Mohamed Dammak | Cell Structure Analysis | Best Academic Researcher Award

Prof. Dr. Mohamed Dammak | Cell Structure Analysis | Best Academic Researcher Award

Faculty of Sciences of Sfax | Tunisia

Professor Mohamed Dammak is a distinguished researcher in the field of chemistry, recognized for his significant contributions to materials science, solid-state chemistry, and nanomaterials. His research primarily focuses on the synthesis, structural characterization, and optical properties of functional materials, including luminescent phosphors, glass ceramics, and doped oxide systems. He has extensively investigated rare-earth-doped materials for photonic and optoelectronic applications, contributing valuable insights into energy transfer mechanisms and material stability under various conditions. Professor Dammak’s scholarly output includes numerous publications in high-impact journals indexed in SCI and Scopus, reflecting his consistent pursuit of scientific excellence. With over 1,100 citations and an h-index of 17, his work has had a measurable influence on contemporary research in materials chemistry. He has also participated in national and international research collaborations, enhancing cross-disciplinary approaches to the development of advanced materials with optical and structural functionalities. Through his academic leadership and commitment to innovation, Professor Dammak continues to advance the understanding and application of inorganic and functional materials, bridging the gap between fundamental research and technological development in the field of chemistry.

Profile: Scopus

Featured Publications:

Dammak, M.*, Abdelmoula, N., Cheikhrouhou-Koubaa, W., & Cheikhrouhou, A. (2021). Short-range magnetic behavior in manganites La₀.₉₃K₀.₀₇Mn₁₋ₓCuₓO₃ (0.0 ≤ x ≤ 0.09) above the Curie temperature. Journal of Physics D: Applied Physics, 54(32), 325002. https://doi.org/10.1088/1361-6463/ac015c

 

Nestor Garcia | Cellular Stress Response | Best Academic Researcher Award

Prof. Dr. Nestor Garcia | Cellular Stress Response | Best Academic Researcher Award

CONICET | Argentina

Dr. Néstor Horacio García, MD, PhD, is a physician-scientist specializing in nephrology and vascular research with a strong focus on renal physiology, hypertension, and phosphate homeostasis. He earned his medical and doctoral degrees from the National University of Córdoba, complemented by advanced research training at the Henry Ford Hospital in the United States, where he investigated mechanisms related to hypertension and vascular regulation. His postdoctoral fellowship at the Mayo Foundation in Rochester, Minnesota, further deepened his expertise in phosphate metabolism and kidney function. Dr. García has served as a Research Clinical Associate in the Nephrology Department at Sanatorium Mayo, Córdoba, where he has acted as Principal Investigator for multiple pharmaceutical protocols and clinical studies. He has also contributed to Inspiranox Therapeutics Corporation as a medical scientist and clinical research consultant, engaging in translational and therapeutic innovation. His research explores the pathophysiology of kidney disease, the molecular regulation of blood pressure, and protective mechanisms against diabetic renal dysfunction. Recognized nationally and internationally, Dr. García has received multiple awards for excellence in basic nephrology research, including honors from the Argentine Society of Hypertension and the Latin American Society of Nephrology and Hypertension (SLANH).

Profile: Orcid

Featured Publications:

García, N. H. (2021). An intensive follow-up in subjects with cardiometabolic high-risk. Nutrition, Metabolism and Cardiovascular Diseases.

García, N. H. (2021). Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease. Stroke, 52(5), e125–e132.

García, N. H. (2020). Monosialoganglioside GM1 reduces toxicity of Ptx and increases anti-metastatic effect in a murine mammary cancer model. Scientific Reports, 10(1), 10645.

García, N. H. (2020). Ibuprofen, a traditional drug that may impact the course of COVID-19: New effective formulation in nebulizable solution. Medical Hypotheses, 144, 110079.

García, N. H. (2020). Eicosapentaenoic acid prevents salt sensitivity in diabetic rats and decreases oxidative stress. Nutrition, 79–80, 110644.

Willa Hsueh | Immunometabolism | Best Researcher Award

Prof. Willa Hsueh | Immunometabolism | Best Researcher Award

The Ohio State University | United States

Dr. Willa Hsueh is a leading researcher in endocrinology, diabetes, and metabolism, with a career spanning several decades of pioneering contributions to hormone regulation and metabolic disease. Her early research provided key insights into renin biochemistry and aldosterone metabolism, particularly focusing on inactive “big renin” forms and their activation mechanisms in normal and pathological conditions such as diabetic nephropathy. Dr. Hsueh’s investigations have significantly advanced the understanding of the renin-angiotensin-aldosterone system (RAAS) and its role in blood pressure regulation, sodium balance, and endocrine disorders. Her studies explored adrenal physiology, steroid metabolism, and hormonal responses to physiological and pharmacological stimuli, laying the groundwork for later research on cardiovascular and metabolic dysfunctions in diabetes. Through her interdisciplinary approach combining endocrinology, nephrology, and metabolism, she has elucidated biochemical pathways linking hormonal imbalances to metabolic diseases. Dr. Hsueh continues to lead impactful research in diabetes and metabolic regulation, contributing to translational advancements that bridge molecular mechanisms with clinical applications for improved patient outcomes in endocrine and metabolic disorders.

Profiles: Scopus | Orcid

Featured Publications:

Hsueh, W. A., Boonjaren, S., Stein, J., Baehler, H. R., Osgood, R. W., Cohen, S., Yashon, D., & Ferris, T. (1974). Effect of plasma sodium concentration on diluting segment sodium reabsorption. Kidney International, 5(1), 1–11.

Johnson, K. R., Hsueh, W. A., Glusman, S. M., & Arnett, F. C. (1976). Fibrous myopathy: A rheumatic complication of drug abuse. Arthritis & Rheumatism, 19(5), 923–926.

Hsueh, W. A., & Hsu, T. H. (1978). Thyrotoxicosis in a patient with secondary hypothyroidism. Southern Medical Journal, 71(9), 1174–1177.

