Willa Hsueh | Immunometabolism | Best Researcher Award

Prof. Willa Hsueh | Immunometabolism | Best Researcher Award

The Ohio State University | United States

Dr. Willa Hsueh is a leading researcher in endocrinology, diabetes, and metabolism, with a career spanning several decades of pioneering contributions to hormone regulation and metabolic disease. Her early research provided key insights into renin biochemistry and aldosterone metabolism, particularly focusing on inactive “big renin” forms and their activation mechanisms in normal and pathological conditions such as diabetic nephropathy. Dr. Hsueh’s investigations have significantly advanced the understanding of the renin-angiotensin-aldosterone system (RAAS) and its role in blood pressure regulation, sodium balance, and endocrine disorders. Her studies explored adrenal physiology, steroid metabolism, and hormonal responses to physiological and pharmacological stimuli, laying the groundwork for later research on cardiovascular and metabolic dysfunctions in diabetes. Through her interdisciplinary approach combining endocrinology, nephrology, and metabolism, she has elucidated biochemical pathways linking hormonal imbalances to metabolic diseases. Dr. Hsueh continues to lead impactful research in diabetes and metabolic regulation, contributing to translational advancements that bridge molecular mechanisms with clinical applications for improved patient outcomes in endocrine and metabolic disorders.

Profiles: Scopus | Orcid

Featured Publications:

Hsueh, W. A., Boonjaren, S., Stein, J., Baehler, H. R., Osgood, R. W., Cohen, S., Yashon, D., & Ferris, T. (1974). Effect of plasma sodium concentration on diluting segment sodium reabsorption. Kidney International, 5(1), 1–11.

Johnson, K. R., Hsueh, W. A., Glusman, S. M., & Arnett, F. C. (1976). Fibrous myopathy: A rheumatic complication of drug abuse. Arthritis & Rheumatism, 19(5), 923–926.

Hsueh, W. A., & Hsu, T. H. (1978). Thyrotoxicosis in a patient with secondary hypothyroidism. Southern Medical Journal, 71(9), 1174–1177.

Hsueh, W. A., Luetscher, J. A., Carlson, E., & Grislis, G. (1978). Big renin in plasma of healthy subjects on high-sodium intake. The Lancet, 1(8077), 1281–1284.

Hsueh, W. A., Hsu, T. H., & Federman, D. D. (1978). Endocrine features of Klinefelter’s syndrome. Medicine, 57(5), 447–461.

Hsueh, W. A., Luetscher, J. A., Carlson, E., Grislis, G., Elbaum, D., & Chavarri, M. (1978). A comparison of cold and acid activation of big renin and of inactive renin in normal plasma. Journal of Clinical Endocrinology and Metabolism, 47(4), 792–799.

Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Dr. Muhammad Junaid Anwar | Immunology Cellular Interactions | Best Researcher Award

Bahauddin Zakariya Univeristy |Pakistan

Dr. Muhammad Junaid Anwar is a rising scholar in Food Science & Technology whose work spans bioactive compounds, dairy protein‐based nanoencapsulation, food safety, and nutraceutical applications. According to Google Scholar, he has authored over 20 peer-reviewed articles and accumulated more than 270 citations to date, reflecting an h-index of 8.  His research includes investigations into olive oil polyphenols for cancer prevention, development of casein-based nanoencapsulation for managing cow’s milk allergy, optimization of ultrasonication pre-treatments for microbial reduction in fresh produce, and exploration of isoflavones and resveratrol in anticancer contexts. Through a blend of experimental and review work, he advances both the applied and mechanistic understanding of functional foods and health-promoting ingredients.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Anwar, M. J., Anwar, M. H., Imran, M., Noman, A. M., Hussain, M., Raza, H., … & Selim, S. (2025). Olive oil polyphenols: A promising approach for cancer prevention and therapy. Food Science & Nutrition, 13(9), e70976.

Anwar, M. J., Hameed, A., Khan, M. U., Mazhar, A., & Manzoor, H. M. I. (2025). Development and exploration of casein-based nano-encapsulation of mangiferin for cow milk allergy management and immunomodulation. Food Bioscience, 66, 106278.

Javed, M. S., Nawaz, H., Filza, F., Anwar, M. J., Shah, F. U. H., Ali, U., … & Nayik, G. A. (2025). Optimization of calcium chloride and ultrasonication pre-treatment to mitigate the microbial load on fresh carrots using response surface methodology. Ultrasonics Sonochemistry, 116, 107311.

Ul Hassan, M. H., Shahbaz, M., Imran, M., Momal, U., Naeem, H., Mujtaba, A., Hussain, M., Anwar, M. J., Alsagaby, S. A., Al Abdulmonem, W., Yehuala, T. F., & Mostafa, E. M. (2025). Isoflavones: Promising natural agent for cancer prevention and treatment. Food Science & Nutrition, 13(3), e70091.

Hameed, A., Ashraf, F., Anwar, M. J., Amjad, A., Hussain, M., Imran, M., … & Jbawi, E. A. (2024). α-Amylase enzyme inhibition relevant to type II diabetes by using functional yogurt with Cinnamomum verum and Stevia rebaudiana. Food and Agricultural Immunology, 35(1), 2389091.

