Danyelle Townsend | Molecular Mechanisms Signaling | Women Researcher Award

Dr. Danyelle Townsend | Molecular Mechanisms Signaling | Women Researcher Award

 

Dr. Danyelle Townsend | Medical University of South Carolina | United States

Dr. Danyelle M. Townsend is a leading biomedical scientist specializing in redox biology, cancer pharmacology, and cellular response to oxidative stress. Based at the Medical University of South Carolina (MUSC), she has over two decades of experience in cancer research and drug development. Dr. Townsend has co-authored numerous high-impact publications and has been consistently recognized among the top 2% of cited scientists globally in biology and biochemistry by Research.com. She is especially noted for her mentorship, guiding undergraduate and postgraduate researchers, particularly through DoD-supported programs for Historically Black Colleges and Universities (HBCUs). Dr. Townsend’s collaborative research focuses on glutathione-related enzymes, redox-sensitive signaling, and drug resistance in cancers such as prostate and breast. Her innovative patents target protein disulfide isomerase and oxidative stress biomarkers. Through her research, mentorship, and leadership, Dr. Townsend exemplifies excellence in scientific discovery and training of future biomedical researchers.

Publication Profile:

Google Scholar

✅ Strengths for the Award:

  1. Prolific Research Career: Dr. Townsend has a sustained, high-impact career in redox biology, cancer pharmacology, and oxidative stress signaling—critical and emerging areas in biomedical science.

  2. Global Recognition: She has been named among the top 2% of cited scientists internationally in biology and biochemistry for four consecutive years (2021–2024) by Research.com, demonstrating enduring influence in her field.

  3. Mentorship Excellence: Dr. Townsend has received multiple Department of Defense Mentorship Awards, particularly for her support of underrepresented students in the HBCU Summer Prostate Cancer Training Programs, highlighting her commitment to inclusive science education.

  4. Innovative Contributions: She holds pending patents on novel therapeutics and redox biomarkers, reflecting her ability to translate basic science into practical clinical tools.

  5. Scholarly Output: With an h-index of 56 and hundreds of citations on core publications, her work is widely acknowledged and foundational to the understanding of redox pathways and drug resistance mechanisms.

  6. Leadership and Collaboration: Dr. Townsend co-edited Redox Pathways in Cancer and authored multiple book chapters and peer-reviewed articles, often in interdisciplinary and collaborative contexts.

🛠️ Areas for Improvement or Consideration:

  1. Visibility in International Forums: While her citation metrics are exceptional, more evidence of plenary talks or keynote presentations at global scientific congresses could strengthen her profile for a competitive international award.

  2. Formal Educational Background: Her academic degrees, institutions attended, and timeline of academic progression are not explicitly listed. Including this would further validate her qualifications in formal review processes.

  3. Leadership Titles: More information about formal academic or institutional leadership roles (e.g., Director, Chair, PI of center grants) would demonstrate a broader leadership footprint.

  4. Diversity in Publication Authorship: While many of her key papers are co-authored with a strong, consistent team, highlighting leadership in multidisciplinary, international collaborations could bolster the perception of broader influence.

🎓 Education:

While specific degree and institution details were not provided, Dr. Danyelle M. Townsend is affiliated with the Medical University of South Carolina (MUSC), where she has played a pivotal role in cancer biology and pharmacology research. Her career indicates a strong academic foundation likely rooted in biomedical sciences, cellular biology, and molecular pharmacology. Dr. Townsend’s educational background likely includes a Ph.D. in a related field, based on her authorship position and editorial roles. Her scholarly rigor is reflected in her leadership of NIH and DoD-funded research programs and mentorship of students from HBCUs. She also co-edited the book Redox Pathways in Cancer and has authored chapters in major scientific handbooks, further reflecting her expertise and advanced training. Her scientific acumen and consistent output in high-impact journals underscore the depth and breadth of her education in biomedical research and her commitment to fostering the next generation of scientists.

💼 Experience:

Dr. Townsend has extensive professional experience in biomedical research, primarily at the Medical University of South Carolina (MUSC). Her expertise spans redox regulation, oxidative stress, glutathione biology, and anticancer therapeutics. Over the years, she has contributed as a principal investigator, mentor, and editor, co-developing novel therapeutic strategies targeting redox systems in cancer. She has served as a mentor for multiple Department of Defense-funded undergraduate and HBCU summer research programs, earning several mentorship excellence awards. Her work includes editorial contributions to high-impact cancer research books and journals. She holds pending patents on small molecule inhibitors and plasma protein biomarkers related to reactive oxygen and nitrogen species (ROS/RNS). Her consistent citation record and scientific productivity have placed her among the top 2% of cited biology and biochemistry scientists globally for four consecutive years. Dr. Townsend’s dynamic and multifaceted career reflects her leadership in translational cancer research and scientific mentorship.

