precision medicine in China.

šŸ“š Publication Top Notes:

  1. šŸ“Š Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males

  2. ā¤ļø Gly389Arg polymorphism of β1‐adrenergic receptor and cardiovascular response to metoprolol

  3. šŸ’Š CYP2C19 ultra-rapid metabolizer genotype affects voriconazole pharmacokinetics

  4. 🧬 HLA‐B35:01 allele as biomarker for Polygonum multiflorum–induced liver injury*

  5. 🌿 Repeated berberine administration inhibits cytochromes P450 in humans

  6. šŸ’‰ Effect of SLCO1B1 polymorphism on pharmacokinetics of nateglinide

  7. 🧪 Assessment of cytochrome P450 activity by five‐drug cocktail approach

  8. ā˜• Plasma caffeine metabolite ratio linked to CYP1A2 polymorphisms

  9. šŸ”¬ Inducibility of CYP1A2 by omeprazole associated with genetic polymorphism

  10. 🧫 Ile118Val polymorphism of CYP3A4 affects simvastatin lipid-lowering efficacy

šŸ“ Conclusion:

Professor Zhirong Tan is a highly deserving candidate for the Best Researcher Award. His record of scientific excellence, clinical innovation, and regulatory leadership clearly positions him as a key contributor to modern pharmacology. His integrated approach—spanning basic science, clinical trials, and health policy—has had a measurable impact on patient care and drug development in China.

While there is room to further expand his global footprint, his accomplishments to date already demonstrate the caliber, commitment, and consistency expected of a world-class researcher.

Xingting Guo | Stem Cell Research | Best Researcher Award

Assist. Prof. Dr. Xingting Guo | Stem Cell Research | Best Researcher Award

Assist. Prof. Dr. Xingting Guo , Peking University Third Hospital , China

Dr. Xingting Guo is a dedicated postdoctoral fellow at the National Institute of Biological Sciences (NIBS), Beijing, where she has been working since 2018. With a strong academic foundation in biochemistry and molecular biology, her research delves into stem cell biology, cellular differentiation, and tumorigenesis using Drosophila and mouse models. Her expertise lies in integrating genetics, biochemistry, single-cell sequencing, and bioinformatics to unravel mechanisms of cell fate specification and intestinal homeostasis. Dr. Guo has co-authored several high-impact publications and has presented her research at both national and international conferences. Her contributions have significantly advanced our understanding of enteroendocrine cells (EECs), tissue identity, and inter-organ communication. Passionate and detail-oriented, she is actively contributing to biomedical sciences with a vision to translate fundamental biology into therapeutic insights. Her work is paving the way for novel treatments for metabolic diseases and cancers.

Publication Profile:

Scopus

āœ… Strengths for the Award:

  1. Innovative Research Focus: Dr. Guo has made pioneering contributions in stem cell biology, particularly in understanding cell fate specification, enteroendocrine diversity, and tumor suppression using Drosophila and murine models.

  2. Multidisciplinary Skillset: She integrates genetics, high-throughput sequencing, bioinformatics, organoid culture, and in vivo models, showcasing deep technical expertise.

  3. High-Impact Publications: Co-first author in multiple peer-reviewed journals, including Cell Reports, Nature Communications, and FEBS Journal.

  4. Leadership in Research: From graduate researcher to postdoctoral fellow, she has led multiple independent projects, contributing novel findings to developmental and regenerative biology.

  5. International Recognition: Regular presenter at top-tier conferences globally, including the European Drosophila Research Conference and Annual Drosophila Research Conference (USA).

  6. Research Funding: Successfully secured National Natural Science Foundation of China funding, reflecting scientific merit and recognition.

šŸ” Areas for Improvement:

  1. Broader Collaboration: Expanding collaborations outside her current institute or internationally may enhance the translational reach and impact of her research.

  2. Mentorship Roles: While her research is strong, formal mentorship roles (e.g., supervising Ph.D. students) or teaching contributions could further demonstrate leadership.

  3. Clinical Translation: Though her mouse model work touches on therapeutic discovery, publishing more translational or clinical-facing studies could boost her impact in applied biomedical research.

šŸŽ“ Education:

Dr. Xingting Guo earned her Ph.D. in Biochemistry and Molecular Biology from the College of Life Sciences at Beijing Normal University (2012–2018), where she began her in-depth research on stem cell biology and tissue differentiation in Drosophila. Prior to this, she completed her Bachelor’s degree in Biological Engineering at Nanjing Agricultural University (2008–2012), where she was honored with multiple scholarships for academic excellence. Throughout her education, she developed a robust foundation in molecular biology, genetics, and developmental biology, equipping her with the skills to tackle complex biological questions. Her academic journey has been characterized by continuous academic excellence, curiosity-driven research, and a commitment to uncovering the molecular mechanisms of health and disease. Her education laid the groundwork for her successful transition to cutting-edge postdoctoral research in developmental biology and regenerative medicine.

šŸ’¼ Experience:

Dr. Guo began her research career at NIBS Beijing as a graduate student in 2012, transitioning into a postdoctoral fellow in 2018 under the mentorship of Dr. Rongwen Xi. Her research primarily uses Drosophila intestinal systems and murine models to explore the regulation of cellular identity, differentiation, and plasticity. She has led multiple projects on tumor suppression, transcriptional regulation, and enteroendocrine diversity using advanced techniques like genetic manipulation, single-cell RNA sequencing, and organoid cultures. Additionally, she contributes to translational research by identifying drug targets for diabetes-related therapy by reprogramming intestinal cells into insulin-producing β-cells. Her interdisciplinary approach and long-standing expertise in stem cell biology highlight her versatility and innovation in research. Her consistent progression from graduate student to independent researcher reflects her strong scientific rigor and leadership in high-impact studies.

šŸ† Awards and Honors:

Dr. Xingting Guo has been recognized for her academic excellence and scientific contributions through numerous honors. During her Ph.D., she was awarded the First Class Academic Scholarship for two consecutive years (2014–2016). As an undergraduate, she earned the prestigious Cyrus Tang Scholarship four times, along with the First Class Scholarship at Nanjing Agricultural University. In recent years, she has taken on the role of a peer reviewer for Bio-protocols, highlighting her engagement with the scientific community. Dr. Guo’s research excellence has led her to represent her work at top-tier conferences, including the Annual Drosophila Research Conference (USA) and the European Drosophila Research Conference (Switzerland). Her contributions were also supported by a grant from the National Natural Science Foundation of China (Grant No. 3210050518), demonstrating her ability to secure competitive funding. These accolades mark her as a rising star in molecular and developmental biology.

šŸ”¬ Research Focus:

Dr. Guo’s research focuses on the molecular regulation of stem cell differentiation, cellular identity maintenance, and neuroendocrine cell plasticity using Drosophila and mouse models. She investigates how transcription factors such as ttk69 influence enteroendocrine (EEC) specification, tissue homeostasis, and tumor suppression. Using cutting-edge tools like CRISPR, single-cell transcriptomics, and in vivo lineage tracing, she deciphers how intestinal stem cells differentiate into diverse terminal cell types. Her recent work explores how intestinal EECs regulate systemic physiology via neuropeptides in response to environmental cues like starvation and mating. In parallel, she studies cell-fate reprogramming in mammals to identify potential therapeutic strategies for diabetes by inducing insulin-producing cells in the gut. By bridging basic biology with translational goals, her work contributes to regenerative medicine, oncology, and metabolic disease research.