Khalid, M. U., Sultan, M. T., Khan, W. A., Israr, M., Zafar, N., Noman, A. M., Imtiaz, S., Younis, M., Anwar, M. J., Nayyar, A., Orabi, A. A., & Khalil, N. A. (2024). Nutritional and physico-chemical profiling of Tribulus terristris and its nutraceuticals application. Journal of Population Therapeutics & Clinical Pharmacology, 31(9), 1230–1241.

Faisal, Z., Irfan, R., Akram, N., Manzoor, H. M. I., Aabdi, M. A., Anwar, M. J., … & Desta, D. T. (2024). The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food Science & Nutrition, 12(4), 2294–2310.

Javed, M. S., Alvi, S. Q., Amjad, A., Sardar, H., Anwar, M. J., Javid, A., … & AbdElgawad, H. (2024). Protein extracted from Moringa oleifera Lam. leaves: Bio-evaluation and characterization as suitable plant-based meat-protein alternative. Regulatory Toxicology and Pharmacology, 146, 105536.

Anwar, M. J., Altaf, A., Imran, M., Amir, M., Alsagaby, S. A., Al Abdulmonem, W., Mujtaba, A., El-Ghorab, A. H., Ghoneim, M. M., Hussain, M., Al Jbawi, E., Shaker, M. E., & Abdelgawad, M. A. (2023). Anti-cancer perspectives of resveratrol: A comprehensive review. Food and Agricultural Immunology, 34(1).

Hameed, A., Anwar, M. J., Khan, M. I., Tarar, O. M., Ali, S. W., Faraz, A., … & Kashif, A. S. (2023). Assessing the impact of camel breed and their grazing habits on the nutritional profile of milk. Pakistan Journal of Agricultural Sciences, 60(2).

Evgeny Deforzh | Cancer | Best Researcher Award

Dr. Evgeny Deforzh | Cancer | Best Researcher Award

Brigham and Women’s Hospital, Harvard University | United States

Dr. Evgeny Deforzh is a molecular biologist whose work focuses on the regulation of RNA, microRNAs, chromatin dynamics, and their roles in cancer and neurological disease. After earning his B.S. and M.S. in Biology from Saint Petersburg State University and a Ph.D. in Molecular Biology from Paris‑Saclay University, he completed postdoctoral research as a Research Fellow and subsequently served as Instructor in Neurology at Brigham & Women’s Hospital. His peer‑reviewed contributions include insights into how WEE1 regulators switch roles in cell cycle control, protection of cyclin mRNAs from translational repression, the impact of glioblastoma‑derived extracellular vesicles on astrocyte transformation, and the nuclear modulation of splicing by oncogenic microRNAs. More recently, his work has elucidated promoter/enhancer RNA regulation of super‑enhancers, and miRNA pathways as therapeutic targets in gliomas and meningiomas. To date, Dr. Deforzh has published ~15–20 independent original research articles (first‑, co‑first, or senior‑author) with many additional co‐authored papers. His publications have been cited in the literature ~800‑1,200 times, giving him an approximate h‑index of 12–15. His research has advanced understanding of RNA regulatory networks in cancer and offers potential translational pathways for diagnostics and therapy.

Profiles: Google Scholar | Scopus

Featured Publications:

Zeng, A., Wei, Z., Rabinovsky, R., Jun, H. J., El Fatimy, R., Deforzh, E., & Arora, R. (2020). Glioblastoma-derived extracellular vesicles facilitate transformation of astrocytes via reprogramming oncogenic metabolism. iScience, 23(8), 101420.

Deforzh, E., Uhlmann, E. J., Das, E., Galitsyna, A., Arora, R., Saravanan, H., … (2022). Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Molecular Cell, 82(10), 1894–1908.e5.

El Fatimy, R., Zhang, Y., Deforzh, E., Ramadas, M., Saravanan, H., Wei, Z., … (2022). A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Molecular Cancer, 21(1), 17.

Poller, W., Sahoo, S., Hajjar, R., Landmesser, U., & Krichevsky, A. M. (2023). Exploration of the noncoding genome for human-specific therapeutic targets—Recent insights at molecular and cellular level. Cells, 12(22), 2660.

Deforzh, E., Vargas, T. R., Kropp, J., Vandamme, M., Pinna, G., & Polesskaya, A. (2016). IMP-3 protects the mRNAs of cyclins D1 and D3 from GW182/AGO2-dependent translational repression. International Journal of Oncology, 49(6), 2578–2588.

Kratassiouk, G., Pritchard, L. L., Cuvellier, S., Vislovukh, A., Meng, Q., … (2016). The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell Cycle, 15(5), 667–677.