🏅 Awards and Honors:

Dr. Danyelle M. Townsend has been widely recognized for her excellence in mentorship and scientific research. Between 2009 and 2014, she received consecutive mentorship awards from the U.S. Department of Defense for her role in guiding students in the HBCU Collaborative Summer Prostate Cancer Training Programs at MUSC. In 2015, she was honored with the Power of a Mentor Award by Charleston County Academic Magnet High School. Her scientific achievements have also earned global recognition; from 2021 through 2024, she has been ranked among the top 2% of most-cited researchers internationally in biology and biochemistry by Research.com. These accolades underscore her commitment not only to groundbreaking research but also to the development of young scientists, particularly from underrepresented communities. In addition, she is listed as an inventor on patents related to protein disulfide isomerase inhibitors and biomarkers for oxidative stress, further reflecting her innovation in redox-targeted therapies.

🔬 Research Focus:

Dr. Townsend’s research centers on redox regulation in cancer biology, particularly focusing on glutathione S-transferases (GSTs), protein disulfide isomerases, and oxidative stress signaling. Her work has advanced understanding of how redox imbalances contribute to drug resistance and tumor progression, providing insight into new therapeutic avenues. She investigates redox-sensitive proteins and their role in cellular detoxification, stress responses, and ferroptosis. In collaboration with Dr. Kenneth D. Tew and others, she has co-authored key publications and book chapters that explore the dual roles of antioxidant enzymes in cancer. Her research also includes drug development efforts targeting redox pathways and exploring plasma biomarkers for exposure to reactive oxygen and nitrogen species. Through preclinical and translational studies, Dr. Townsend’s work aims to develop targeted therapies and diagnostic tools for cancers, especially prostate and breast. Her impact is evident through numerous citations, prestigious awards, and mentorship of future biomedical scientists.

📚 Publications Top Notes:

  1. 📄 The Multifaceted Role of Glutathione S-Transferases in Health and Disease – Biomolecules (2023)

  2. 📄 Microsomal glutathione transferase 1 in cancer and regulation of ferroptosis – Adv Cancer Res (2023)

  3. 📄 Protein disulfide isomerase family-mediated redox regulation in cancer – Adv Cancer Res (2023)

  4. 💊 Acute toxicity and antitumor activity of novel doxorubicin liposomes – Biomed Pharmacother (2023)

  5. 💊 Alpha-tocopheryl succinate and doxorubicin-loaded liposomes in breast tumor model – Biomed Pharmacother (2023)

  6. 🔬 Adaptive changes in tumor cells in response to reductive stress – Biochem Pharmacol (2023)

  7. ⚗️ Synergism of VDAC-targeting small molecules in hepatocarcinoma – TBD (2023)

  8. 🧪 The importance of glutathione in human disease – Biomed Pharmacother (2003)

  9. 🧪 Role of glutathione-S-transferase in anti-cancer drug resistance – Oncogene (2003)

  10. 🧪 The antioxidant role of selenium and seleno-compounds – Biomed Pharmacother (2003)

  11. 🧪 Carotenoids in prevention of human pathologies – Biomed Pharmacother (2004)

  12. 🧬 GST polymorphisms: cancer incidence and therapy – Oncogene (2006)

  13. 🧫 Cisplatin metabolism to nephrotoxin in tubule cells – JASN (2003)

  14. 🧬 Causes and consequences of cysteine S-glutathionylation – JBC (2013)

  15. 🧬 S-glutathionylation: from molecular mechanisms to health outcomes – Antioxid Redox Signal (2011)

🏁 Conclusion:

Dr. Danyelle M. Townsend is highly suitable for the Research for Women Researcher Award. Her influential scholarship, sustained productivity, and extraordinary mentorship record—particularly in promoting diversity in science—make her a standout nominee. Her work addresses global health challenges (e.g., prostate and breast cancer) through novel redox-targeted strategies, making a significant impact in both academic and translational research domains. With minor enhancements in visibility and leadership documentation, her candidacy would be even more compelling.