šŸ“š Publications Top Notes:

  • 🧠 Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor, Nature Communications, 2024

  • šŸ” The Specification and Function of Enteroendocrine Cells in Drosophila and Mammals: A Comparative Review, FEBS Journal, 2021

  • 🧬 A Switch in Tissue Stem Cell Identity Causes Neuroendocrine Tumors in Drosophila Gut, Cell Reports, 2020

  • 🧫 The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells, Cell Reports, 2019

  • 🧬 Division of Labor: Roles of Groucho and CtBP in Notch-Mediated Lateral Inhibition, Stem Cell Reports, 2019

  • šŸ“˜ Signaling Pathways Regulating Stem Cells, Book Chapter, Springer, 2015

  • šŸ›‘ Ttk69 acts as a master repressor of enteroendocrine cell specification, Development, 2015

  • 🧪 EGFR and Notch signaling regulate gastric stem cells, Cell Research, 2014

  • 🧠 Sox9 Ortholog Regulates Intestinal Homeostasis and Regeneration in Drosophila, Cell Reports, 2020

🧾 Conclusion:

Dr. Xingting Guo is a highly qualified and deserving candidate for the Best Researcher Award. Her exceptional track record in stem cell biology, cellular reprogramming, and disease modeling makes her a rising star in the life sciences. With a unique combination of technical excellence, scientific innovation, and publication strength, she has already made a significant impact on our understanding of intestinal cell biology and endocrine regulation. Addressing a few career development aspects—like expanding collaborative networks and clinical translation—will make her an even more formidable leader in the field. Given her achievements, potential, and contributions, she is strongly recommended for this prestigious honor.

Eman El-Wakil | Microbiology | Best Researcher Award

Assoc. Prof. Dr. Eman El-Wakil | Microbiology | Best Researcher Award

Assoc. Prof. Dr. Eman El-Wakil , Theodor Bilharz Research Institute , Egypt

Dr. Eman Sayed Shabrawy El-Wakil is an Associate Professor and Consultant of Medical Parasitology at the Theodor Bilharz Research Institute (TBRI), Egypt. Born on November 21, 1985, she has been deeply engaged in research and diagnostics of parasitic diseases, particularly focusing on molecular characterization, novel therapeutics, and gut microbiota-parasite interaction. With multiple peer-reviewed publications, she contributes to advancing parasitological science both in Egypt and internationally. She earned her M.D. in Medical Parasitology from Cairo University, and her scholarly reputation is supported by memberships and indexed profiles on ResearchGate, Google Scholar, Scopus, and ORCID. Dr. El-Wakil’s work has received notable accolades, including the prestigious TBRI award for the best doctoral research. She is also a reviewer for multiple journals and collaborates on multidisciplinary research tackling emerging parasitic threats. Her vision integrates research, education, and public health improvement through evidence-based parasitology.

Publication Profile:

Scopus

āœ… Strengths for the Award:

Dr. Eman Sayed Shabrawy El-Wakil stands out as a prominent figure in Medical Parasitology, with an impressive track record in research, publication, and applied therapeutics. Her strengths include:

  • Robust Research Output: With over 12 peer-reviewed publications in high-impact international journals between 2023–2025, her work addresses critical parasitic diseases like Cryptosporidiosis, Trichinellosis, Toxoplasmosis, and Entamoeba infections.

  • Innovative Methodologies: She has pioneered green synthesis, nanoparticle-based therapies, in silico modeling, and immunomodulatory strategies, showcasing her multidimensional expertise.

  • Academic Leadership: As an Associate Professor and Consultant at TBRI, she contributes to teaching, mentoring, and national public health research priorities.

  • International Recognition: Indexed in Scopus, Google Scholar, ORCID, and Web of Science, and recipient of the TBRI Award for the best doctoral research in 2021.

  • Interdisciplinary Collaboration: Engaged in research across nanomedicine, pharmacology, microbiota-parasite interactions, and immunotherapy.

šŸ” Areas for Improvement:

While Dr. El-Wakil’s profile is distinguished, some areas can be enhanced to strengthen her global impact:

  • Increased Global Engagement: Participation in more international collaborative projects, conferences, and consortia would amplify the reach of her research.

  • Grant Acquisition: Pursuing competitive research funding (e.g., WHO, NIH, EU Horizon) would facilitate larger-scale studies and clinical applications.

  • Patents and Translational Outputs: Exploring patenting opportunities for her innovative therapeutic agents could position her as a translational research leader.

šŸŽ“ Education:

Dr. El-Wakil earned her Master’s (M.Sc.) in Medical Parasitology with Excellent distinction in May 2015, and her Doctorate (M.D.) in Medical Parasitology in May 2018 from the Faculty of Medicine, Cairo University. Her educational path is marked by excellence in theoretical and applied parasitology, encompassing key disciplines like Molecular Parasitology, Immunology, and Medical Parasitology. Her M.D. thesis, titled “Isolation and Molecular Characterization of Free-Living Amoebae from Water Sources in Egypt”, reflected her early interest in environmental parasitology and public health. The academic structure of her doctoral program integrated critical courses in host-parasite interactions and advanced diagnostic techniques, equipping her with both field and laboratory expertise. Her education established a strong foundation for a career defined by innovation, critical thinking, and translational research in parasitic diseases.

šŸ’¼ Experience:

Currently serving as an Associate Professor and Consultant at TBRI’s Parasitology Department, Dr. El-Wakil brings over a decade of expertise in diagnostics, molecular biology, and experimental parasitology. She operates within the Immunology and Drug Evaluation Division, where she contributes to therapeutic investigations and drug repurposing studies targeting helminths and protozoa. Her consultancy role extends to research mentorship, scientific reviews, and diagnostic innovations for parasitic infections in Egypt. She also works closely with governmental and academic institutions under the Ministry of Higher Education and Scientific Research. Her leadership roles in various inter-institutional projects have propelled the institute’s visibility in parasitology. She also manages collaborations involving nanotechnology, bioinformatics, and herbal medicine as potential parasitic treatments. Dr. El-Wakil exemplifies a blend of academic rigor and applied science, aligning her role with national health priorities and global research trends.

šŸ… Honors and Awards:

Dr. El-Wakil was honored with the Theodor Bilharz Research Institute Award in 2021 for the best research derived from a doctoral dissertation—an acknowledgment of her innovation in parasitological research. This award recognized her pioneering work on free-living amoebae and her methodological precision. In addition to institutional awards, her research has been showcased in multiple open-access international journals, and she frequently receives commendations for excellence in experimental design and publication impact. Her work on novel anti-parasitic agents and immunotherapeutic approaches has attracted attention in scientific forums. She has also contributed to multi-author reviews on global health topics such as SARS-CoV-2 vaccines, highlighting her versatility as a researcher. Her awards reflect both her depth of knowledge and the real-world applicability of her research in enhancing public health outcomes.

šŸ”¬ Research Focus:

Dr. El-Wakil’s research concentrates on the epidemiology, molecular diagnostics, and therapeutic strategies for parasitic infections. Her work integrates natural product pharmacology, nanotechnology-based delivery systems, and immune modulation therapies. Her investigations cover a broad spectrum of parasites, from protozoa like Cryptosporidium and Entamoeba, to helminths such as Trichinella spiralis. Recent research includes green synthesis of nanoparticles, bioinformatics-based molecular docking, and gut microbiota-parasite interactions. A recurring theme in her research is the repurposing of existing drugs for parasitic treatment, evaluated both in vitro and in vivo. She also explores the interplay between host immunity and parasitic infection using molecular signaling pathways such as P2X7 receptors. Her focus on translational parasitology bridges basic research and therapeutic innovation, providing insights into both endemic and emerging infections in Egypt and beyond.