Rachel Foster | Microbial Oceanography | Best Researcher Award

Prof. Rachel Foster | Microbial Oceanography | Best Researcher Award

Stockholm University | Sweden

Rachel A. Foster is a leading researcher in microbial oceanography, with significant contributions to the study of planktonic symbioses, particularly those involving nitrogen-fixing cyanobacteria and diatoms. Her research focuses on the evolution, function, and genomic innovations of symbiotic microorganisms that drive key biogeochemical cycles in marine ecosystems. Foster has pioneered single-cell approaches, including mass spectrometry imaging and heterologous gene expression, to uncover molecular interactions between symbiotic partners. She has secured major national and international grants, including from the Swedish Research Council, SciLifeLab, Formas, and the Wallenberg Foundation, supporting both basic and applied research. She has published 71 peer-reviewed works, including 3 book chapters, with 31 as first or senior author, and her work has been cited 5,944 times. Her current h-index is 40, demonstrating both the depth and influence of her scholarship. Her editorial contributions include serving as Specialty Co-Chief Editor for Frontiers in Aquatic Microbiology. Foster’s recent work includes high-impact publications in Current Biology, The ISME Journal, and PNAS Nexus, as well as openly shared datasets. Through multidisciplinary collaborations across Europe, she continues to shape our understanding of microbial symbioses and their evolutionary significance in the ocean.

Profiles: Scopus | Orcid

Featured Publications:

Grujcic, V., Mehrshad, M., Vigil-Stenman, T., Lundin, D., & Foster, R. A. (2025). Stepwise genome evolution from a facultative symbiont to an endosymbiont in the N2-fixing diatom-Richelia symbioses. Current Biology.

Nieves-Morión, M., Romero-García, R., Bardi, S., López-Maury, L., Hagemann, M., Flores, E., & Foster, R. A. (2025). Retention of a SulP-family bicarbonate transporter in a periplasmic N2-fixing cyanobacterial endosymbiont of an open ocean diatom. The ISME Journal.

Foster, R. A. (2025, April 27). Molecular markers for Richelia symbionts of open ocean diatom symbioses [Dataset]. figshare.

Grujcic, V., Mehrshad, M., Vigil-Stenman, C. T., Lundin, D., & Foster, R. A. (2025, March 25). The path to dependence: Stepwise genome evolution from a facultative symbiont to an endosymbiont in the N2-fixing diatom-Richelia symbioses [Preprint]. bioRxiv.

Nieves-Morión, M., Romero-García, R., Bardi, S., López-Maury, L., Hagemann, M., Flores, E., & Foster, R. A. (2024, January 10). Using gene complementation to identify a SulP-family bicarbonate transporter in an N2-fixing cyanobacterial endosymbiont of an open ocean diatom [Preprint]. bioRxiv.

Nieves-Morión, M., Camargo, S., Bardi, S., Ruiz, M. T., Flores, E., Foster, R. A., & Bayer, E. (2023). Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host. PNAS Nexus.

Ann-Kathrin Eisfeld | Molecular Profiles | Best Researcher Award

Prof. Dr. Ann-Kathrin Eisfeld | Molecular Profiles | Best Researcher Award

The Ohio State University | United States

Dr. Ann-Kathrin Eisfeld is an internationally recognized physician-scientist and Associate Professor with Tenure in the Division of Hematology at The Ohio State University, where she also serves as Director of the Clara D. Bloomfield Center for Leukemia Outcomes Research. Her research focuses on the molecular and genetic underpinnings of acute myeloid leukemia (AML), with a particular emphasis on translational applications that improve patient outcomes. Dr. Eisfeld has published extensively in high-impact journals such as Nature, Leukemia, Blood, and Cell Stem Cell, contributing significantly to our understanding of leukemia biology, clonal evolution, and treatment resistance. she has authored over 100 peer-reviewed scientific publications, with an h-index of 38, more than 6,500 citations, and has led or co-led multiple collaborative studies within national consortia such as the Alliance for Clinical Trials in Oncology. Her work has identified critical biomarkers and therapeutic targets in AML, including insights into TP53 mutations, FLT3 alterations, and resistance mechanisms to venetoclax. Recognized for her integration of clinical insight with cutting-edge genomics, Dr. Eisfeld is a leading voice in precision oncology and leukemia research, shaping the future of individualized treatment strategies through both clinical innovation and scientific discovery.

Profile: Scopus

Featured Publications:

“Highly elevated serum hepcidin in patients with acute myeloid leukemia prior to and after allogeneic hematopoietic cell transplantation: Does this protect from excessive parenchymal iron loading?”

“Heritable polymorphism predisposes to high BAALC expression in acute myeloid leukemia”

“miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia”

“Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia”

“Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation”

“inv(16)/t(16;16) acute myeloid leukemia with non-type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations”

“Clinical Role of microRNAs in Cytogenetically Normal Acute Myeloid Leukemia: miR-155 Upregulation Independently Identifies High-Risk Patients”

“In rare acute myeloid leukemia patients harboring both RUNX1 and NPM1 mutations, RUNX1 mutations are unusual in structure and present in the germline”

“A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia”

Emine Mine Soylu | Plant Pathology | Best Researcher Award

Prof. Dr. Emine Mine Soylu | Plant Pathology | Best Researcher Award

Hatay Mustafa Kemal University | Turkey

Prof. Dr. Emine Mine Soylu is a prominent academic in the field of plant pathology, with a career spanning over three decades dedicated to plant protection, host-pathogen interactions, and disease management strategies in crops. She began her professional journey as a Research Assistant at Akdeniz University and has since contributed significantly to scientific research through both experimental studies and scholarly publications. Her work is widely recognized, with a particular focus on the identification and control of fungal and bacterial diseases in economically important plants. Prof. Soylu has published 54 scientific documents in internationally refereed journals and has amassed a total of 3,749 citations, reflecting the substantial impact of her work in the field. Her h-index is 25, indicating consistent and high-quality contributions to science over the years. Her research includes first reports of various plant diseases in Türkiye and in-depth studies on disease resistance mechanisms and biochemical plant responses. Prof. Soylu’s contributions continue to shape the future of sustainable agriculture and plant health, and her collaborations extend across national and international scientific communities. Her scholarly output and citation metrics demonstrate her strong influence in the field of phytopathology and plant-microbe interactions.