Hsueh, W. A., Luetscher, J. A., Carlson, E., & Grislis, G. (1978). Big renin in plasma of healthy subjects on high-sodium intake. The Lancet, 1(8077), 1281–1284.

Hsueh, W. A., Hsu, T. H., & Federman, D. D. (1978). Endocrine features of Klinefelter’s syndrome. Medicine, 57(5), 447–461.

Hsueh, W. A., Luetscher, J. A., Carlson, E., Grislis, G., Elbaum, D., & Chavarri, M. (1978). A comparison of cold and acid activation of big renin and of inactive renin in normal plasma. Journal of Clinical Endocrinology and Metabolism, 47(4), 792–799.

Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Dr. Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Bahauddin Zakariya Univeristy |Pakistan

Dr. Muhammad Junaid Anwar is a rising scholar in Food Science & Technology whose work spans bioactive compounds, dairy protein‐based nanoencapsulation, food safety, and nutraceutical applications. According to Google Scholar, he has authored over 20 peer-reviewed articles and accumulated more than 270 citations to date, reflecting an h-index of 8.  His research includes investigations into olive oil polyphenols for cancer prevention, development of casein-based nanoencapsulation for managing cow’s milk allergy, optimization of ultrasonication pre-treatments for microbial reduction in fresh produce, and exploration of isoflavones and resveratrol in anticancer contexts. Through a blend of experimental and review work, he advances both the applied and mechanistic understanding of functional foods and health-promoting ingredients.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Anwar, M. J., Anwar, M. H., Imran, M., Noman, A. M., Hussain, M., Raza, H., … & Selim, S. (2025). Olive oil polyphenols: A promising approach for cancer prevention and therapy. Food Science & Nutrition, 13(9), e70976.

Anwar, M. J., Hameed, A., Khan, M. U., Mazhar, A., & Manzoor, H. M. I. (2025). Development and exploration of casein-based nano-encapsulation of mangiferin for cow milk allergy management and immunomodulation. Food Bioscience, 66, 106278.

Javed, M. S., Nawaz, H., Filza, F., Anwar, M. J., Shah, F. U. H., Ali, U., … & Nayik, G. A. (2025). Optimization of calcium chloride and ultrasonication pre-treatment to mitigate the microbial load on fresh carrots using response surface methodology. Ultrasonics Sonochemistry, 116, 107311.

Ul Hassan, M. H., Shahbaz, M., Imran, M., Momal, U., Naeem, H., Mujtaba, A., Hussain, M., Anwar, M. J., Alsagaby, S. A., Al Abdulmonem, W., Yehuala, T. F., & Mostafa, E. M. (2025). Isoflavones: Promising natural agent for cancer prevention and treatment. Food Science & Nutrition, 13(3), e70091.

Hameed, A., Ashraf, F., Anwar, M. J., Amjad, A., Hussain, M., Imran, M., … & Jbawi, E. A. (2024). α-Amylase enzyme inhibition relevant to type II diabetes by using functional yogurt with Cinnamomum verum and Stevia rebaudiana. Food and Agricultural Immunology, 35(1), 2389091.

Khalid, M. U., Sultan, M. T., Khan, W. A., Israr, M., Zafar, N., Noman, A. M., Imtiaz, S., Younis, M., Anwar, M. J., Nayyar, A., Orabi, A. A., & Khalil, N. A. (2024). Nutritional and physico-chemical profiling of Tribulus terristris and its nutraceuticals application. Journal of Population Therapeutics & Clinical Pharmacology, 31(9), 1230–1241.

Faisal, Z., Irfan, R., Akram, N., Manzoor, H. M. I., Aabdi, M. A., Anwar, M. J., … & Desta, D. T. (2024). The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Science & Nutrition, 12(4), 2294–2310.

Javed, M. S., Alvi, S. Q., Amjad, A., Sardar, H., Anwar, M. J., Javid, A., … & AbdElgawad, H. (2024). Protein extracted from Moringa oleifera Lam. leaves: Bio-evaluation and characterization as suitable plant-based meat-protein alternative. Regulatory Toxicology and Pharmacology, 146, 105536.

Anwar, M. J., Altaf, A., Imran, M., Amir, M., Alsagaby, S. A., Al Abdulmonem, W., Mujtaba, A., El-Ghorab, A. H., Ghoneim, M. M., Hussain, M., Al Jbawi, E., Shaker, M. E., & Abdelgawad, M. A. (2023). Anti-cancer perspectives of resveratrol: A comprehensive review. Food and Agricultural Immunology, 34(1).

Hameed, A., Anwar, M. J., Khan, M. I., Tarar, O. M., Ali, S. W., Faraz, A., … & Kashif, A. S. (2023). Assessing the impact of camel breed and their grazing habits on the nutritional profile of milk. Pakistan Journal of Agricultural Sciences, 60(2).

Saika Farook | Microbiology | Excellence in Research Award

Assist. Prof. Dr. Saika Farook | Microbiology | Excellence in Research Award

Assist. Prof. Dr. Saika Farook | Ibrahim Medical College | Bangladesh 

Dr. Saika Farook is a dedicated microbiologist from Bangladesh with a strong academic background and extensive experience in infectious diseases and microbiology. She earned her MD in Microbiology from BIRDEM Academy (BSMMU) and has been actively involved in research and teaching. Currently, she serves as an Assistant Professor at Ibrahim Medical College and an Adjunct Faculty at BRAC University. Dr. Farook’s work centers on identifying and combating bacterial infections, especially Burkholderia pseudomallei, the causative agent of melioidosis, a neglected tropical disease. She has contributed significantly to both clinical diagnostics and molecular research and has been recognized as a speaker at international conferences. Saika’s commitment to bridging laboratory findings with clinical practice makes her a valuable asset in the field of medical microbiology. She is a life member of Bangladesh Society of Medical Microbiologists and contributes globally to the American Society for Microbiology.