šŸ“š Publications Top Notes:

  1. šŸŠ Green Synthesis of Chitosan/Silver Nanoparticles Using Citrus paradisi Extract and Its Potential Anti-Cryptosporidiosis Effect

  2. 🧬 Microbiota-Parasite Interaction: Implication of Secretory Immunoglobulin A and P2X7 Receptor Signaling

  3. 🌿 Repurposing Drugs to Treat Trichinellosis: In Vitro Analysis of Nifedipine and Chrysanthemum coronarium Extract

  4. 🧪 Prevalence and Molecular Identification of Entamoeba Species Complex in Egyptians

  5. šŸ“Š Mapping Gut Parasitism Patterns in a Cohort of Egyptians

  6. šŸƒ Annona Muricata Leaf as an Anti-Cryptosporidial Agent: In Silico and In Vivo Study

  7. 🌼 Prophylactic and Therapeutic Effects of Kaempferol on Experimental Trichinella Spiralis

  8. šŸ’Š Surfactant Vesicles for Enhanced Antitoxoplasmic Effect of Norfloxacin

  9. 🧾 SARS-CoV-2 Vaccines from A to Z: A Review of the Current Challenges

  10. šŸ’‰ Albendazole and Berberine Nanoparticles in Experimental Trichinellosis

  11. 🌿 Therapeutic Efficacy of Silymarin on Intestinal and Muscular Phases of Trichinellosis

  12. 🧫 Trichinella spiralis Antigens for Inflammatory Bowel Disease: Immunotherapeutic and Prophylactic Potential

🧾 Conclusion:

Dr. Eman S. El-Wakil demonstrates excellence in research productivity, scientific innovation, and professional engagement. Her contributions to parasitology—especially in the field of therapeutic innovation using natural compounds and nanoparticles—mark her as an emerging leader in her field. Given her academic rigor, publication record, and commitment to tackling parasitic diseases of global health concern, she is an outstanding candidate for the Best Researcher Award.

Wen Li | Tissue Engineering Regeneration | Best Researcher Award

Mr. Wen Li | Tissue Engineering Regeneration | Best Researcher Award

Mr. Wen Li , State key laboratory of supramolecular structure and materials, college of chemistry, Jilin University , China

Professor Wen Li is a leading scientist at the College of Chemistry, Jilin University, recognized for his contributions to peptide- and protein-based bioactive materials. Earning his Ph.D. from Jilin University in 2006, he rapidly advanced through academic ranks—from lecturer to full professor by 2013. His academic journey also includes postdoctoral research at Seoul National University, South Korea. Professor Li’s interdisciplinary research integrates chemistry, materials science, and biomedical applications, positioning him as a pioneering figure in supramolecular chemistry and bioinspired adhesives. With numerous high-impact publications and innovations in antimicrobial peptides, tissue sealants, and soft electronics, he has significantly contributed to both scientific knowledge and real-world biomedical applications. His commitment to translating fundamental research into functional materials continues to drive breakthroughs in sustainable, degradable, and biocompatible materials.

Publication Profile:

Orcid

āœ… Strengths for the Award:

  1. Outstanding Academic Progression

    • From Ph.D. completion in 2006 to full professorship by 2013, Professor Wen Li has shown rapid and consistent academic advancement.

    • He has international research exposure through his postdoctoral work at Seoul National University.

  2. High-Impact Research Contributions

    • Published extensively in top-tier journals such as Angewandte Chemie, Biomaterials, Advanced Healthcare Materials, Langmuir, and Journal of Materials Chemistry.

    • His research is highly interdisciplinary, linking peptide self-assembly, biomaterials, antimicrobial systems, and energy devices.

  3. Real-World Impact & Innovation

    • Developed cutting-edge bioadhesives, nano-antimicrobial systems, and biodegradable materials with significant medical and environmental relevance.

    • Strong emphasis on sustainability, biocompatibility, and smart responsive materials like redox or photo-controlled systems.

  4. Leadership and Collaboration

    • Leads a productive research group, mentoring young scientists and collaborating across multiple institutions.

    • His publications include a large network of co-authors, showing evidence of team science and academic collaboration.

  5. Diverse Research Outputs

    • Contributions span various formats: fundamental studies, applied innovations, material designs, and medical applications.

    • From self-healing hydrogels to stretchable supercapacitors, his portfolio is both deep and diverse.

āš ļø Areas for Improvement:

  1. Commercial and Clinical Translation

    • While the foundational work is strong, more efforts toward industrial partnerships and clinical trials would increase real-world adoption.

    • Filing patents or working with biotech/medical device companies could help scale his research outcomes.

  2. Global Visibility

    • Greater involvement in international conferences, editorial boards, or global initiatives can further enhance his global academic footprint.

    • Collaborative projects with top labs outside Asia could diversify perspectives and increase influence.

šŸ“˜ Education:

Wen Li received his Ph.D. in Chemistry from Jilin University in 2006, a prestigious institution known for its advanced research in materials and chemical sciences. His doctoral studies focused on supramolecular structures, laying the foundation for his career in peptide and polymer-based materials. The rigorous academic environment at Jilin University equipped him with deep insights into molecular interactions, material fabrication, and biomedical chemistry. After completing his Ph.D., he expanded his academic perspective by pursuing postdoctoral research at Seoul National University (2010–2011), one of South Korea’s top-tier research universities. There, he collaborated on interdisciplinary projects that fused chemistry with nanotechnology and biomaterials. This international experience enriched his scientific worldview and further refined his expertise in designing functional peptide-based assemblies. His academic training bridges the gap between molecular chemistry and real-world applications, particularly in the biomedical and environmental sectors.

šŸ‘Øā€šŸ”¬ Experience:

Professor Wen Li began his academic career as a lecturer at the State Key Laboratory of Supramolecular Structures and Materials, Jilin University, immediately after receiving his Ph.D. in 2006. By 2008, he was promoted to Associate Professor due to his early contributions to peptide-based material science. Between 2010 and 2011, he broadened his research capabilities as a postdoctoral fellow at Seoul National University, where he engaged in collaborative research on supramolecular assemblies and nano-biotechnology. Returning to Jilin University, he became a full professor in September 2013, leading a dynamic research group dedicated to cutting-edge biomaterials and soft electronics. With over 15 years of academic and research experience, Professor Li has mentored numerous graduate students, secured significant research grants, and maintained a strong publication record. His career trajectory reflects continuous advancement in leadership, interdisciplinary collaboration, and innovation in bioinspired materials.

šŸ”¬ Research Focus:

Professor Wen Li’s research centers on the design and fabrication of peptide- and protein-based bioactive materials with applications in healthcare and sustainability. His work explores self-assembling nano-antimicrobial peptides, biomimetic underwater adhesives, tissue sealants, and flexible hydrogel electronics, integrating supramolecular chemistry with biomedical engineering. A notable strength of his research lies in creating multifunctional materials that are not only biocompatible and degradable but also smart and responsive, such as photo-switchable or redox-reactive assemblies. His group develops materials that perform complex biological tasks—like sealing tissues, healing wounds, or delivering antimicrobial activity—while maintaining eco-friendly characteristics. Recent efforts also include bio-plastics and adhesive tapes for surgical and environmental use. Professor Li’s innovations address pressing challenges in medical technology and sustainability, aiming for materials that are both high-performing and environmentally conscious. His work bridges disciplines and has wide-ranging impact across chemistry, medicine, and green materials science.

šŸ“š Publications Top Notes:

  1. 🧬 Polyoxometalate-Driven Self-Assembly of Short Peptides into Multivalent Nanofibers with Enhanced Antibacterial Activity – Angew. Chem. Int. Ed. (2016)

  2. šŸ”¦ Host–Guest Interaction Driven Peptide Assembly into Photoresponsive 2D Nanosheets with Switchable Antibacterial Activity – CCS Chem. (2021)

  3. 🧪 Nano-Antimicrobial Peptides Based on Constitutional Isomerism-Dictated Self-Assembly – Biomacromolecules (2022)

  4. 🧲 Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives – Biomacromolecules (2022)

  5. šŸ’§ Wet and Functional Adhesives from One-Step Self-Assembly of Amino Acids and Polyoxometalates – Angew. Chem. Int. Ed. (2017)

  6. 🩹 Peptide/Glycyrrhizic Acid Supramolecular Polymer: A Medical Adhesive for Dural Sealing – Biomaterials (2023)

  7. 🌿 Plant Protein-Peptide Supramolecular Polymers for Surgical Sealing – Adv. Healthcare Mater. (2023)

  8. āš™ļø Protein-Based Supramolecular Adhesive with On-Demand Adhesion for Preventing Tissue Adhesion – Chem. Eng. J. (2025)

  9. šŸ”‹ Embedding Hydrogel Electrodes for Stretchable High-Performance Supercapacitors – Chem. Eng. J. (2024)

  10. 🧼 Advances in Peptide/Polymer Antimicrobial Assemblies – J. Mater. Chem. B (2025)

🧾 Conclusion:

Professor Wen Li is a highly deserving candidate for the Best Researcher Award. His research addresses critical scientific and societal challenges, such as antimicrobial resistance, surgical innovation, and eco-friendly material development. He combines rigorous chemistry with creative engineering, producing solutions that are both scientifically novel and practically viable.