Profiles: Google Scholar | ScopusOrcid

Featured Publications:

  • “Preliminary Characterization of Race-Specific Elicitors From Peronospora parasitica and Its Ability to Elicit Phenolic Accumulation in Arabidopsis”

  • “First Report of Downy Leaf Spot of Walnuts Caused by Microstroma juglandis in Turkey”

  • “Induction of Disease Resistance by the Plant Activator, Acibenzolar-S-methyl (ASM), Against Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) in Tomato Seedlings”

  • “First Report of Powdery Mildew Caused by Erysiphe heraclei on Dill (Anethum graveolens) in Turkey”

  • “Light and Electron Microscopy of the Compatible Interaction Between Arabidopsis and the Downy Mildew Pathogen Peronospora parasitica”

  • “Induction of Defence Related Enzymes and Resistance by the Plant Activator Acibenzolar-S-methyl in Tomato Seedlings Against Bacterial Canker Caused by Clavibacter michiganensis subsp. michiganensis”

  • “First Report of Cercospora Leaf Spot on Swiss Chard Caused by Cercospora beticola in Turkey”

  • “First Report of Phloeospora Leaf Spot on Mulberry Caused by Phloeospora maculans (=Cylindrosporium maculans) in the Eastern Mediterranean Region of Turkey”

  • “Induction of Disease Resistance and Antioxidant Enzymes by Acibenzolar-S-methyl Against Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) in Tomato”

  • “First Report of Powdery Mildew Caused by Podosphaera phaseoli (syn. Sphaerotheca phaseoli) on Cowpea (Vigna sinensis) in Turkey”

 

 

 

 

 

 

 

 

 

 

Wei Ying | Cell-Cell Communication | Best Researcher Award

Dr. Wei Ying | Cell-Cell Communication | Best Researcher Award

Dr. Wei Ying | University of California, San Diego | United States

Dr. Wei Ying is an Associate Professor in the Department of Medicine at the University of California, San Diego (UCSD). A leading scientist in immunometabolism, she has made pioneering contributions to the understanding of how immune cells, particularly macrophages, regulate metabolic diseases such as obesity, insulin resistance, and liver fibrosis. Dr. Ying’s research bridges immunology and endocrinology, uncovering novel intercellular signaling pathways mediated by exosomes and miRNAs. With over 67 peer-reviewed publications and 6,000+ citations, she is widely recognized for her impactful research. She serves as co-corresponding author on several high-impact papers in Cell Metabolism, Science Immunology, and Nature Communications. Dr. Ying’s innovative work continues to shape therapeutic strategies targeting immune-metabolic diseases. In recognition of her outstanding achievements, she is a compelling nominee for the Best Researcher Award. Her leadership, mentorship, and continuous scientific productivity mark her as a standout in biomedical research.

Publication Profiles: 

Google Scholar
Orcid

Education:

Dr. Wei Ying earned her Ph.D. in Immunology and Endocrinology from Texas A&M University, under the mentorship of Drs. Fuller Bazer and Beiyan Zhou. During her Ph.D., she conducted breakthrough work on macrophage polarization and its effects on metabolic disorders, setting the foundation for her lifelong research focus. She received multiple academic honors during her doctoral studies, reflecting her scholarly excellence. Following her Ph.D., she pursued postdoctoral training at UC San Diego, mentored by the renowned Dr. Jerrold Olefsky. There, she expanded her expertise in diabetes and immunometabolism, focusing on novel signaling molecules like exosomal miRNAs in metabolic inflammation. Her educational path reflects a strong interdisciplinary background, integrating reproductive biology, immunology, and metabolic research. This robust academic training laid the groundwork for her current position as Associate Professor at UCSD, where she continues to lead cutting-edge research in metabolism and immune regulation.

Experience:

Dr. Ying’s research journey began as a Ph.D. student at Texas A&M University, where she studied immune-endocrine interactions. As a postdoctoral fellow at UC San Diego, she made pivotal discoveries regarding the role of macrophage-derived exosomal miRNAs in regulating systemic insulin sensitivity. She served as Assistant Professor at UCSD, establishing a successful independent lab investigating immune-metabolic crosstalk. She was promoted to Associate Professor, a testament to her scientific leadership and research impact. Over the years, she has mentored numerous trainees, contributed to 67+ publications, and led collaborative projects with top-tier labs. Her work frequently appears in prestigious journals like Cell Metabolism, Science Immunology, Hepatology, and Nature Communications. Her expertise spans immunology, metabolism, liver disease, and diabetes, and she continues to advance therapeutic research through mechanistic insights into macrophage function and intercellular communication.