Publication Profile: 

Orcid
Scopus

Education:

Dr. Saika Farook completed her Bachelor of Medicine and Bachelor of Surgery (MBBS) from Noakhali Medical College, affiliated with Chittagong University. She then pursued a Doctor of Medicine (MD) in Microbiology from BIRDEM Academy under Bangabandhu Sheikh Mujib Medical University (BSMMU), graduating . Her early education includes O’ Levels from Shaheen English Medium School with 8 A’s and Higher Secondary Certificate (H.S.C.) from Rajuk Uttara Model College, Dhaka. Her rigorous academic journey demonstrates a consistent pursuit of excellence, culminating in advanced specialization in microbiology, infectious diseases, and molecular diagnostics. She has also enhanced her skills through multiple workshops on bioinformatics, bacterial genomics, and infection prevention.

Experience:

Dr. Farook has accumulated rich professional experience in both clinical and academic settings. She has been an Assistant Professor at Ibrahim Medical College’s Department of Microbiology. She holds an adjunct faculty role in the Department of Mathematics and Natural Science at BRAC University. Previously, she served as Junior Consultant at DMFR Molecular Lab & Diagnostics and worked as a Virologist during the critical COVID-19 period. She completed a rigorous MD residency in Microbiology at BIRDEM Academy and served as an intern doctor at Jananeta Nurul Haque Adhunik Hospital. Her roles highlight strong clinical acumen paired with research-driven teaching, enhancing laboratory diagnostic techniques and molecular microbiology.

Research Focus:

Dr. Saika Farook’s research primarily targets Burkholderia pseudomallei, the bacterium responsible for melioidosis, focusing on its detection, molecular epidemiology, and antimicrobial susceptibility. She has contributed to developing novel diagnostic methods, such as Loop Mediated Isothermal Amplification assays and selective culture media. Her research also explores the clinical epidemiology of infectious diseases, including latent tuberculosis and IgG4-related disorders. Funded by both Ibrahim Medical College and the Ministry of Health, her ongoing projects delve into molecular epidemiology and clinical sample analysis from tertiary hospitals in Dhaka. Her work bridges molecular diagnostics and public health, addressing gaps in disease recognition in Bangladesh. Dr. Farook has actively presented her findings in national and international forums, reflecting her commitment to advancing microbiological research with real-world clinical applications.

Publications Top Notes: 

  1. An improved Loop Mediated Isothermal Amplification based assay for the rapid Identification of Genomic DNA of Burkholderia pseudomallei

  2. Melioidosis cases detected in Dhaka, Bangladesh: a positive impact of 3rd South Asian Melioidosis Congress

  3. Effectiveness of a novel selective medium “Modified MacConkey Agar for Burkholderia” for isolation of Burkholderia pseudomallei

  4. Knowledge on melioidosis among healthcare workers of Bangladesh

  5. Melioidosis: Still Unresolved and Undetected in Unexplored Regions

  6. Interferon Gamma Release Assay for Latent Tuberculosis Screening in High TB-Endemic Region: A Retrospective Study

  7. Use of Comparative Genomics to resolve an unusual case of Aminoglycoside Susceptibility in Burkholderia pseudomallei

  8. Localized Disseminated Tuberculosis in a 3 year’s old Bangladeshi boy: A Case Study

  9. Modified MacConkey agar: a simple selective medium for isolation of Burkholderia pseudomallei from soil

  10.  Phylogeographic characterization of Burkholderia pseudomallei isolated from Bangladesh

Conclusion:

In conclusion, Dr. Saika Farook is a highly suitable candidate for the Research for Excellence in Research Award. Her strong academic background, significant research contributions in microbiology and infectious diseases, and active participation in academic and scientific communities demonstrate her dedication and impact in her field. With some strategic focus on expanding international collaborations, translational research, and leadership in mentoring, she could further strengthen her candidacy. Overall, her achievements and ongoing commitment to advancing medical microbiology make her an excellent contender for recognition through this award.

Chao He | Cell Wall Glycosylation | Best Researcher Award

Dr. Chao He | Cell Wall Glycosylation | Best Researcher Award

Dr. Chao He | Anhui University’s School of Life Sciences | China

Dr. Chao He is an accomplished Associate Professor at the School of Life Sciences, Anhui University, China. With a robust background in structural biology and enzymology, his research explores the intersection of microbiology, structural biology, and biotechnology. A Ph.D. graduate from the University of Science and Technology of China, he specializes in carbohydrate-active enzymes and their applications in health and industry. Dr. He has led significant projects funded by the National Natural Science Foundation of China (NSFC) and provincial science agencies. His work elucidates catalytic mechanisms and structural features of glycosyltransferases and glycoside hydrolases, with applications in gut microbiota research and industrial polysaccharide processing. He has authored 17 first/corresponding-author publications in top-tier journals including Nature Synthesis, PNAS, and Angewandte Chemie. His contributions position him as a leading figure in enzymology-driven biotechnological innovation.

Publication Profile: 

Orcid

Education:

Dr. Chao He began his academic journey with a Bachelor of Science in Biomedical Engineering from Southeast University, where he developed a solid foundation in molecular and cellular biology. Motivated to delve deeper into life sciences, he pursued his Ph.D. in Structural Biology at the University of Science and Technology of China (USTC). During his doctoral training, he honed his skills in protein structure analysis, enzyme mechanism elucidation, and X-ray crystallography. His education provided him with cross-disciplinary expertise, combining engineering principles with biological systems. This unique academic blend laid the groundwork for his current research in enzyme discovery and rational design. Dr. He’s academic record reflects his commitment to scientific excellence, critical thinking, and innovation, with early exposure to both theoretical and applied aspects of biomedical sciences—a synergy that continues to inform his research today.