Noureddine Allouche | Molecular Mechanisms Signaling | Best Research Article Award

Prof. Noureddine Allouche | Molecular Mechanisms Signaling | Best Research Article Award

Prof. Noureddine Allouche , Faculty of Sciences of Sfax, University of Sfax , Tunisia

Professor Noureddine Allouche, born in 1971, is a Full Professor of Chemistry at the Faculty of Sciences of Sfax (FSS), Tunisia. He is the Head of the Natural Substances Team in the Laboratory of Organic Chemistry. With over 150 peer-reviewed publications, an h-index of 35, and more than 4500 citations, he is recognized for his impactful research on natural products and environmental valorization. He has led and contributed to multiple national and European research projects, including FP7, H2020, Erasmus+, and ARIMNET. His work focuses on extraction, isolation, and bioactivity of plant-based compounds and sustainable management of industrial waste. Prof. Allouche has supervised 20 Ph.D. theses and 42 M.Sc. students, contributing significantly to scientific advancement in Tunisia and beyond. He is also involved in applied research in green chemistry and cosmetic sciences. His collaborative work and leadership have earned him recognition in the academic and research communities.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. High Research Productivity and Impact

    • Over 150 peer-reviewed scientific articles with a h-index of 35 and 4,500+ citations, which reflect sustained academic influence and quality.

    • Contributor to top-tier journals such as Plants, Biomolecules, and Molecules.

  2. Strong Focus on Societal Relevance

    • Work addresses critical environmental issues such as olive mill waste valorisation, bioconversion, and sustainable resource use.

    • Research applied in green chemistry, natural product-based pharmaceuticals, and eco-cosmetics.

  3. International Collaboration and Leadership

    • Coordinator of six major European and international research projects (FP7, H2020, Erasmus+, ARIMNET).

    • Active partnerships with institutions in France, Germany, and the Mediterranean region, showcasing leadership in multidisciplinary and multinational research.

  4. Methodological Rigor and Innovation

    • Use of advanced analytical techniques (e.g., HPLC-HESI-MS/MS, LC-MS/MS, ESI-MS/MS).

    • Integration of green technologies for natural substance extraction.

  5. Mentorship and Academic Development

    • Supervised 20 Ph.D. theses (plus 4 ongoing), 42 Master’s theses, and numerous diploma projects, especially in applied fields like cosmetic science.

🛠️ Areas for Improvement:

  1. Broader International Recognition

    • While highly active in regional and EU collaborations, increased visibility in global North America/Asia-led consortia or global forums could enhance recognition.

  2. Science Communication and Outreach

    • Publishing in public engagement platforms or delivering talks/webinars to non-specialist audiences could expand the impact of his research beyond academia.

  3. Open Access and Data Sharing

    • Encouraging open data practices and reproducibility of extraction and formulation protocols could enhance scientific transparency and citations.

🎓 Education:

Professor Noureddine Allouche earned his Ph.D. in Chemistry from the University of Sfax between 2000 and 2005, focusing on the treatment and valorisation of olive mill waste, a subject that would lay the foundation for his future research career. Following this, he undertook a prestigious postdoctoral training (2006–2007) at the Institute of Natural Products Chemistry of CNRS in Gif-sur-Yvette, France, enhancing his expertise in natural substances and analytical chemistry. His academic foundation was built on rigorous training in organic chemistry, natural products, and environmental biotechnology. These experiences equipped him with robust research methodologies and an interdisciplinary approach, especially in the extraction and biological evaluation of phytochemicals. His educational path reflects a strong commitment to green and sustainable chemistry, positioning him well for leading high-impact research on natural product development and eco-friendly industrial applications.

💼 Experience:

Professor Allouche has over 20 years of academic and research experience. He currently leads the Natural Substances Team at the Faculty of Sciences of Sfax and supervises a group of over 20 researchers. He has played a vital role in international research collaborations, serving as the national coordinator of six European-funded projects under FP7, ARIMNET, H2020, Erasmus+, and PHC-Maghreb. His experience also includes participation in the INCO-MED project on detoxification and recovery from olive mill wastewater. Prof. Allouche has an extensive mentoring portfolio, having supervised 20 Ph.D. theses (with 4 ongoing) and 42 M.Sc. students. He has authored 150+ articles, two book chapters, and holds two patents. His career reflects a blend of scientific innovation and applied industrial research, particularly in green technologies, bioactive compounds, and waste valorisation. He is also a regular collaborator with European institutions, reflecting his global outlook and leadership in sustainable science.