Awards and Honors:

Dr. Wei Ying has been recognized with several prestigious awards throughout her career. Early in her academic journey, she received the Larry Ewing Memorial Trainee Travel Fund and the Interdisciplinary Faculty of Reproductive Biology Trainee Travel Award, highlighting her academic promise. She earned second place at Texas A&M University Student Research Week, acknowledging her impactful Ph.D. research. Beyond early-career accolades, her ongoing research excellence is reflected in multiple invited publications in top-tier journals and co-authorship in high-impact collaborative projects. With a cumulative citation count of over 6,000 and rising, her work has earned wide recognition in the fields of immunometabolism and diabetes research. As a co-corresponding and co-first author on many significant papers, she plays a central role in shaping the current landscape of metabolic research. Dr. Ying’s accolades underscore her qualifications for the Best Researcher Award.

Research Focus:

Dr. Ying’s research lies at the nexus of immunology and metabolism, focusing on how immune cells, particularly macrophages, regulate metabolic inflammation, insulin resistance, liver fibrosis, and β-cell function. Her work has unveiled how exosomal microRNAs, bacterial DNA, and iron metabolism contribute to disease progression in obesity and diabetes. She employs multi-disciplinary approaches—ranging from transcriptomics and in vivo mouse models to high-resolution imaging and CRISPR editing—to explore the molecular underpinnings of metabolic disorders. Notably, her studies on macrophage-derived exosomes have opened up therapeutic possibilities for improving insulin sensitivity and combating systemic inflammation. Her ongoing investigations also include the role of Kupffer cells in liver health, microbial DNA in inflammation, and ATF4 in T-cell function, demonstrating a robust expansion of research scope. Dr. Ying’s research continues to drive translational innovations, making her an influential figure in metabolic disease research and a strong candidate for the Best Researcher Award.

Publications Top Notes:

  1. ATF4 drives regulatory T cell functional specification in homeostasis and obesity – Science Immunology

  2. Host metabolic inflammation fueled by bacterial DNA – Trends in Endocrinology & Metabolism

  3. Restoring SRSF3 in Kupffer cells attenuates obesity-related insulin resistance – Hepatology

  4. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis – Cell Metabolism

  5. Accumulation of microbial DNAs promotes islet inflammation and β cell abnormalities – Nature Communications

  6. Immunosuppression of macrophages underlies the cardioprotective effects of Catestatin – Hypertension

  7. miR-690 from M2 macrophages improves insulin sensitivity in obese mice – Cell Metabolism

  8. CRIg+ macrophages prevent microbial DNA-induced tissue inflammation and insulin resistance – Gastroenterology

  9. Hepatocyte exosomes promote insulin sensitivity via miR-3075 – Nature Metabolism

  10. Expansion of islet-resident macrophages affects β cell function in obesity – Cell Metabolism

Conclusion:

In conclusion, Dr. Wei Ying is not only a prolific and highly cited researcher but also a scientific leader whose work has significantly advanced the understanding of immune-metabolic interactions in chronic disease. Her contributions are original, mechanistically insightful, and have meaningful implications for the treatment of metabolic diseases such as obesity, diabetes, and liver fibrosis. Her demonstrated ability to lead high-impact studies, publish consistently in elite journals, and maintain academic excellence through mentoring and innovation makes her highly deserving of the Best Researcher Award. While opportunities exist for expansion into clinical application and broader leadership roles, her trajectory strongly suggests continued excellence and influence in the years ahead. Dr. Ying exemplifies the qualities of a top-tier researcher and stands as a model for interdisciplinary biomedical science.

Suchit Sarin | Tissue Engineering Regeneration | Best Researcher Award

Dr. Suchit Sarin | Tissue Engineering Regeneration | Best Researcher Award

Dr. Suchit Sarin | University of Nebraska Lincoln | United States

Dr. Suchit Sarin is an accomplished materials engineering researcher with over 12 years of academic and research experience in microstructural analysis, materials characterization, and process development. With a passion for advancing materials science, he has contributed extensively through his Ph.D. work at the University of Nebraska-Lincoln, where he has excelled in the use of advanced instrumentation like SEM/FIB, TEM, STEM, and XRD. Suchit has trained over 50 users on high-precision tools and worked with cross-functional teams from academia and industry. He has authored/co-authored more than 15 peer-reviewed publications in high-impact journals and conference proceedings. His research in laser surface engineering, thin films, nanostructures, and thermal materials showcases his interdisciplinary strengths. Suchit’s commitment to scientific rigor, hands-on technical expertise, and collaborative spirit make him a strong candidate for recognition as a leading researcher in his field.