Experience:

Dr. Chao He joined Anhui University as a Lecturer in the School of Life Sciences and was promoted to Associate Professor. Over the past decade, he has led innovative research in enzymology, focusing on glycosyltransferases and hydrolases involved in carbohydrate metabolism. As principal investigator, he manages an NSFC General Program grant, investigating Bacteroides-mediated degradation of polysaccharides, along with multiple provincial-level grants. His lab conducts both basic and applied research, ranging from structural characterization to biocatalytic engineering. Dr. He has extensive experience in high-resolution crystallography, enzyme kinetics, and polysaccharide bioprocessing. He has published 17 high-impact papers and serves as a mentor to graduate and undergraduate students. With a strong academic and technical background, Dr. He is a recognized contributor to the field of molecular enzymology and a reliable collaborator within the broader scientific community.

Research Focus:

Dr. Chao He’s research focuses on understanding the structure-function relationships of carbohydrate-active enzymes (CAZymes), including glycoside hydrolases and glycosyltransferases. He aims to reveal how microbial systems—particularly gut-associated Bacteroides—degrade complex polysaccharides using polysaccharide utilization loci (PULs). His team employs structural biology tools (e.g., X-ray crystallography) and biochemical assays to uncover catalytic mechanisms and binding specificities. This work has major implications in both basic biology and industrial biotechnology, such as the rational engineering of enzymes for improved substrate specificity and thermal stability. Applications include bioconversion of polysaccharides, synthesis of oligosaccharides for prebiotics, and enzyme-based biocatalysis. Dr. He’s integrative approach bridges enzymology, microbiome science, and bioengineering, aligning with global needs in food science, health, and sustainable materials. His research supports enzyme discovery pipelines and contributes to understanding host-microbe interactions via carbohydrate metabolism, thus representing a frontier area in molecular life sciences.

Publications Top Notes: 

  • Biocatalytic enantioselective γ-C–H lactonization of aliphatic carboxylic acidsNature Synthesis, 2023

  • Specific hydrolysis of curdlan with a novel glycoside hydrolase family 128 β-1,3-endoglucanase containing a carbohydrate-binding moduleCarbohydrate Polymers, 2021

  •  Structural basis for histone H3K4me3 recognition by the N-terminal domain of the PHD finger protein Spp1Biochemical Journal, 2019

Conclusion:

In conclusion, Dr. Chao He exemplifies the qualities of a top-tier academic researcher whose work contributes significantly to the understanding and application of carbohydrate-active enzymes. His ability to combine structural biology with biotechnology showcases both scientific depth and interdisciplinary innovation. Although there is scope for increasing his outreach and collaborative engagements, his current achievements and research leadership make him a compelling nominee for the Best Researcher Award. His trajectory reflects a researcher who is not only productive and impactful but also poised for continued growth and international recognition.

Shima Shafiee | Cell Structure Analysis | Best Researcher Award

Dr. Shima Shafiee | Cell Structure Analysis | Best Researcher Award

Dr. Shima Shafiee, Razi University, Iran

Shima Shafiee is an accomplished Iranian researcher specializing in computer systems architecture and bioinformatics, with a strong focus on machine learning applications in biological data analysis. She recently earned her Ph.D. in Computer Engineering from Razi University, where she focused on predictive modeling of protein-peptide binding interactions. Currently under consideration at the IDEL Lab, Shahid Bahonar University of Kerman, Shima has authored numerous national and international publications. With a rich background in algorithm optimization and artificial intelligence, her research stands at the intersection of computational biology, deep learning, and evolutionary algorithms. Shafiee’s work has contributed to the development of predictive tools in bioinformatics, such as DP-site and SPPPred, and she consistently ranks at the top of her academic cohort. Her ability to integrate traditional computer engineering concepts with advanced biological research makes her a notable candidate for the Best Researcher Award.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. Strong Academic Foundation
    Dr. Shafiee has a stellar academic record, graduating first in her Ph.D. class at Razi University with a CGPA of 3.77 and a thesis grade of 3.98, under the supervision of respected experts in computer engineering and bioinformatics.

  2. Innovative Interdisciplinary Research
    Her research bridges computer systems architecture, machine learning, and bioinformatics, with notable contributions to protein-peptide binding prediction, a critical domain in drug discovery and computational biology.

  3. High-Impact Publications
    She has published in IEEE/ACM Transactions, Applied Soft Computing, and Methods, reflecting both quality and visibility in international forums. Tools like SPPPred and DP-site demonstrate her practical impact in bioinformatics.

  4. Research Originality and Versatility
    Dr. Shafiee has developed hybrid models combining genetic programming, support vector machines, and deep learning, with practical tools and open-source contributions.

  5. Early Recognition and Outreach
    She has been active in academic dissemination since 2015, with selected papers in national and international conferences, showing early promise and consistency.

  6. Teaching and Mentorship
    Through her roles as a lecturer at multiple institutions, she has contributed to academic growth at the grassroots level.

Areas for Improvement:

  1. International Collaboration & Visibility
    While her publication quality is strong, Dr. Shafiee could expand her global visibility through collaborations with international research labs, EU Horizon, or NIH-funded projects.

  2. Post-Ph.D. Grant Applications
    She could benefit from applying for independent research grants or postdoctoral fellowships to lead projects that could shape the future of AI in biology.

  3. Open-Source Software and Data Availability
    While her models are impactful, increased accessibility via open-source repositories (e.g., GitHub) would boost reproducibility and encourage broader adoption.

  4. Industry Impact Metrics
    More emphasis on industry collaborations, patents, or application of models in clinical/biotech settings would enhance translational impact.

Education:

Shima Shafiee completed her Ph.D. in Computer Engineering (2016–2024) from Razi University, specializing in Computer Systems Architecture. Her dissertation titled “Application of learning-based models in predicting of protein-peptide binding interactions” earned her a thesis grade of 3.98/4.00 and an overall CGPA of 3.77. She worked under the guidance of Dr. Abdolhossein Fathi and Dr. Ghazaleh Taherzadeh, focusing on bioinformatics using deep learning, ensemble learning, and evolutionary algorithms. Prior to her Ph.D., she was ranked third in her Master’s program (2015). Shafiee’s educational background is rooted in computational problem-solving, algorithm development, and cross-disciplinary research involving biological data. Her consistent academic excellence and high-ranking performance culminated in her being recognized as the top Ph.D. student in 2025, a testament to her dedication and scholarly capabilities. Her education blends rigorous theory with innovative applied research, making her exceptionally well-prepared for high-impact contributions in academia and industry.