🔍 Research Focus:

Prof. Noureddine Allouche’s research centers on natural substances chemistry, green extraction methods, and biotechnological valorisation of industrial wastes, particularly from agro-food sources. He has made significant contributions to the identification and biological evaluation of bioactive compounds such as phenolics, flavonoids, and essential oils. His team is particularly active in analyzing plant extracts for their antioxidant, antimicrobial, cytotoxic, and anti-aging activities, often employing advanced techniques like HPLC, LC-MS/MS, and ESI-MS/MS. Another pillar of his work includes developing biopesticides and bio-cosmetics through green and eco-sustainable approaches. He contributes to nanoformulation research and the design of nature-based products aligned with circular economy principles. His interdisciplinary projects bridge chemistry, pharmacology, environmental science, and cosmetic formulation, making his research highly relevant for addressing current scientific and industrial challenges. His recent involvement in projects like GreenCosmIn and 25MAG23 reflects his leading role in European research on sustainable innovation.

📚 Publications Top Notes:

  1. 🌿 HPLC-HESI-MS/MS Analysis of Phenolic Compounds from Cynoglossum tubiflorus Leaf Extracts (Plants, 2024)

  2. 🫒 Intensification of Biophenols Extraction Yield from Olive Pomace Using Innovative Green Technologies (Biomolecules, 2022)

  3. 🌸 Antioxidant and Antimicrobial Activities of Erodium arborescens Extracts Characterized by LC-HESI-MS² (Molecules, 2022)

  4. 🌿 ESI-MS/MS Analysis of Aeonium arboreum Leaf Extracts and Evaluation of Antioxidant and Antimicrobial Activities (Molecules, 2021)

  5. 🍇 Novel Natural Products for Healthy Ageing from Mediterranean Diet – The MediHealth Project (Molecules, 2018)

🧾 Conclusion:

Professor Noureddine Allouche stands out as a highly qualified and deserving candidate for the Best Research Article Award. His impressive record in sustainable chemistry, natural products research, international project coordination, and scholarly mentorship underlines his academic excellence and real-world impact. His research directly contributes to health, environmental sustainability, and circular economy principles, aligning well with the goals of high-impact, solution-driven science.

Lingyan Zhou | Cell Death Pathway | Best Researcher Award

Dr. Lingyan Zhou | Cell Death Pathway | Best Researcher Award

Dr. Lingyan Zhou , Shandong Provincial Hospital Affiliated to Shandong First Medical University , China

Dr. Lingyan Zhou is a dedicated neuroscientist and clinician specializing in the pathogenesis of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. Currently serving in the Department of Neurology at Shandong Provincial Hospital affiliated with Shandong First Medical University, Dr. Zhou holds a doctorate and has made notable contributions to neurodegeneration research through high-impact publications and cutting-edge studies. Her work focuses on molecular mechanisms such as protein aggregation, homocysteinylation, and neuroprotection, with particular attention to α-synuclein and DJ-1. Dr. Zhou has co-authored more than 15 peer-reviewed articles in top-tier journals like Nature Communications, Science Advances, and Aging Cell, earning recognition for her insights into disease-modifying pathways. A researcher with a strong translational focus, she bridges the gap between bench and bedside, aiming to develop therapeutic strategies that can mitigate or reverse neurodegenerative processes. Her commitment to science and patient-centered research makes her a strong candidate for the Best Researcher Award.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record in High-Impact Journals
    Dr. Zhou has consistently published in top-tier journals such as Nature Communications, Science Advances, Aging Cell, and Movement Disorders, reflecting the significance and innovation of her work. Many of these are Q1 journals with high impact factors.

  2. Focused Research on Neurodegeneration
    Her core focus on the molecular basis of Alzheimer’s and Parkinson’s disease, especially novel mechanisms like N-homocysteinylation, STAT1-PARP1, and microRNA signaling, demonstrates depth and relevance to global health priorities.

  3. Translational Impact
    Her research bridges basic science and clinical application, particularly through studies on neuroprotection, early disease biomarkers, and potential therapeutic targets.

  4. Early Career Excellence
    Despite being in the early stages of her career, Dr. Zhou has already authored or co-authored over 17 peer-reviewed publications, many as first or corresponding author, which is exceptional at this stage.