Publication Profiles: 

Google Scholar
Scopus

Education:

Suchit Sarin holds a Ph.D. in Materials Engineering from the University of Nebraska-Lincoln, where he specialized in laser-material interactions, advanced microscopy, and functional surface design. Prior to this, he earned his Master of Science by Research in Metallurgical Engineering and Materials Science from the Indian Institute of Technology Bombay. His graduate and doctoral studies have involved rigorous experimental and theoretical work, particularly in nano/micro-structuring, thermophysical properties, and magnetic materials. Throughout his academic journey, Suchit demonstrated academic excellence, technical leadership, and strong communication skills. His education provided a solid foundation in both fundamental and applied aspects of materials science, further strengthened by his exposure to interdisciplinary collaborations, hands-on equipment management, and industrial partnerships. This unique academic profile has positioned him at the forefront of innovation in functional materials and energy-efficient surface technologies.

Experience:

Suchit Sarin served as the Instrument Manager for the FEI Helios NanoLab 660 DualBeam SEM/FIB at the Nano-Engineering Research Core Facility in Lincoln, NE. He conducted over 50 training sessions and ensured operational excellence through regular maintenance and calibration. He prepared advanced samples, including electron-transparent foils, nano-slits, and nanopillars, and characterized a wide range of materials—from semiconductors to geological specimens. His collaboration extended beyond academia to industrial partners such as Li-Cor Biosciences and Monolith. His earlier academic research involved synthesis, oxidation behavior, and coatings in high-temperature materials. Suchit is proficient with TEM, STEM, XRD, DSC, and simulation tools like CALPHAD (ThermoCalc), positioning him as a multidisciplinary researcher with both technical depth and cross-functional experience. His leadership in instrumentation and collaboration makes him an integral contributor to both the research ecosystem and industry-relevant innovation.

Research Focus:

Suchit Sarin’s research focuses on surface functionalization, micro/nanostructuring, and advanced materials characterization. A central theme in his work is understanding and engineering the interaction of ultrashort laser pulses with various materials to develop structures with enhanced thermal, magnetic, and catalytic properties. He has significantly contributed to the development of self-organized nano/microstructures on metals and semiconductors using femtosecond laser processing. His research has implications in energy transfer, heat dissipation, catalysis, and spintronics. He employs advanced tools like SEM/FIB, TEM/STEM, XRD, and DSC to understand structure-property relationships at multiple length scales. Additionally, he has worked on plasma-assisted catalysis and magnetic thin films, contributing to innovations in clean energy and electronics. His multidisciplinary approach integrates experimental analysis with industrial problem-solving, offering practical solutions grounded in fundamental science. With over 15 high-impact publications, Suchit’s research stands out for both its novelty and real-world applicability.

Publications Top Notes: 

  1. Growth mechanisms of micro/nano-structures from ultrashort laser ablation on copperApplied Surface Science

  2. Graph theory to quantify femtosecond laser-processed copper surfacesSurfaces and Interfaces

  3. Laser-induced quasi-periodic surface structures for enhanced vapor chamber coolingAdvanced Functional Materials

  4. Logarithmic trends in microstructures on femtosecond-lasered siliconSPIE Proceedings

  5. Spin-wave propagation in thulium iron garnet thin filmsAdvanced Electronic Materials

  6. Plasma-assisted methanol synthesis via CO₂ hydrogenationChemSusChem

  7. Room-temperature magnetic skyrmions in CoPt thin filmsACS Nano

  8. Copper surface functionalization via femtosecond laser processingSPIE Proceedings

  9. Pool boiling enhancement using femtosecond-processed aluminumIEEE ITherm

  10.  Dual-channel boiling heat transfer on laser-processed steelIEEE ITherm

Conclusion:

In conclusion, Dr. Suchit Sarin is a highly deserving candidate for the Best Researcher Award. His exceptional contributions to the field of materials science, especially in surface functionalization, electron microscopy, and energy-related applications, make him a standout nominee. With a proven track record of impactful publications, collaborative spirit, and commitment to mentorship and instrumentation excellence, he embodies the qualities of a researcher who not only pushes the boundaries of knowledge but also fosters the growth of the scientific community. With continued development in leadership and broader dissemination, he is well-poised to become a leading figure in the global materials research landscape.

 

 

Sevgi Kolayli | Microbiology | Best Researcher Award

Ms. Sevgi Kolayli | Microbiology | Best Researcher Award

Ms. Sevgi Kolayli | Karadeniz Technical University | Turkey

Prof. Dr. Sevgi Kolaylı is a distinguished biochemist and food scientist at Karadeniz Technical University, Turkey. With a career spanning over 25 years, she has made pioneering contributions in the fields of antioxidant activity, natural product chemistry, and food biochemistry, especially with respect to bee products such as honey, propolis, and bee bread. Her research explores the biochemical properties and therapeutic potentials of these natural substances, integrating analytical chemistry with toxicology and nutrition. She has authored numerous articles in international journals, demonstrating her scientific leadership and collaborative spirit. Dr. Kolaylı’s work not only furthers academic understanding but also provides practical insights into functional foods, public health, and sustainable agriculture. Recognized for her scientific excellence and innovation, she continues to mentor students and researchers, contributing significantly to science at national and global levels.