Experience:

Shima Shafiee’s experience spans both academic and applied computer engineering roles. She began her journey with an internship at Kimia Pardaz Pars Company (2013). Between 2015 and 2016, she served as a lecturer for computer fundamentals at Fajr High School and Al-Zahra Seminary School in Jiroft, where she taught introductory computer science to pre-university students. These experiences highlight her foundational teaching skills and outreach to educational institutions in her community. Her major academic contribution began during her Ph.D., where she collaborated with IDEL Lab and contributed to developing tools like SPPPred and DP-site, combining genetic programming, support vector machines, and deep learning to predict protein-peptide binding regions. Her experience uniquely blends educational outreach, algorithmic development, and publication-driven research in machine learning, optimization, and computational biology, reflecting her versatility and impact across the scientific and academic spectrum.

Awards & Honors:

Shima Shafiee has earned multiple distinctions recognizing her academic and research excellence. In 2015, she was named the third-place student in her Master’s program, demonstrating early academic excellence. Her continuous dedication to research and scholarship led her to be recognized as the first-place student in her Ph.D. program in 2025. One of her papers was selected at the 2nd International Congress of Electrical Engineering, Computer Science, and Information Technology (2015), highlighting the innovation and relevance of her early research in optimization algorithms. Her high publication output, including appearances in top-tier venues like IEEE/ACM Transactions on Computational Biology and Bioinformatics and Applied Soft Computing, reflects a consistent standard of excellence. These honors collectively showcase her as a standout figure in her field, with both academic and applied contributions acknowledged at national and international levels.

Research Focus:

Shima Shafiee’s research lies at the intersection of machine learning, bioinformatics, and computational systems engineering. Her primary focus is the prediction of protein-peptide binding interactions using intelligent algorithms such as genetic programming, ensemble models, and deep learning techniques. She has proposed several innovative hybrid models combining sequence-based and structure-based features to identify critical interaction residues. Her doctoral thesis and publications have led to the development of tools like SPPPred and DP-site, which aid in biological sequence analysis, with applications in drug discovery, protein function prediction, and biomedical engineering. Shafiee also has a strong background in optimization algorithms, especially particle swarm optimization (PSO), applied to computationally intensive problems like bin packing. Her ability to blend theoretical computing with practical biological data analysis makes her contributions valuable to both computational scientists and biologists, and positions her as a leading candidate for research recognition awards in AI and bioinformatics.

Publications Top Notes: 

  • 🧠 SPPPred: sequence-based protein-peptide binding residue prediction using genetic programming and ensemble learning (IEEE/ACM TCBBS, 2022)

  • 🔍 Prediction of protein–peptide-binding amino acid residues regions using machine learning algorithms (CSICC, 2021)

  • 🧬 Combination of genetic programming and SVM-based prediction of protein-peptide binding sites (Journal of Computing and Security, 2021)

  • 🧪 Prediction of protein–peptide binding residues using classification algorithms (IEEE Bioengineering Conf, 2020)

  • 🧠 A Review of the Uses of AI in Protein Research (Peptide Science Conf, 2019)

  • 🤖 DP-site: dual deep learning method for protein-peptide interaction site prediction (Methods, 2024)

  • 🧬 Protein-peptide interaction region prediction using generative sampling & ensemble DL (Applied Soft Computing, 2025)

  • 🧠 Comparing classification vs. segmentation predictors in protein-peptide interaction (CSICC, 2025)

  • 🧬 Leveraging structure-based and learning-based predictors in protein-peptide interaction (ICCKE, 2024)

  • 📘 Application of learning-based models in protein-peptide binding (Ph.D. Dissertation, 2024)

Conclusion:

Dr. Shima Shafiee is a highly suitable candidate for the Best Researcher Award based on her academic excellence, interdisciplinary research achievements, and consistent contributions to the fields of artificial intelligence and bioinformatics. Her ability to bridge computer science and biological challenges has resulted in meaningful and applicable solutions. She has displayed originality, depth, and foresight in her work, developing novel methods that align with modern computational biology trends.

Gisela D’ANGELO | Cell Biology and Cancer | Best Researcher Award

Dr. Gisela D’ANGELO | Cell Biology and Cancer | Best Researcher Award

Dr. Gisela D’ANGELO, CNRS, France

Dr. Gisela D’Angelo is a distinguished cell biologist and Research Director at CNRS, currently based at Institut Curie, Paris. Born in Montevideo, Uruguay (1961), she has built a notable career in molecular biology, specializing in the roles of extracellular vesicles (EVs) in cell communication, development, and disease. With over three decades of international experience and a profound academic foundation from top French institutions, she has contributed significantly to understanding vesicle-mediated signaling pathways. Her work has reshaped knowledge of cellular dynamics in development, virology, and cancer. She is affiliated with the UMR144 Cell Biology and Cancer Department, and her scientific leadership has guided impactful projects and collaborations across Europe. A mentor to several postdoctoral researchers, her prolific publication record and active role in translational research solidify her position as a leader in EV biology.

Publication Profile: 

Scopus

Orcid

✅ Strengths for the Award:

  1. World-Class Researcher in Extracellular Vesicles (EVs):
    Dr. D’Angelo has made pivotal contributions to understanding the biogenesis and function of extracellular vesicles in both developmental and pathological contexts, such as placental biology, viral infection, and cancer.

  2. Prolific Publication Record:
    She has authored and co-authored multiple high-impact journal articles in top-tier journals like PNAS, Nature Methods, Current Biology, and Development. Her publications are often collaborative and interdisciplinary, indicating a strong network in the global scientific community.