Raphaƫl Rodriguez | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Raphaƫl Rodriguez | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Raphaƫl Rodriguez , CNRS, Institut Curie, France

RaphaĆ«l Rodriguez, born October 27, 1978, in Avignon, France, is a pioneering chemical biologist and Research Director at CNRS, Principal Investigator at Institut Curie, and holder of the Skłodowska-Curie Chair of Chemical Biology. A French citizen with two children, LucĆ­a del Mar and Aramis, Rodriguez is renowned for bridging chemistry and biology to unlock the molecular secrets of cancer and inflammation. Trained in the UK under legendary scientists Sir J. E. Baldwin, Sir S. Balasubramanian, and Sir S. P. Jackson, he returned to France to launch groundbreaking research on ferroptosis and metal regulation in cell adaptation. His entrepreneurial and academic excellence earned him numerous accolades, including the National Order of Merit. With more than 130 publications and several successful biotech ventures, Rodriguez continues to shape the future of medical science with bioactive molecules like Ironomycin and Pyridostatin. He is an editorial board member, reviewer, teacher, and a public voice on science.

Publication Profile:

Google Scholar

āœ… Strengths for the Award:

  1. Pioneering Scientific Impact:
    Dr. Rodriguez has contributed over 130 high-impact publications in top-tier journals like Nature, Science, JACS, Nature Chemistry, and Cell Metabolism. His work has helped define ferroptosis, a form of programmed cell death, and metal regulation in cancer—a game-changing area in molecular medicine.

  2. Innovation & Translation:
    He discovered and commercialized small molecules such as Pyridostatin, Ironomycin, and Supformin, directly impacting both science and therapeutics. His work bridges fundamental science and drug discovery.

  3. Leadership & Mentorship:
    From mentoring under renowned scientists to leading his own lab at Institut Curie, he has shaped France’s next generation of researchers in chemical biology.

  4. Recognition & Awards:
    His extensive list of prestigious awards, including the CNRS Silver Medal, Liliane Bettencourt Prize, and Knight of the National Order of Merit, reflect peer recognition on national and international levels.

  5. Entrepreneurship:
    As a co-founder of biotech companies (e.g., Adrestia Therapeutics, later acquired), he has demonstrated a rare capacity to translate discoveries into clinical and commercial value.

  6. Scientific Influence:
    Editorial board memberships and frequent invitations to over 160 major conferences show his reputation as a global thought leader in his field.

šŸ”§ Areas for Improvement:

  1. Public Engagement Scaling:
    Although Dr. Rodriguez is active in media (radio, TV, print), expanding international science outreach (e.g., global science festivals, public lectures, social media presence) could help further democratize his scientific message.

  2. Clinical Translation:
    While several molecules from his lab are commercialized, more direct clinical trials or FDA approvals tied to his molecules would elevate his impact from bench to bedside.

  3. Collaborative Diversity:
    Encouraging more global South collaborations or mentorships could help broaden his lab’s international footprint and contribute to equitable science capacity building.

šŸŽ“ Education:

RaphaĆ«l Rodriguez’s academic journey is marked by elite training and impactful credentials across Europe. He earned his PhD in Chemistry (2002–2005) through a joint program between Marseille and Oxford. He then pursued postdoctoral research as a Senior Research Associate at Cambridge’s Department of Chemistry and Gurdon Institute (2005–2012), where he developed skills at the interface of chemistry and biology. In 2012, he obtained the prestigious Habilitation Ć  Diriger des Recherches from the University of Paris-Saclay, enabling him to supervise PhD candidates and lead independent research. His rise through the academic ranks was rapid: he became a CNRS Group Leader in 2012, then Principal Investigator at Institut Curie in 2015. In 2017, he was promoted to Research Director (DR1) at CNRS. In 2020, he was awarded the Skłodowska-Curie Chair of Chemical Biology at Institut Curie. His interdisciplinary training under world-renowned mentors has uniquely positioned him at the forefront of chemical biology research.

šŸ’¼ Experience:

RaphaĆ«l Rodriguez’s professional experience is a blend of high-level research, leadership, and innovation. He began his postdoctoral career at the University of Cambridge (2005–2012), working in the Department of Chemistry and the Gurdon Institute. In 2012, he became a CNRS Group Leader at ICSN, Gif-sur-Yvette, launching his independent research career. In 2015, he transitioned to Institut Curie as a Principal Investigator, where he deepened his focus on cancer and inflammation. His promotion to Research Director (DR1) at CNRS in 2017 reflects his impact and leadership. Awarded the Skłodowska-Curie Chair of Chemical Biology in 2020, Rodriguez oversees a productive lab that investigates ferroptosis, DNA structure, and metal ion regulation in disease. He is also an entrepreneur, co-founding Adrestia Therapeutics and OrbiThera. He teaches at PSL University, organizes international conferences, and contributes to editorial boards and scientific advisory boards worldwide, maintaining a strong presence in both academia and biotech.

šŸ† Awards and Honors:

RaphaĆ«l Rodriguez has received an impressive array of honors, showcasing his impact on science and innovation. In 2024 alone, he won the CNRS Silver Medal and the Ligue Contre le Cancer Duquesne Prize. His earlier recognition includes the prestigious Liliane Bettencourt Prize for Life Sciences (2023), the Knight of the National Order of Merit (2022, presented by Nobel Laureate Jean-Marie Lehn), and the Klaus Grohe Prize (2022). He has also been awarded the Antoine Lacassagne Prize (CollĆØge de France, 2019), the Sunrise Cancer Stem Cell Award (2019), the Charles Defforey–Institut de France Prize (2019), and the Tetrahedron Young Investigator Award (2019). Rodriguez is a Fellow of the Royal Society of Chemistry (2018) and won the Pierre Fabre Award for Therapeutic Innovation (2015). These accolades affirm his contributions across cancer research, chemical biology, and molecular therapeutics, as well as his success in translating science into societal benefit through entrepreneurship.

šŸ” Research Focus:

RaphaĆ«l Rodriguez’s research lies at the cutting edge of chemical biology, with a focus on understanding how cells adapt to stress, particularly in the contexts of cancer and inflammation. His laboratory explores the role of metal ions—especially iron—as regulators of cellular plasticity and fate. Notably, his team discovered mechanisms underlying ferroptosis, a form of regulated cell death linked to iron metabolism, and how this can be exploited for anti-cancer therapies. He also investigates non-canonical DNA structures like G-quadruplexes, using small molecules to study and manipulate gene regulation. His lab has developed and commercialized several potent bioactive compounds, including Pyridostatin, Remodelin, Ironomycin, and Supformin, which are used both as research tools and potential therapeutics. Rodriguez combines molecular design, cell biology, and translational strategies, making his work a blueprint for chemical biology-driven precision medicine. He continues to raise significant research funding and actively collaborates across academia and biotech.