  5. Multidisciplinary Collaborations
    Dr. Zhou’s collaborations with experts across genetics, immunology, bioinformatics, and neurology highlight her integrative approach to complex diseases.

  6. International Visibility
    Multiple articles are indexed in PubMed, Crossref, and DOIs, showing her research has international academic presence and reach.

⚠️ Areas for Improvement:

  1. Greater International Exposure
    While her publication record is strong, further participation in international neuroscience conferences, workshops, or global consortia would enhance visibility and foster leadership roles.

  2. Grant Leadership and Independent Funding
    As she progresses, securing independent research funding and leading grant-funded projects will further demonstrate research independence and strengthen her candidacy for top-tier awards.

  3. Mentorship and Teaching Roles
    Involvement in structured mentorship or supervision of Ph.D./postdoctoral researchers could be better highlighted to show contributions to research training and capacity building.

  4. Innovation Translation Pathway
    Filing patents or initiating translational collaborations with biotech/pharma could underline the practical applicability of her findings.

🎓 Education:

Dr. Lingyan Zhou received her doctorate from Wuhan University, one of China’s leading research institutions, between September 2020 and June 2023. During her Ph.D. training, she developed expertise in molecular neuroscience and translational medicine, with a specific focus on the pathological mechanisms underlying Parkinson’s and Alzheimer’s diseases. Her research explored cellular stress pathways, protein misfolding, and epigenetic regulation in neurodegeneration, leading to multiple first-author publications in high-impact journals. Her academic background provided a solid foundation in experimental techniques such as immunohistochemistry, gene expression analysis, and in vivo disease modeling. The interdisciplinary approach at Wuhan University enriched her understanding of both clinical neurology and basic neuroscience. This rigorous academic training has equipped Dr. Zhou with the analytical and research skills necessary for advancing innovation in neurodegenerative disease treatment.

🧪 Experience:

Since July 2023, Dr. Lingyan Zhou has been serving in the Department of Neurology at Shandong Provincial Hospital affiliated with Shandong First Medical University, where she engages in both clinical practice and translational neuroscience research. Prior to that, she completed her doctoral studies at Wuhan University, where she developed a deep interest in the role of homocysteine metabolism and genetic regulation in Parkinson’s disease. Over her career, she has collaborated with multidisciplinary teams to investigate molecular and cellular mechanisms of neurodegeneration and published extensively in internationally recognized journals. Her current position allows her to continue high-impact research while mentoring junior colleagues and participating in multi-center studies. Her combined experience in basic research, clinical neurology, and academic collaboration has established her as a key contributor in the field of neurodegenerative diseases, positioning her well for leadership roles and research recognition such as the Best Researcher Award.

🧠 Research Focus:

Dr. Lingyan Zhou’s research is centered on understanding the molecular and cellular mechanisms that drive neurodegenerative diseases, with an emphasis on Alzheimer’s and Parkinson’s disease. Her work has shed light on pathological protein modifications, such as N-homocysteinylation of α-synuclein and DJ-1, which contribute to protein aggregation and neurotoxicity. Additionally, she investigates the neuroprotective roles of vitamins, retinoic acid, and microRNAs in slowing disease progression. Dr. Zhou is also exploring how infectious diseases like SARS-CoV-2 may trigger or exacerbate neurological disorders, expanding the understanding of systemic factors in brain health. Her studies leverage both in vitro and in vivo models to unravel pathways involving STAT1, PARP1, and Notch signaling. By identifying potential therapeutic targets and biomarkers, her research aims to guide the development of novel treatment strategies that could improve outcomes for patients suffering from movement disorders and cognitive decline.

📚 Publications Top Notes:

  1. 🧪 N-homocysteinylation of alpha-synuclein promotes its aggregation and neurotoxicityAging Cell (2022)

  2. 🧠 Association of vitamin B2 intake with cognitive performance in older adults: a cross-sectional studyJ Transl Med (2023)

  3. 🧬 Homocysteine and Parkinson’s diseaseCNS Neurosci Ther (2023)

  4. 🧴 Retinoic Acid Prevents alpha-Synuclein Preformed Fibrils-Induced Toxicity via Inhibiting STAT1-PARP1 SignalingMol Neurobiol (2023)

  5. 🧫 N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson’s diseaseAging Cell (2024)

  6. 🦠 SARS-CoV-2: Underestimated damage to nervous systemTravel Med Infect Dis (2020)

  7. 💊 Potential therapeutic drugs for ischemic stroke based on bioinformatics analysisInt J Neurosci (2019)