  3. Leadership Role and Institutional Prestige:
    Holding the title of Research Director (DR2 CNRS) at the Institut Curie—a premier research center in Europe—underscores her leadership and scientific excellence. She also mentors young scientists and leads innovative projects.

  4. Innovative Use of Imaging & Model Systems:
    Her work combines advanced microscopy, Drosophila genetics, and molecular biology to explore intercellular communication—offering novel insights with translational potential.

  5. International Profile and Experience:
    Originally from Uruguay, educated in Paris, and professionally established in France, Dr. D’Angelo reflects a truly international scientific career.

⚠️ Areas for Improvement:

  1. Teaching and Public Engagement:
    While she is involved in a Master-level course, increasing her visibility in teaching, mentoring, and public science outreach could enhance her broader scientific influence.

  2. Expanded Global Collaborations:
    Most of her research collaborations are within France or Europe. Developing larger-scale international consortia or initiatives could amplify her global impact.

  3. Science Communication and Media Presence:
    Her profile and findings could benefit from more exposure via science communication platforms, conferences, and open-access forums to reach broader audiences.

🎓 Education:

Dr. Gisela D’Angelo’s academic journey began at Université Pierre et Marie Curie (Paris VI), where she earned a BS in Cell Biology and Physiology (1984), followed by a Master’s degree in Reproductive Physiology (1986). She went on to complete her PhD in Molecular Biology and Reproductive Physiology in 1990 at the same university. Her research skills and academic rigor led her to pursue the Habilitation à Diriger des Recherches (HDR) in 2003 at Université de Nice Sophia-Antipolis, qualifying her to supervise doctoral research and lead independent scientific programs. Her education laid a strong interdisciplinary foundation, integrating molecular biology, cell physiology, and developmental biology—skills that she continues to apply in her research on intercellular communication and extracellular vesicles.

💼 Experience:

Dr. D’Angelo began her research career in France, first as a Research Associate at INSERM U615, University of Nice (2000–2005), followed by a role at CNRS UMR 7277/INSERM 1091 (2005–2017). She then joined Institut Curie, Paris, as a Senior Research Scientist (CRCN, CNRS), and was promoted to Research Director in 2024. Her extensive experience spans cellular communication, reproductive biology, and cancer research, with a focus on extracellular vesicles (EVs). She undertook a sabbatical at Institut Curie in 2016, which helped deepen collaborative efforts in vesicle biology. She is recognized for leading multidisciplinary teams, mentoring early-career scientists, and contributing to major breakthroughs in developmental biology, particularly through high-resolution imaging and molecular tools. With over 20 publications in top-tier journals, Dr. D’Angelo’s career reflects innovation, academic rigor, and impactful science.

🔬 Research Focus:

Dr. Gisela D’Angelo’s research revolves around the biogenesis, trafficking, and function of extracellular vesicles (EVs)—small, membrane-bound particles that mediate intercellular communication. Her work elucidates how EVs participate in developmental signaling pathways, immune regulation, placental communication, and disease pathogenesis (e.g., cancer, viral infections). A core part of her focus is understanding how microvilli-derived vesicles contribute to morphogenesis and tissue homeostasis, using advanced imaging and model organisms like Drosophila. She has also explored EV modifications by pathogens such as cytomegalovirus and their effects on fetal development. Her cutting-edge research combines molecular genetics, imaging technologies, and cell biology to dissect the subcellular mechanics of EV trafficking. As a leading figure in this dynamic field, she has significantly advanced understanding of how EVs act as messengers during physiological and pathological processes, making her work highly relevant to regenerative medicine, oncology, and developmental biology.

📚 Publications Top Notes:

  1. 🧪 Extracellular vesicles released by keratinocytes regulate melanosome maturation, melanocyte dendricity, and pigment transfer – PNAS, 2024

  2. 🤰 Placental extracellular vesicles in maternal-fetal communication during pregnancy – Biochemical Society Transactions, 2022

  3. 🦠 Human Cytomegalovirus modifies placental small extracellular vesicle composition to enhance infection of fetal neural cells in vitro – Viruses, 2022

  4. 🧬 Microvilli-derived extracellular vesicles carry Hedgehog morphogenic signals for Drosophila wing imaginal disc development – Current Biology, 2022

  5. 🔬 The power of imaging to understand extracellular vesicle biology in vivo – Nature Methods, 2021

  6. 🧫 Human Cytomegalovirus infection changes the pattern of surface markers of small extracellular vesicles – Frontiers in Cell and Developmental Biology, 2021

  7. 🧠 Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption – Current Biology, 2021

  8. 🧭 The GTPase Rab8 differentially controls Hedgehog gradient by regulating its apico-basal distribution – Development, 2021

  9. 🐛 Microvilli-derived extracellular vesicles govern morphogenesis in Drosophila wing epithelium – bioRxiv preprint, 2020

  10. 🧪 Centrosome amplification mediates EV secretion via lysosome disruption – bioRxiv preprint, 2020

  11. 🧩 The cell biology of extracellular vesicles: A jigsaw puzzle with a myriad of pieces – Review/Essay (unlisted journal)

🧾 Conclusion:

Dr. Gisela D’Angelo is highly suitable for the Best Researcher Award. Her exceptional contributions to extracellular vesicle research—combined with leadership, publication quality, and scientific impact—place her among the top scientists in her field. While she could enhance her visibility in teaching and international collaboration, her track record demonstrates consistent excellence, innovation, and commitment to advancing biomedical research. She represents the ideal profile of a senior investigator who bridges fundamental science and translational relevance.