šŸ“š Publications Top Notes:

  1. 🧬 Small-molecule–induced DNA damage identifies alternative DNA structures in human genes – Nature Chemical Biology

  2. āš™ļø Salinomycin kills cancer stem cells by sequestering iron in lysosomes – Nature Chemistry

  3. šŸ›”ļø A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres – JACS

  4. 🧫 Chemical inhibition of NAT10 corrects defects of laminopathic cells – Science

  5. 🧠 The transcription factor FOXM1 is a cellular target of the natural product thiostrepton – Nature Chemistry

  6. 🧪 Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands – JACS

  7. šŸ”„ PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers – Cell Metabolism

  8. šŸ”¬ A single-molecule platform for investigation of G-quadruplex interactions with small-molecule ligands – Nature Chemistry

  9. 🧲 Small-molecule-mediated G-quadruplex isolation from human cells – Nature Chemistry

  10. 🧬 CD44 regulates epigenetic plasticity by mediating iron endocytosis – Nature Chemistry

  11. 🧷 Selective RNA vs DNA G-Quadruplex Targeting by In Situ Click Chemistry – Angewandte Chemie

  12. 🧬 G-Quadruplex-Binding Benzo[a]phenoxazines Down-Regulate c-KIT Expression in Gastric Carcinoma Cells – Journal of Medicinal Chemistry

🧾 Conclusion:

Dr. RaphaĆ«l Rodriguez exhibits exceptional merit and impact across the entire research ecosystem—fundamental science, innovation, mentorship, and commercialization. His trailblazing work in chemical biology, coupled with a record of scientific leadership and entrepreneurship, makes him highly deserving of the Best Researcher Award. His career reflects a rare blend of depth, vision, and cross-disciplinary innovation. Minor enhancements in global public engagement and clinical integration could further elevate his already stellar profile.

Jianli GAO | Mitochondrial Function Dynamics | Best Researcher Award

Prof. Jianli GAO | Mitochondrial Function Dynamics | Best Researcher Award

Prof. Jianli GAO , School of Pharmaceutical Sciences, Zhejiang Chinese Medical University , China

Professor Jian-Li Gao is a distinguished researcher in Immunology and Tumor Pharmacology at Zhejiang Chinese Medical University (ZCMU), China. With a solid academic background in Traditional Chinese Medicine and Biomedical Sciences, she has carved a unique path by integrating traditional practices with modern biomedical research. After earning her Ph.D. from the University of Macau and completing a postdoctoral fellowship at the University of Chicago, she returned to ZCMU, where she now serves as a Professor and Director of the CTMP editorial office. She also holds the title of Editor-in-Chief of the Journal of Experimental and Clinical Application of Chinese Medicine. Known for her impactful studies on thymic immunity, mitochondrial transfer, and age-related immune degeneration, Prof. Gao has authored numerous high-impact papers and led several nationally funded projects. Her dedication, scientific acumen, and leadership make her an ideal candidate for recognition as a top-tier researcher.

Publication Profile:

Scopus

Strengths for the Award:

  1. šŸ“š Extensive Publication Record

    • Published high-impact research in top-tier journals like Phytomedicine, International Journal of Molecular Sciences, Molecules, and Journal of Ethnopharmacology.

    • Topics span immunosenescence, mitochondrial transfer, alopecia regeneration, and TCM pharmacology—an excellent multidisciplinary focus.

  2. šŸ”¬ Innovative Research Focus

    • Focuses on cutting-edge topics like tunneling nanotube-mediated mitochondrial transfer and immune rejuvenation—a unique and relevant field in aging and cancer research.

    • Integration of Traditional Chinese Medicine (TCM) with modern immunology and pharmacology shows her ability to bridge ancient knowledge with new technologies.

  3. šŸŒ International Exposure

    • Completed a postdoctoral fellowship at the University of Chicago, demonstrating global collaboration and adaptability in high-caliber environments.

  4. šŸŽ“ Academic and Editorial Leadership

    • Editor-in-Chief of a peer-reviewed journal and Editorial Board Member of Scientific Reports.

    • Director of CTMP editorial office and a key figure in shaping academic publishing within her university.

  5. šŸ’” Research Funding Success

    • Principal Investigator of multiple NSFC-funded projects (highly competitive in China), totaling over Ā„1,000,000 in research grants.

  6. šŸ§‘ā€šŸ« Academic Career Progression

    • Rapid professional growth from Assistant Professor to Full Professor in under 10 years—shows high competence, leadership, and recognition by peers.

Areas for Improvement:

  1. šŸ… Documentation of Individual Honors/Awards

    • While her academic and publishing roles speak volumes, a clearer list of individual recognitions, national awards, or innovation prizes would strengthen the case further.

  2. 🌐 Global Research Collaborations

    • Though she has worked internationally, further multi-country clinical collaborations or EU/NIH projects would expand her global footprint.

  3. šŸ—£ Public Engagement & Outreach

    • Amplifying her presence through conferences, workshops, and keynote speeches, particularly internationally, could further solidify her status as a global thought leader.

šŸŽ“ Educational Background:

Prof. Jian-Li Gao pursued her academic training in Traditional Chinese Medicine and Biomedical Sciences, blending traditional knowledge with cutting-edge medical research. She obtained her Bachelor’s degree in Traditional Chinese Medicine (2003) from Zhejiang Chinese Medical University (ZCMU). She continued her studies at the University of Macau, earning a Master’s degree in Chinese Medicinal Science (2005) and a Ph.D. in Biomedical Sciences (2009) from the Institute of Chinese Medical Sciences. Her doctoral work focused on cellular mechanisms and immune pharmacology, laying the foundation for her future research career. Her education uniquely positioned her to investigate immune regulation through both modern biomedical techniques and the traditional principles of Chinese medicine. The fusion of these approaches underpins her scientific contributions and helps advance integrative medical research both in China and internationally.

šŸ’¼ Professional Experience:Ā 

Prof. Gao has over 14 years of experience in academic research and teaching at Zhejiang Chinese Medical University. Starting as an Assistant Professor (2011–2013), she was promoted to Associate Professor (2013–2018) and has held the title of Professor since 2019. Her international exposure includes a postdoctoral fellowship at the University of Chicago, where she deepened her expertise in tumor pharmacology and immunology. Prof. Gao currently directs the CTMP English Editorial Office at ZCMU and serves as the Editor-in-Chief of a leading Chinese medicine journal. She also contributes as a Board Member of Scientific Reports and a young editorial board member for Chinese Medicine. Throughout her tenure, she has led numerous national research projects, mentored students, and facilitated cross-disciplinary collaborations. Her trajectory reflects a consistent pattern of academic growth, leadership, and contribution to the global scientific community.

šŸ… Awards and Honors:

Though specific awards are not explicitly listed in the provided information, Prof. Jian-Li Gao’s numerous appointments and leadership roles are strong indicators of her recognition in the academic field. She is the Editor-in-Chief of the Journal of Experimental and Clinical Application of Chinese Medicine, a prestigious role typically reserved for top researchers in the discipline. Her role as Director of the CTMP editorial office and her inclusion as a Board Member of Scientific Reports and Young Editorial Board Member for Chinese Medicine signal national and international acknowledgment of her scientific contributions. She has also successfully led multiple National Natural Science Foundation of China (NSFC) projects, a competitive funding body in China, which highlights her research’s credibility and impact. These honors collectively reflect her excellence in scientific innovation, editorial leadership, and her commitment to advancing Chinese and integrative medicine.

šŸ”¬ Research Focus:

Prof. Jian-Li Gao’s research centers on thymic immune senescence, mitochondrial transfer, and the pharmacological effects of Traditional Chinese Medicine (TCM) on immune system regulation. She explores how compounds such as Epimedin C, Thymosin β15, and Ligustilide can delay thymus degeneration, enhance mitochondrial functionality, and promote immune resilience—especially in contexts such as menopause, aging, and cancer. Her work bridges the gap between TCM and modern molecular biology, applying cell biology techniques to understand how herbal extracts affect immune cell signaling, cytoskeletal dynamics, and tissue repair. A unique aspect of her work is the use of mitochondrial transfer via tunneling nanotubes, a cutting-edge concept in immunopharmacology. With a holistic approach, she aims to uncover therapeutic strategies rooted in TCM that are evidence-based and translational. Her research has major implications in autoimmune diseases, aging, regenerative medicine, and oncology.