  8. 🧬 PTPN22 Gene Polymorphisms and Stroke SusceptibilityDis Markers (2019)

  9. 🧪 IL-18 Gene Polymorphisms and Risk of Ischemic Stroke: A Meta-analysisNeuroreport (2019)

  10. 🚬 Aromatic hydrocarbon receptor links smoking and rheumatoid arthritisClin Exp Rheumatol (2020)

🧾 Conclusion:

Dr. Lingyan Zhou demonstrates an exceptional trajectory for a young neuroscience researcher. Her deep and original contributions to unraveling molecular mechanisms in neurodegeneration, particularly Parkinson’s and Alzheimer’s disease, make her highly deserving of recognition. The breadth and quality of her publication record—combined with her translational outlook—signal a rising star in neurodegenerative disease research.

ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN , Ankara Yildirim Beyazit University , Turkey

Dr. Aslı F. Ceylan is an accomplished pharmacologist and academic with a strong foundation in medical pharmacology and translational research. Born in Ankara, Turkey, in 1977, she has dedicated over two decades to advancing our understanding of cellular signaling pathways in disease states. After earning her degrees from Ankara University, she completed a prestigious postdoctoral fellowship at the University of Wyoming, where she began her international research journey. Currently serving at Ankara Yıldırım Beyazıt University School of Medicine, she contributes to both research and education. Fluent in Turkish, English, and Spanish, Dr. Ceylan bridges global scientific collaborations. Her work spans oxidative stress, inflammation, and cellular mechanisms in cardiovascular, metabolic, and neurodegenerative diseases. She is a prolific author and recipient of several international fellowships and project grants. Dr. Ceylan stands out as a dedicated scientist whose work contributes meaningfully to the field of signal transduction and molecular pharmacology.

Publication profile:

Orcid

✅ Strengths for the Award:

  1. Extensive Research in Signal Transduction Pathways
    Dr. Ceylan’s body of work demonstrates a consistent and high-impact focus on key signal transduction pathways—including NLRP3 inflammasome activation, mitophagy, ferroptosis, oxidative stress, and autophagy—across cardiovascular, metabolic, and neurological disease models.

  2. International Research Recognition
    She has held prestigious fellowships from NIH, the American Heart Association, and INBRE, contributing to globally relevant research while collaborating with international teams, especially in the U.S. and Europe.

  3. Strong Translational Relevance
    Her research links molecular mechanisms to potential therapies, such as her exploration of aldose reductase inhibitors, natural antioxidants, and neuroprotective compounds (e.g., rosemary extracts), bridging the gap between basic science and clinical relevance.

  4. Consistent Publication Record
    Dr. Ceylan has co-authored over a dozen peer-reviewed publications in the past three years alone, with topics directly tied to signal transduction, and published in reputable journals (e.g., Biochimica et Biophysica Acta, JACC: Basic to Translational Science).

  5. Leadership and Mentorship
    As a Principal Investigator for NIH-funded thematic research projects and an academic at a medical university, she demonstrates strong leadership, mentoring capabilities, and a sustained contribution to the scientific community.

🛠️ Areas for Improvement:

  1. Greater Focus on Human Clinical Studies
    While her animal model work is comprehensive, integrating more human cell or clinical data would increase the translational applicability of her research.

  2. Expanded Thematic Clarity in Signal Transduction
    Some of her recent works, while impactful, focus broadly on pharmacological effects of natural compounds. More thematic emphasis on specific intracellular signaling cascades (e.g., MAPK, PI3K/Akt, or JAK/STAT) could strengthen her profile specifically for a signal transduction-focused award.

  3. Visibility in Global Scientific Forums
    Increased participation as a speaker, panelist, or chair in international conferences focused on signal transduction would enhance her global academic footprint.

📘 Education:

Dr. Aslı F. Ceylan completed her entire academic training in Pharmacology at the prestigious Ankara University Faculty of Pharmacy. She earned her Bachelor of Science (B.Sc.) in Pharmacy in 1998, followed by a Master of Science (M.Sc.) in Pharmacology in 2001. Her strong interest in cellular mechanisms and drug interactions led her to pursue a Ph.D. in Pharmacology, which she successfully completed in 2007. Her doctoral research was further enhanced by a research fellowship at the National Institutes of Health (NIH) during 2004-2005, providing her hands-on experience in internationally recognized labs. This rigorous academic journey solidified her expertise in pharmacological mechanisms and preclinical modeling. Her academic training was consistently supported by competitive scholarships from the Turkish Scientific and Research Council (TÜBİTAK). Dr. Ceylan’s academic path reflects a deep commitment to understanding complex cellular systems and contributes significantly to her current role as a leader in molecular pharmacology and signal transduction.