Madeha Awad | Intracellular Transport Systems | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad | Intracellular Transport Systems | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad, Sohag university, Egypt

Dr. Madeha Ahmed Aboelfadl Awad is an accomplished Associate Professor in the Physics Department, Faculty of Science, Sohag University, Egypt. Born on January 27, 1979, she has established herself as a leading researcher in the field of nanomaterials physics, with a focus on the synthesis and characterization of metal, metal oxide, and oxysulfide nanostructures. Fluent in Arabic, English, and French, Dr. Awad has contributed extensively to sustainable material applications, including photocatalysis, photodetectors, and smart coatings. Her passion for scientific inquiry and dedication to environmental and energy-related innovations have positioned her as a significant academic voice in Egypt and internationally. Married and residing in Sohag, she continues to inspire through both her teaching and prolific research publications, contributing to over 10 international journal articles and conference presentations. Dr. Awad’s interdisciplinary approach bridges materials science with real-world industrial and environmental applications.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Innovative Research Focus:
    Dr. Awad has demonstrated consistent innovation in synthesizing and characterizing advanced nanostructured systems (metal oxides, oxysulfides, and thin films), with real-world applications in environmental remediation, energy conversion, and optoelectronics.

  2. Publication Record:
    She has published 10+ articles in reputable international journals such as Physica Scripta and Journal of Materials Science: Materials in Electronics. Many of these works address pressing global challenges, including pollution control, clean energy, and smart coatings.

  3. Multidisciplinary Impact:
    Her work intersects physics, materials science, and environmental engineering, creating sustainable technologies like photocatalysts, hydrogen generation systems, and photodetectors.

  4. Active Conference Participation:
    Dr. Awad has presented at national and international scientific conferences, sharing her findings on SnO₂ thin films and transparent conductors, reflecting leadership in academic dissemination.

  5. Academic Development:
    She has completed multiple training courses in competitive research, digital transformation, and teaching methodologies, ensuring continuous growth and contribution to higher education quality.

🧩 Areas for Improvement:

  1. International Collaborations:
    While Dr. Awad is actively publishing, there is potential for expanding collaborations with global research institutes and industrial sectors to enhance the scope and visibility of her work.

  2. Research Funding Diversification:
    Engaging in international grant applications or large-scale collaborative projects would further strengthen her research sustainability and resource access.

  3. Visibility in High-Impact Conferences:
    Increasing participation in high-impact global conferences or symposiums (e.g., MRS, APS) could amplify her academic footprint and foster more research exchange.

🎓 Education:

Dr. Awad earned her B.Sc. in Physics with a very good degree from Sohag University in 2003. She pursued her M.Sc. in Solid State Physics (2008), focusing on the structural, electrical, and optical properties of Sn-Sb-Se compounds. In 2015, she received her Ph.D. in Nanomaterials Physics for her pioneering work on ZnO-based nanomaterials. Her Ph.D. research emphasized growth and characterization techniques vital for optoelectronic applications. In October 2020, she became an Associate Professor, having specialized in the synthesis and analysis of nanostructured systems, including metal oxides and oxysulfides, with targeted industrial uses. Her academic path reflects a deep commitment to solid-state physics, materials engineering, and nanotechnology. She has also enhanced her academic competencies with digital transformation, student assessment, and competitive research training, aligning her education with modern interdisciplinary needs and research innovations.

🧪 Professional Experience:

Dr. Awad began her academic journey as an Assistant Lecturer in 2013 at Sohag University’s Physics Department. Following the completion of her Ph.D. in 2015, she was promoted to Lecturer, contributing to undergraduate and postgraduate instruction while intensifying her research. In 2020, she was appointed Associate Professor in Materials Science. Over the years, Dr. Awad has participated in international conferences, served as a research mentor, and collaborated with national and international scholars. Her expertise in synthesizing thin films and evaluating their optical, structural, and electrical characteristics has enabled her to lead multiple applied research projects. In addition to teaching and supervision, she has completed various training programs on student assessment, digital transformation, and competitive research funding. Her holistic academic profile blends high-impact research with educational excellence, making her a valuable contributor to Egypt’s scientific and academic landscape.

🔬 Research Focus:

Dr. Madeha Awad’s research focuses on the synthesis, characterization, and application of nanostructured materials, particularly metal and metal oxide thin films. Her work addresses real-world challenges through environmentally friendly solutions such as photocatalysis for pollutant degradation, hydrogen generation from seawater, and smart coatings for self-cleaning surfaces. She is also active in developing photodetectors for environmental sensing. Her interdisciplinary approach integrates solid-state physics, material science, and environmental engineering. Her recent projects involve advanced nanocomposites like In2O3/CuO and TiO2-based systems, with optimized optoelectronic and wettability properties for diverse industrial applications. By modifying surface and structural properties of nano-films, Dr. Awad aims to enhance energy efficiency, sustainability, and environmental remediation technologies. She is a strong advocate for applied research and often collaborates on global research initiatives that promote clean energy and green technologies. Her vision merges innovation with impact.

📚 Publications Top Notes:

  1. 🔬 Photocatalytic characteristics of indium oxide, copper oxide and indium oxide/copper oxide thin films on plastic waste substrates for organic pollutants degradation

  2. 🔍 Influence of oxygen flow rates on the optoelectronic properties SnO2 thin films

  3. 🌿 A comparison between the effect of zinc oxide and zinc oxide nanoparticles on the growth and metabolic processes of Cosmarium sp

  4. 🌞 Highly sensitive TiO2 based photodetector for environmental sensing applications

  5. 🔦 Optoelectronic characteristics of In2O3/CuO thin films for enhanced visible-light photodetector

  6. 🧼 Photocatalysis, wettability and optical properties of N-doped Cu2O/CuO thin films for smart coating applications

  7. 💧 Surface wettability and photocatalytic activities of ZrOxNy/Au/TeO2 trilayers for antifogging coatings

  8. Some characteristics of Cu/Cu2O/CuO nanostructure heterojunctions and their applications in hydrogen generation from seawater

  9. 🌐 WNxOy prepared by oxidation of tungsten nitride as alternative photocatalyst to N-doped WO3

📝 Conclusion:

Dr. Madeha Ahmed Aboelfadl Awad exemplifies the qualities of a modern researcher who blends academic rigor with real-world impact. Her research in nanomaterials for environmental and energy applications is both timely and significant. With a strong foundation in materials science and a clear trajectory of impactful publications, she is an excellent candidate for the Best Researcher Award.