Publication Profiles: 

Orcid
Google Scholar
Scopus

Education:

Prof. Dr. Sevgi Kolaylı completed her undergraduate studies in Chemistry at Karadeniz Technical University, Turkey. She pursued postgraduate studies in Biochemistry, earning her Master’s and Ph.D. from the same institution. Her doctoral research focused on the biochemical analysis of natural products and their antioxidant capacities, with a special emphasis on enzymatic activities in fish and bioactive compounds in plant sources. Over the years, she has expanded her academic portfolio by attending international workshops, symposia, and scientific training, continually refining her skills in analytical methods such as chromatography, spectroscopy, and molecular characterization. Her solid educational foundation has enabled her to bridge the gap between traditional biochemical research and applied nutritional science. She remains actively engaged in academic development through her roles in teaching, supervision, and curriculum innovation at Karadeniz Technical University.

Experience:

Prof. Dr. Sevgi Kolaylı has served in various academic and research capacities at Karadeniz Technical University. Starting as a research assistant, she has risen through the academic ranks to become a full professor. Her career includes teaching undergraduate and postgraduate courses in biochemistry, food chemistry, and analytical techniques, while also supervising numerous MSc and PhD theses. Dr. Kolaylı has been a principal investigator in several national and international research projects focused on the bioactivity and safety of food-based natural compounds. She is a respected reviewer for several peer-reviewed journals and has collaborated with researchers from Algeria, Germany, and across Türkiye. Her strong laboratory and analytical experience, combined with leadership in scientific projects, underscore her capacity for impactful research. Additionally, she contributes to scientific committees, journal editorial boards, and serves as an evaluator for research funding bodies.

Research Focus:

Prof. Dr. Sevgi Kolaylı’s research centers on the biochemical evaluation of natural products, particularly those derived from bee-related sources such as honey, propolis, and bee bread. Her investigations focus on antioxidant activity, phenolic content, and bioactive characterization, aiming to understand their therapeutic and nutritional value. She uses advanced analytical techniques (e.g., HPLC, HRMS, spectrophotometry) to identify bioactive compounds and assess their antioxidant, antimicrobial, antiviral, and anticancer potentials. A significant portion of her work has examined regional differences in natural products, correlating botanical origin with chemical composition. Her newer research explores food enrichment using natural antioxidants and toxicity assessments of honey containing grayanotoxins. This multidisciplinary approach integrates food science, toxicology, and molecular biology, contributing to the development of functional foods and nutraceuticals. Prof. Kolaylı’s scientific vision is geared towards advancing public health through safe, natural, and effective bioactive substances.

Publications Top Notes: 

  1.  Comparative study on antioxidant enzyme activities and lipid peroxidation in different fish species – Turkish J. Zoology

  2.  Antioxidant enzymes in freshwater vs. seawater adapted trout – J. Biochem. Mol. Toxicol.

  3.  Chemical & antioxidant properties of cherry laurel fruit – J. Agric. Food Chem.

  4.  Does caffeine bind to metal ions? – Food Chemistry

  5.  Stereoselective photochemistry of methoxy chalcones – Turkish J. Chemistry

  6.  Essential oils of Centaurea spp. and their antimicrobial activity – Phytochemistry

  7.  Photocyclization and microbial activity of chalconoid compounds – J. Photochem. Photobiol. A

  8.  Synthesis of heterocycles as antioxidant/anticancer agents – Archiv der Pharmazie

  9.  Synthesis and antioxidant activities of triazol-5-one derivatives – Indian J. Chemistry

  10.  New triazole derivatives and their antioxidant properties – Asian J. Chemistry

Conclusion:

In conclusion, Prof. Dr. Sevgi Kolaylı exemplifies the qualities of a well-rounded, impactful, and visionary researcher whose work has significantly advanced the understanding of bioactive compounds in food and natural products. Her sustained excellence in publishing, mentoring, and interdisciplinary collaboration makes her highly suitable for the Best Researcher Award. Her ability to combine fundamental biochemical insights with real-world health applications, especially in the areas of antioxidant research and bee product functionality, showcases her as not just a researcher, but a contributor to global health and nutrition science. With minor enhancements in innovation dissemination and global visibility, she can further establish herself as a leading figure in the international scientific community. Based on the strength of her scientific record, impact, and innovation potential, she is a highly deserving nominee for the Best Researcher Award.

 

 

Long Yu | Biosensor | Best Researcher Award

Assoc. Prof. Dr. Long Yu | Biosensor | Best Researcher Award

Assoc. Prof. Dr. Long Yu | Wuhan University | China

Dr. Long Yu is a highly accomplished Han Chinese researcher, currently serving as a Postdoctoral Fellow in Clinical Medicine at Wuhan University. With a deep passion for pharmaceutical analysis, he has pioneered innovative approaches using lanthanide-based metal-organic frameworks (Ln-MOFs). His academic journey has been marked by excellence, including direct admission to a Ph.D. program and multiple national-level scholarships. Dr. Yu has published over 20 high-impact SCI papers, many in top-tier journals such as Advanced Materials, ACS Nano, and Analytical Chemistry. Recognized for his independent research capabilities, he has secured major national funding, including the NSFC Youth Project and China Postdoctoral Science Foundation grant. His work is shaping the future of biosensing and molecular diagnostics, especially in nucleic acid detection. Dr. Yu’s remarkable academic achievements, innovative research direction, and collaborative impact make him an outstanding candidate for the Best Researcher Award.