šŸ“š Publications Top Notes:

  1. šŸ“– Epimedin C promotes mitochondrial transfer and delays thymus atrophy in 4-VCD induced mimetic-menopausal mice – Phytomedicine, 2025

  2. šŸ“– Dermal T cell immunity and key regulatory signaling pathways: Implications in immune-mediated alopecia and hair regeneration – Genes & Diseases, 2025

  3. šŸ“– Linderae Radix extract attenuates ulcerative colitis by inhibiting the JAK/STAT signaling pathway – Phytomedicine, 2024

  4. šŸ“– Ligustilide prevents thymic immune senescence by regulating Thymosin β15-dependent spatial distribution of thymic epithelial cells – Phytomedicine, 2024

  5. šŸ“– Thymosin β4 regulates the differentiation of thymocytes by controlling the cytoskeletal rearrangement and mitochondrial transfer – IJMS, 2024

  6. šŸ“– Th22 is the effector cell of Thymosin β15-induced hair regeneration in mice – Inflammation and Regeneration, 2024

  7. šŸ“– Ruyong Formula improves thymus function of CUMS-stimulated breast cancer mice – Journal of Ethnopharmacology, 2024

  8. šŸ“– Age-related hearing loss and its potential drug candidates: a systematic review – Chinese Medicine, 2023

  9. šŸ“– Treatment of Generalized Anxiety Disorder with nose-to-brain drug delivery of natural drugs – J. Exp. & Clin. App. of Chinese Medicine, 2023

  10. šŸ“– Thymosin α1 and its role in viral infectious diseases: Mechanism and clinical application – Molecules, 2023

šŸ“ Conclusion:

Professor Jian-Li Gao is highly deserving and exceptionally well-qualified for the Best Researcher Award. Her research is innovative, translational, and impactful, particularly in the intersection of Traditional Chinese Medicine and modern immunology. She has demonstrated consistent academic excellence, leadership in editorial work, and obtained national-level competitive funding.

Gang Wang | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Gang Wang | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Gang Wang , the First Affiliated Hospital of Harbin Medical University, China

Professor Wang Gang, MD, Ph.D., is a renowned general surgeon, postdoctoral researcher, and director of the Department of Oncology and Laparoscopy Surgery at The First Affiliated Hospital of Harbin Medical University, China. Specializing in pancreatic diseases, he is a prominent researcher and educator, with a focus on acute pancreatitis. He has contributed extensively to translational research, bridging molecular mechanisms to clinical innovations. As a high-level talent in Heilongjiang Province, he has published 166 works, including high-impact studies on ferroptosis and necroptosis in pancreatic diseases. With multiple editorial roles and leadership in various academic associations, Professor Wang continues to drive interdisciplinary advances in pancreatic disease management and surgery.

Publication Profile:

Google Scholar

Strengths for the Award:

Professor Wang Gang has demonstrated exceptional contributions to the field of pancreatic diseases, particularly in acute pancreatitis. His groundbreaking research on ferroptosis, necroptosis, and mitochondrial autophagy has resulted in a significant body of work with over 166 publications, many of which are high-impact studies. As a Principal Investigator, he has successfully led multiple National Natural Science Foundation projects, contributing innovative diagnostic and therapeutic strategies that have advanced the management of pancreatic diseases. His editorial roles in prominent journals and his collaborations with pharmaceutical companies reflect his recognition as a leader in the field. Moreover, his numerous provincial awards, including the Heilongjiang Science & Technology Progress First Prizes, further affirm his leadership and expertise.

Areas for Improvements:

While Professor Wang has achieved great success in pancreatic disease research, his work could benefit from expanding into interdisciplinary collaborations with other medical specialties to further enhance the clinical translation of his findings. Additionally, increasing the international visibility of his work through more international collaborations or partnerships could amplify its impact.

Education:

Professor Wang Gang holds both an MD and a Ph.D., specializing in general surgery. He completed his advanced postdoctoral training focusing on pancreatic diseases and advanced laparoscopic techniques. His rigorous academic journey has laid a strong foundation for his successful career in research, clinical practice, and teaching. Professor Wang’s educational experience reflects his deep commitment to advancing both his academic qualifications and medical expertise, leading to his leadership roles in multiple professional organizations and the development of several groundbreaking research projects in pancreatic health.

Experience:

Professor Wang has extensive clinical and research experience in pancreatic diseases. He serves as the Director of the Department of Oncology and Laparoscopy Surgery at The First Affiliated Hospital of Harbin Medical University. His research interests revolve around the pathogenesis and treatment of acute pancreatitis and other pancreatic disorders. In addition to his clinical role, he is a prolific academic leader, mentoring doctoral and postdoctoral researchers. With over 166 publications, he has led significant projects funded by the National Natural Science Foundation and has collaborated with top pharmaceutical companies. He has also served in prominent editorial and peer reviewer roles for many scientific journals, solidifying his influence in the research community.

Awards and Honors:

Professor Wang Gang has received numerous prestigious awards, including multiple Heilongjiang Science & Technology Progress First Prizes (2024, 2021). As a High-Level Talent of Heilongjiang Province and Outstanding Talent of Heilongjiang New Century, he is recognized for his outstanding contributions to medical research. His work has also earned him multiple accolades for his leadership and research excellence. As a principal investigator, he has received several National Natural Science Foundation grants, marking him as a leading figure in the field of pancreatic diseases. His success reflects his commitment to advancing medical science and improving patient outcomes, particularly in pancreatic diseases.

Research Focus:

Professor Wang’s research primarily focuses on the molecular mechanisms underlying pancreatic diseases, including acute pancreatitis and pancreatic cancer. His work has identified key molecular pathways, such as ferroptosis and necroptosis, in the progression of these diseases. His translational research connects basic science with clinical applications, optimizing surgical protocols and diagnostic tools. His studies on mitochondrial dysfunction, autophagy imbalance, and exosomal crosstalk provide novel insights into disease pathogenesis and potential therapeutic strategies. As a leading researcher, he has contributed significantly to the understanding of pancreatic diseases and continues to push boundaries in both basic and clinical research.

Publications Top Notes:

  • Ferroptosis: Past, Present, and Future šŸ“š, Cell Death & Disease, 2020

  • Long Noncoding RNA MALAT1 Promotes Aggressive Pancreatic Cancer Proliferation and Metastasis via Autophagy šŸ“š, Molecular Cancer Therapeutics, 2016

  • A New Algorithm of Blind Color Image Watermarking Based on LU Decomposition šŸ“š, Multidimensional Systems and Signal Processing, 2018

  • Early Prediction of Infected Pancreatic Necrosis Secondary to Necrotizing Pancreatitis šŸ“š, Medicine, 2017

  • A Three-Dimensional Failure Criterion for Hard Rocks Under True Triaxial Compression šŸ“š, Rock Mechanics and Rock Engineering, 2020

  • Plasma and Tumor Levels of Linc-pint as Diagnostic and Prognostic Biomarkers for Pancreatic Cancer šŸ“š, Oncotarget, 2016

  • The Effect of Emodin-Assisted Early Enteral Nutrition on Severe Acute Pancreatitis šŸ“š, Mediators of Inflammation, 2007

  • Hydrogen Sulphide Exacerbates Acute Pancreatitis by Over-Activating Autophagy via AMPK/mTOR Pathway šŸ“š, Journal of Cellular and Molecular Medicine, 2016

  • Necroptosis: A Potential, Promising Target in Acute Pancreatitis šŸ“š, Apoptosis, 2016

  • Effects of Carbon Monoxide Releasing Molecule-Liberated CO on Severe Acute Pancreatitis in Rats šŸ“š, Cytokine, 2010

  • A Novel Blind Color Image Watermarking Based on Contourlet Transform and Hessenberg Decomposition šŸ“š, Multimedia Tools and Applications, 2018

Conclusion:

Professor Wang Gang is an exemplary candidate for the Best Researcher Award due to his impressive academic achievements, groundbreaking contributions to pancreatic disease research, and his ongoing efforts to bridge basic science and clinical practice. His work has not only advanced our understanding of acute pancreatitis but has also paved the way for potential therapeutic advancements. His leadership in research, publications, and collaboration highlights his remarkable contributions to the medical and scientific community.