Abdulatif AL-Haj | Cytoskeleton Cell Motility | Innovative Research Award

Dr. Abdulatif AL-Haj | Cytoskeleton Cell Motility | Innovative Research Award

Dr. Abdulatif AL-Haj | Ruhr Universität Bochum | Germany

Dr. Abdulatif Al Haj is a highly accomplished biochemist and molecular cardiology researcher originally from Syria, currently residing in Germany. With extensive academic and professional experience across Europe and the Middle East, Dr. Al Haj has built a multidisciplinary career in molecular biology, biotechnology, and medical education. He holds a doctorate in biology and biotechnology, with a strong focus on actin dynamics and cardiovascular disease. Fluent in Arabic, German, English, and French, he has effectively bridged scientific research with public health, education, and social integration roles. His work includes teaching, paramedic service during the pandemic, and involvement in migrant integration and healthcare initiatives. He has contributed to peer-reviewed publications and collaborated with notable researchers in Germany. Dr. Al Haj exemplifies international scientific cooperation and interdisciplinary application of biosciences for societal benefit.

publication profile:

scopus

🔍 Strengths for the Award:

  • 🔬 Cutting-Edge Research: Key discoveries in actin cytoskeleton regulation and thymosin beta4′s role in cardiac repair

  • 🌍 Global Impact: Extensive collaborations in Germany and Syria, advancing both education and research

  • 📚 Scientific Output: Author of multiple high-impact journal articles and presenter in international scientific symposia

  • 👨‍🏫 Cross-disciplinary Excellence: Combines life sciences, education, and healthcare

  • 🧪 Innovative Thinking: Integrated research on cofilin/ADF, Arp2/3 complex, and cardiomyocyte remodeling

🚧 Areas for Improvement:

  • Broader dissemination of findings through more international conferences

  • Increase involvement in grant-funded principal investigator (PI) roles

  • Enhance digital presence via scientific networking platforms (e.g., ResearchGate, ORCID)

🎓 Education :

Dr. Al Haj earned his diploma and Master’s degrees in Biotechnology and Biochemistry from the University of Damascus, Syria. He later completed a Doctorate in Biology and Biotechnology with a dissertation on the modulation of cofilin/ADF and thymosin beta4 in cell migration. His academic pursuits also include studies in Educational Planning, Natural Sciences, and Microbiology at the Technical University of Applied Sciences Berlin and Ruhr University Bochum. Additionally, he undertook postgraduate training in Education and Psychology, Business English, and quality management under TÜV-certified programs. Dr. Al Haj further enriched his academic repertoire with continuous professional development courses in process management, norm standards (ISO 9001), and nutrition. His commitment to lifelong learning reflects a passion for combining theoretical science with applied clinical and educational practices.

🧪 Experience :

Dr. Al Haj has accumulated extensive research and teaching experience across several prestigious institutions. At the Ruhr University Bochum, he worked with Prof. Hans Georg Mannherz on actin-regulating proteins, contributing to innovative cardiology research. He held posts at Catholic and Central Clinics as a scientist, served as a paramedic at Herne Vaccination Center, and worked as a social worker and integration coach. His academic duties included teaching biology, chemistry, and physics, and serving as an Arabic language teacher in Berlin. Additionally, Dr. Al Haj took on project management and quality assurance roles at LVQ Further Education gGmbH and underwent TÜV training for process management. His unique blend of clinical, educational, and social service roles highlights his commitment to interdisciplinary collaboration and societal contribution.

🔬 Research Focus :

Dr. Al Haj’s research centers on molecular and experimental cardiology, cytoskeletal proteins (cofilin/ADF), and cell migration. His doctoral and postdoctoral work explored the effects of thymosin beta4 and actin-regulating proteins on cellular motility—essential for understanding cardiac development and cancer metastasis. His published work includes significant studies on the Arp2/3 complex, actin dynamics, and the influence of sGC activators on cardiac cells from hypertensive and heart failure patients. Beyond molecular cardiology, he has explored radioimmunoassay techniques, EBV-associated gastric carcinoma, and embryological development of cardiac muscle from branchial arch progenitors. His multidisciplinary approach blends biochemistry, histology, anatomy, and clinical diagnostics, bridging basic research with therapeutic applications. His ongoing interest in student assessment and e-learning underscores a commitment to scientific education and training.

📚 Publications Top Notes :

  1. 🧬 Inhibition of Arp2/3 Complex after ADP-Ribosylation of Arp2 by Binary Clostridioides ToxinsCells, 2022

  2. ❤️ sGC Activator Causes Beneficial Remodeling in Cardiomyocytes from Hypertensive Rats and Heart Failure PatientsFront. Physiol.

  3. 🧠 Chicken Second Branchial Arch Progenitor Cells Contribute to Heart Musculature In Vitro and In VivoDevelopmental Dynamics, 2020

  4. 🧫 Characteristics of Gastric Carcinoma Associated with Epstein Barr Virus in AlgeriaDer Pharmacia Lettre, 2017

  5. 🦴 Etiology and Pathogenesis of Arthrofibrosis at the Cellular LevelArthroscopy, 2016

  6. 🧪 HeLa Cells and the Human Colon Carcinoma BE, 3LNLN and EB3 Cell Lines – Dissertation Work

  7. 🎓 Research on Assessing Students’ Academic Performance in Bloom’s Cognitive Level

🧾 Conclusion :

Dr. Abdulatif Al Haj is a strong candidate for the Innovative Research Award, distinguished by his relentless pursuit of molecular innovation, interdisciplinary approach, and commitment to public health and education. His work on actin-binding proteins and cardiac regeneration holds promising implications for heart disease treatment and personalized medicine. His track record demonstrates scientific creativity, rigor, and societal relevance.