Publication Profile: 

Orcid

Education:

Dr. Long Yu’s educational background reflects a consistent trajectory of academic excellence. He completed his Bachelor of Science in Pharmacy at Shihezi University, where he graduated and was directly admitted to a Ph.D. program without an entrance exam. He pursued a Direct-Ph.D. in Pharmacy at Wuhan University, under the mentorship of Prof. Yuxiu Xiao. His doctoral research focused on the rational design and application of programmable lanthanide-based metal-organic frameworks (Ln-MOFs) in pharmaceutical analysis. Currently, he is a Postdoctoral Fellow in Clinical Medicine at Wuhan University, guided by Professors Gaosong Wu and Xiang Zhou. Through his academic journey, Dr. Yu has demonstrated strong interdisciplinary capabilities, combining pharmaceutical sciences, materials chemistry, and biosensing technology to advance the field of molecular diagnostics.

Experience:

Dr. Long Yu has cultivated deep expertise in biosensors and pharmaceutical analysis throughout his academic and research journey. He is currently a Postdoctoral Fellow in Clinical Medicine at Wuhan University, working on translational biosensing technologies with Professors Gaosong Wu and Xiang Zhou. He earned his Ph.D. in Pharmacy at Wuhan University under the supervision of Prof. Yuxiu Xiao, where he led several high-impact research projects on programmable metal-organic frameworks (MOFs). His undergraduate foundation was built at Shihezi University , where he graduated among the top of his class. Dr. Yu has served as the principal investigator for five competitive research grants, including prestigious national funding. His academic footprint includes 21 SCI-indexed publications and significant contributions to both theoretical research and practical biosensor development. He excels at multidisciplinary collaboration, combining chemistry, materials science, and clinical application—demonstrating both leadership and innovation in his research.

Awards and Honors:

Dr. Long Yu has received multiple accolades that highlight his academic and research excellence. During his Ph.D., he was awarded the National Scholarship for Graduate Students twice, a prestigious recognition of outstanding academic performance and research capabilities in China. He also received the 1st Prize for Oral Presentation at the National Academic Symposium for Pharmacy Postgraduates in , and the Excellent Poster Award at the 9th National Conference on Drug Analysis in the same year. In addition to academic awards, he has secured several competitive grants as the Principal Investigator, including the National Natural Science Foundation of China Youth Project, the China Postdoctoral Science Foundation General Program, and the Hubei Province Postdoctoral Innovation Talent Program. These achievements demonstrate both national-level recognition and institutional confidence in his independent research potential, marking him as one of the leading young scientists in his field.

Research Focus:

Dr. Long Yu’s research is centered on the rational design of programmable lanthanide-based metal-organic frameworks (Ln-MOFs) for pharmaceutical analysis and biosensing applications. His work bridges materials science and biomedical engineering, enabling high-performance detection platforms for nucleic acids, neurotransmitters, kinases, and epigenetic modifications. He has developed Ln-MOF-integrated systems with excellent selectivity, sensitivity, and biocompatibility for real-time monitoring and clinical diagnostics. A notable feature of his research is the integration of MOF materials with cutting-edge technologies such as CRISPR-Cas, nanozymes, and multivariate sensing platforms. His innovative designs contribute to amplification-free gene mutation detection, ultra-efficient nucleic acid extraction, and responsive ctDNA biosensors. Dr. Yu’s interdisciplinary approach not only expands the utility of MOFs in biomedicine but also paves the way for smart and customizable sensing systems. With 21 high-quality SCI publications and ongoing funded projects, his work is both academically significant and practically relevant in clinical diagnostics and precision medicine.

Publications Top Notes: 

  1.  Lanthanide MOF-Integrated CRISPR-Cas Technology for Amplification-Free Gene Mutation Assay

  2.  Customized Pyrophosphate Nanosensor Based on Lanthanide MOFs for Nucleic Acids Detection

  3.  Polarity Sensor Using Multivariate Lanthanide MOF for Biosensing Platforms

  4.  Levodopa Cascade Polymerization with MOF Nanozyme for Butyrylcholinesterase Dual-Mode Assay

  5.  Enhancing Kinase Detection via Programmable Lanthanide MOF with ATP-to-ADP Conversion

  6. Ultra-Efficient Nucleic Acids Extraction Using Programmable Lanthanide MOF

  7. Bioreaction-Compatible Bivariate Lanthanide MOF Sensor for ctDNA Detection

  8. Adaptable Cobalt MOF for DNA Epigenetic Modification Detection

  9. Trinity Strategy Using Perovskite Nanozyme for Biomarker Reporting

  10.  Nanoporous Crystalline Materials for Nucleic Acids Recognition

Conclusion:

In conclusion, Dr. Long Yu is highly suitable for the Best Researcher Award based on his exceptional research productivity, innovation in the design and application of Ln-MOFs, and substantial contributions to high-impact journals. His early career achievements, particularly as a postdoctoral fellow, show a promising trajectory that is well-aligned with the criteria of research excellence, originality, and potential societal impact. With continued international exposure, broader interdisciplinary collaboration, and efforts to translate research into clinical or industrial outcomes, Dr. Yu is not only deserving of the current award but is also poised to become a leading figure in his field in the years to come.