Zu-Chian Chiang | Cancer Cell Biology | Best Researcher Award

Dr. Zu-Chian Chiang | Cancer Cell Biology | Best Researcher Award

Dr. Zu-Chian Chiang , Fujian Normal University , China

Dr. Zu-Chian Chiang is a highly accomplished postdoctoral fellow at the Biomedical Research Center of Southern China, Fujian Normal University, specializing in cancer research and regenerative medicine. With extensive experience in antibody-drug conjugates (ADCs), peptide synthesis, and tissue engineering, his work focuses on the development of targeted therapies and innovative biomaterials for medical applications. Dr. Chiang’s expertise includes both academic research and real-world clinical applications, and he has contributed to numerous peer-reviewed publications and conference presentations. Over the years, his research has received recognition from prestigious institutions such as the National Taiwan University and Academia Sinica. He also plays an active role in academic societies, providing his expertise as a peer reviewer for various scientific journals and as a key member of multiple international organizations. Dr. Chiang continues to make significant strides in biomedical engineering and cancer therapy.

Publication Profile:

Scopus

Strengths for the Award:

  1. Extensive Education and Experience:

    • Dr. Chiang has a robust academic background, with a Ph.D. in Materials and Chemical Engineering and an M.S. in Chemistry, both from reputable institutions in Taiwan. His postdoctoral experience spans multiple prestigious institutions, such as Academia Sinica and National Taiwan University Hospital, and his ongoing postdoc at the Biomedical Research Center of Southern China showcases his continued dedication to scientific progress.

  2. Research Excellence:

    • Dr. Chiang has made significant contributions to the field of cancer research, particularly in antibody-drug conjugates (ADCs), functional peptides for cancer research, and the development of specific aptamers as targeted therapies for cancer.

    • He has authored numerous high-quality peer-reviewed publications (with recent impactful papers), contributing to advancing understanding in immunotherapy, ADCs, and cancer therapeutics. His research has garnered attention in journals like Frontiers in Oncology and PLOS ONE.

  3. Awards and Recognition:

    • Dr. Chiang’s receipt of multiple prestigious awards, such as the 3rd Biotech Elite Training Reserve Program award, highlights his excellence in both academic and professional research. His achievements have earned recognition from both Taiwanese and Chinese scientific communities.

  4. Active Contribution to the Scientific Community:

    • Serving as a peer reviewer for the International Journal of Biological Macromolecules, as well as being involved in numerous scientific societies, demonstrates his commitment to advancing the field and his active engagement with the wider scientific community.

  5. Research Support and Funding:

    • Dr. Chiang has successfully secured research funding from prominent sources, such as the Department of Human Resources and Social Security, Fujian Province, showcasing his ability to lead and manage significant research projects. His ongoing research projects reflect a focus on cancer therapies and therapeutic advancements, further cementing his relevance in the field.

Areas for Improvement:

  1. Public Engagement and Outreach:

    • While Dr. Chiang has impressive research achievements, further expanding his presence in broader public engagement, such as science communication, could help make his findings accessible to a larger audience, especially in cancer therapy and regenerative medicine.

  2. Collaboration and Networking:

    • Dr. Chiang’s research has been highly productive, but future collaboration with other interdisciplinary teams could increase the breadth of his work and facilitate the development of novel, cross-disciplinary solutions.

  3. Increasing Citation Impact:

    • Although Dr. Chiang has 91 citations, his h-index of 5 suggests there may be room to increase the visibility and citation impact of his work. Strategic publishing in highly-cited journals or working with larger collaborative projects could elevate this metric.

  4. Mentorship and Training:

    • While his extensive postdoctoral training is impressive, Dr. Chiang’s experience in mentorship or leading research teams could be enhanced further. Serving as a mentor for students and junior researchers could help strengthen his leadership in the scientific community.

Education:

Dr. Zu-Chian Chiang earned his Ph.D. in Materials and Chemical Engineering from National United University, Taiwan (2008-2014), where he specialized in biomedical engineering under the mentorship of Professor An-Chong Chao and Dr. Guo-Chung Dong. Prior to that, he completed his M.S. in Chemistry from Tunghai University, Taiwan (2005-2007), under the guidance of Professor Feng-Di Lung. His doctoral research focused on creating innovative materials for biomedical applications, such as scaffolds for tissue engineering. Throughout his academic career, Dr. Chiang was awarded scholarships and fellowships recognizing his excellence in research, such as the First Outstanding Doctoral Scholarship at National United University and the Master’s Program Scholarship from the Hunan Fellow Association of Taiwan. His academic foundation laid the groundwork for his cutting-edge contributions to cancer research, drug delivery, and regenerative medicine, ensuring his continued impact in the field.

Experience:

Dr. Zu-Chian Chiang has accumulated a wealth of research experience, serving as a postdoctoral fellow at various prestigious institutions. Since September 2019, he has been working at the Biomedical Research Center of Southern China, Fujian Normal University, focusing on cancer therapies and advanced drug delivery systems. Prior to this, he held postdoctoral positions at the Institute of Biological Chemistry, Academia Sinica (2016-2019), and National Taiwan University Hospital’s Clinical Trial Center (2015-2016), where he worked on pioneering biotechnological projects, including the Taiwan Protein Project. Dr. Chiang’s expertise extends to developing antibody-drug conjugates (ADCs), functional peptides, and biomaterials for regenerative medicine. His involvement in various research groups has strengthened his interdisciplinary knowledge in both molecular and clinical aspects of cancer therapy. Dr. Chiang also gained valuable teaching experience while completing his degrees, serving as a teaching assistant in organic chemistry and chemical engineering courses throughout his academic career.

Awards and Honors:

Dr. Zu-Chian Chiang has received numerous prestigious awards throughout his career, reflecting his significant contributions to the field of biomedical research. Notable honors include the “Science and Technology Commissioner” title in Quanzhou, Fujian Province (2020), and the “Miaoli Southeastern Xindong Satellite Rotary Club Chairman Award” (2017). In 2016, he was honored as an awardee of the “3rd Biotech Elite Training Reserve Program” by National Taiwan University and Taiwan’s Ministry of Science and Technology. His academic achievements were further recognized with the Chung Hwa Rotary Annual Doctoral Program Award (2012), and he received the First Outstanding Doctoral Scholarship at National United University (2010). Additionally, Dr. Chiang was awarded the Master’s Program Scholarship from the Hunan Fellow Association of Taiwan (2007). These accolades reflect his outstanding dedication to scientific research, education, and professional development in the fields of cancer therapy and regenerative medicine.

Research Focus:

Dr. Zu-Chian Chiang’s primary research interests lie in the development of functional peptides for cancer therapy and tissue engineering, as well as the design of advanced biomolecular materials for regenerative medicine. His work focuses on antibody-drug conjugates (ADCs), targeting specific cancer cells for more effective therapies. One of his key research areas is developing specific aptamers as blockers, agonists, or antagonists for cancer treatment, aiming to enhance therapeutic outcomes. He is also dedicated to the synthesis of peptides that can aid in the regeneration of bone tissue and the creation of biomaterials that combine bioactive molecules for regenerative medicine. Through his research, Dr. Chiang aims to improve cancer treatments by targeting tumors more precisely, reduce side effects, and contribute to breakthroughs in drug delivery. His work also explores innovative methods of using biomaterials for enhancing regenerative medicine, thus bridging the gap between basic science and clinical application.

Publications Top Notes:

  1. “Generation and characterization of 7DC-DM1: a non-cleavable CD47-targeting antibody-drug conjugates with antitumor effects” šŸ§¬šŸ’‰

  2. “Strengthening effect of thalidomide combined with anti-PD1 antibody on enhancing immunity for lung cancer therapy” šŸ«šŸ’Ŗ

  3. “Development of Novel CD47-Specific ADCs Possessing High Potency Against Non-Small Cell Lung Cancer in vitro and in vivo” šŸ«€āš›ļø

  4. “Preparation and characterization of antibody-drug conjugates acting on HER2-positive cancer cells” 🧪🧫

  5. “Preparation and characterization of dexamethasone-immobilized chitosan scaffold” šŸ’ŠšŸ§µ

  6. “Characterization of the morphology and hydrophilicity of chitosan/caffeic acid hybrid scaffolds” 🧫🌿

  7. “Preparation and characterization of caffeic acid grafted chitosan/CPTMS hybrid scaffolds” šŸ„šŸ”¬

Conclusion:

Dr. Zu-Chian Chiang is a highly qualified and accomplished researcher, with a strong track record in cancer research and therapeutic innovation. His work in developing antibody-drug conjugates, functional peptides, and aptamers demonstrates great promise in transforming cancer therapy. His academic credentials, publications, awards, and research funding solidify his standing as a top candidate for the Best Researcher Award. Further expansion into public engagement, interdisciplinary collaborations, and mentorship could further enhance his contributions to the field and his overall impact. Therefore, Dr. Chiang is certainly a strong contender for the award, with potential for even greater influence moving forward.

Paola Bovolenta | Neuronal Cell Biology | Best Researcher Award

Prof. Paola Bovolenta | Neuronal Cell Biology | Best Researcher Award

Prof. Paola Bovolenta , CSIC , Spain

Paola Bovolenta is a distinguished researcher and director of the Centro de BiologĆ­a Molecular Severo Ochoa (CBM) and the CIBERER Unit 709 in Spain. With a career spanning decades, she is an expert in morphogenesis, cell-cell communication, neurodegeneration, and eye development. Her work has notably advanced our understanding of congenital eye defects and Alzheimer’s disease, particularly through her studies on the role of SFRP1 in neuroinflammation. Paola has contributed significantly to scientific literature with groundbreaking publications and has been invited to deliver lectures at prestigious international conferences. Her research integrates molecular biology with clinical insights to unravel the molecular basis of eye and brain disorders, aiming to develop therapeutic approaches for rare diseases.

Publication Profile:

Orcid

Strengths for the Award:

  1. Pioneering Research: Paola Bovolenta’s research addresses crucial aspects of developmental biology, with a focus on the molecular mechanisms behind congenital defects, neurodegeneration, and Alzheimer’s disease. Her extensive work on gene regulatory networks in eye morphogenesis and the role of SFRP1 in neuroinflammation significantly advances our understanding of rare diseases and cognitive disorders. This impactful research contributes to both basic science and clinical applications.

  2. Leadership and Collaboration: As Director of the Centro de BiologĆ­a Molecular Severo Ochoa and Head of the CIBERER Unit 709, Paola has effectively led multiple research projects that involve international collaboration. Her ability to coordinate large, multidisciplinary teams makes her an exceptional leader in the field.

  3. High-Impact Publications: Paola has authored numerous influential publications in top-tier journals such as Nature Neuroscience, Cell Reports, and Development. Her work has been recognized with multiple awards and invitations to speak at prestigious international conferences, further solidifying her reputation as a leader in the field.

  4. Innovative Research Projects: Paola’s recent projects explore critical areas such as the molecular mechanisms behind congenital eye defects, neurodegenerative diseases, and potential therapeutic targets like SFRP1. These projects are highly relevant to both scientific advancement and public health, especially in the context of rare diseases and Alzheimer’s disease.

Areas for Improvement:

  1. Broader Public Engagement: While Paola’s work is widely recognized in the scientific community, expanding her outreach to broader public and clinical audiences could further amplify the societal impact of her research. Increased communication through public lectures, media, or collaborations with health organizations could make her findings more accessible to non-specialists.

  2. Interdisciplinary Integration: While Paola has done exceptional work in cellular and molecular biology, expanding interdisciplinary collaborations—particularly in fields such as bioengineering, computational biology, or pharmacology—could enhance the translation of her research into clinical solutions.

Education:

Paola Bovolenta completed her Bachelor of Science (BS) at the University of Florence, Italy, in 1981. She then pursued her Master of Science (MS) at New York University’s School of Medicine (NYU), USA, graduating in 1984. She continued her research at NYU, earning her Ph.D. in 1986, focusing on cell biology and developmental genetics. Following her doctorate, she expanded her expertise with postdoctoral research at NYU and Columbia University, New York, from 1986 to 1988. These formative years set the stage for her future research, specializing in molecular and developmental biology, particularly related to visual system development. Her extensive education underpins her pioneering work in both basic and translational science.

Experience:

Paola Bovolenta has an extensive career in both academia and scientific research. She has held the position of Director at CBM since 2002 and heads the CIBERER Unit 709, focusing on rare diseases. Her research investigates the genetic and molecular mechanisms behind the development of the visual system, including eye morphogenesis and related inborn defects. Paola has collaborated with numerous international scientists, contributing to several high-impact studies in neurodegeneration, specifically Alzheimer’s disease. Her work includes groundbreaking research into SFRP1, a protein implicated in both neuroinflammation and cognitive decline. Additionally, she coordinates several multidisciplinary projects, emphasizing genetic networks in retinal diseases and neurodegenerative disorders. Throughout her career, Paola has been involved in teaching, mentoring, and guiding emerging researchers in the field of molecular biology, enhancing her influence in the scientific community.

Awards and Honors:

Paola Bovolenta has been recognized throughout her career for her groundbreaking contributions to molecular biology and neuroscience. Her work on SFRP1 and neuroinflammation has earned her prestigious invitations to major international congresses, including as a keynote speaker at the 18th Symposium on Neuroscience at the Armenise-Harvard Foundation. She was also invited to speak at the CNRS-Jacques Monod Conference in France, discussing eye morphogenesis and developmental brain disorders. Bovolenta’s research has been consistently published in top journals such as Nature Neuroscience and Cell Reports. Her leadership in scientific initiatives has secured substantial funding for various research projects, such as those funded by AEI and the Fundación Tatiana. She is also a contributor to several influential papers and collaborative works, earning recognition for both her leadership and pioneering research in the fields of neurodegeneration, developmental biology, and rare diseases.

Research Focus:

Paola Bovolenta’s research focuses primarily on understanding the molecular mechanisms involved in visual system development, congenital eye defects, and neurodegenerative diseases like Alzheimer’s. Her work explores the gene regulatory networks that govern eye morphogenesis and the defects that lead to inborn visual disorders. A significant area of her research is the role of SFRP1, a protein involved in neuroinflammation, and its impact on brain diseases, particularly Alzheimer’s. Paola’s current projects aim to uncover how the disruption of cell-cell communication during brain and eye development contributes to neurodegeneration. She also investigates the cellular mechanisms underlying retinal degeneration, with a particular emphasis on how neuroinflammation and synaptic dysfunction contribute to cognitive decline. By focusing on rare diseases and genetic pathways, her research aims to develop therapeutic targets for conditions that currently have limited treatment options.

Publications Top Notes:

  • SFRP1 upregulation causes hippocampal synaptic dysfunction and memory impairment (2025) šŸ§ šŸ“–

  • SFRP1 modulates astrocyte to microglia cross-talk in acute and chronic neuroinflammation (2021) šŸ§ šŸ”„

  • Sfrp1 deficiency makes retinal photoreceptors prone to degeneration (2020) šŸ‘ļøšŸ§¬

  • Elevated levels of Secreted-Frizzled-Related-Protein1 contribute to Alzheimer’s disease pathogenesis (2019) šŸ§ šŸ’„

  • Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis (2021) šŸŸšŸ‘ļø

  • ā€œDiversity matters seriesā€ā€”The Black In Neuro movement (2022) šŸŒšŸ§ 

  • Maternal vgll4a promotes blastoderm cohesion enabling yap1-mediated mechano-transduction during zebrafish epiboly (2020) 🧬🐟

Conclusion:

Paola Bovolenta is an outstanding candidate for the Research for Best Researcher Award due to her groundbreaking research, significant leadership, and dedication to improving understanding of complex neurological and developmental disorders. Her work is highly innovative, with direct implications for the diagnosis and treatment of rare diseases and neurodegenerative conditions like Alzheimer’s. With her continued leadership, Paola will undoubtedly contribute further to the advancement of both scientific knowledge and clinical practice. Her work is a model of excellence in research, and she has consistently demonstrated the ability to make meaningful, real-world contributions to the scientific community.