💼 Experience:

Dr. Aslı F. Ceylan is currently a faculty member at Ankara Yıldırım Beyazıt University School of Medicine, where she serves in the Department of Medical Pharmacology. She has extensive academic and research experience spanning over 20 years. Her postdoctoral research at the University of Wyoming School of Pharmacy (2008–2009) focused on cardiovascular research, where she worked on signal transduction pathways involved in heart failure and metabolic disease. She also held a Principal Investigator (PI) role in NIH-funded INBRE research projects in the U.S. from 2011 to 2020. Dr. Ceylan has consistently contributed to multi-disciplinary research projects and collaborative studies, mentoring young researchers and postgraduate students. She has a solid background in oxidative stress, inflammation, and cellular apoptosis. Her translational approach, blending basic science with therapeutic innovation, aligns perfectly with the goals of signal transduction research. Her international exposure and consistent academic productivity make her a valuable asset to any scientific initiative.

🏆 Awards and Honors:

Dr. Aslı F. Ceylan has earned numerous national and international fellowships and honors throughout her career. She was awarded the Postdoctoral Fellowship by the American Heart Association and the University of Wyoming in 2008, which significantly propelled her research on cardiovascular signaling. She also received a Ph.D. research fellowship from the NIH (2004–2005), supporting her studies in cell signaling and oxidative stress. Domestically, she was funded by TÜBİTAK (Turkish Scientific and Research Council) for both her master’s and Ph.D. degrees. Most notably, she served as Principal Investigator for NIH INBRE Thematic Research Projects from 2011 to 2020, underlining her leadership and innovation in biomedical research. These accolades reflect her ongoing commitment to excellence in pharmacological science and her impact on the field of signal transduction, particularly in cardiovascular and neurodegenerative diseases. Her strong track record of competitive funding and recognition underscores her eligibility for the Signal Transduction Award.

🔬 Research Focus:

Dr. Ceylan’s research is centered on signal transduction pathways involved in oxidative stress, inflammation, mitophagy, and ferroptosis. Her work delves into the molecular mechanisms underlying cardiovascular diseases, diabetic complications, neurodegenerative disorders, and cancer, with a particular focus on mitochondrial function and cellular defense systems. She employs both in vivo and in vitro models to study how specific pharmacological agents modulate pathways like NLRP3 inflammasome activation, aldose reductase inhibition, and autophagy. Additionally, her recent research explores the therapeutic potential of natural compounds such as carnosol, carnosic acid, and rosemary extract in modulating redox balance and apoptotic pathways. Her interdisciplinary approach links natural product pharmacology with molecular signaling, making her contributions relevant across multiple domains. The translational value of her research, aiming to bridge the gap between bench and bedside, aligns directly with the core objectives of signal transduction studies and reinforces her eligibility for this distinguished award.

📚 Publications Top Notes:

  1. 🧬 Cardiomyocyte-specific deletion of endothelin receptor A obliterates cardiac aging via mitophagy and ferroptosis (2024)

  2. 🧫 Tackling chronic wound healing using nanomaterials: Advancements and future perspectives (2023)

  3. 🧪 Dual-acting aldose reductase inhibitor impedes oxidative stress in diabetic rat tissues (2023)

  4. 👁️ Cemtirestat induces ocular defense against glycotoxic stress in diabetic rats (2023)

  5. 🍷 NLRP3 inhibition protects against ethanol-induced cardiotoxicity in FBXL2-dependent manner (2023)

  6. 💉 Oxytocin and enalapril reduce epidural fibrosis post-laminectomy in rats (2023)

  7. 🧠 Calcium dobesilate therapy in cerebral hypoxia/reperfusion injury in rats (2023)

  8. 🧬 Beclin1 deficiency attenuates alcohol-induced cardiac dysfunction via ferroptosis inhibition (2022)

  9. 💓 Parkin insufficiency exacerbates cardiac remodeling through mitochondrial Ca2+ overload (2022)

  10. ❤️‍🩹 Beclin 1 haplosufficiency compromises stem-cell cardioprotection post-MI (2022)

🧾 Conclusion:

Dr. Aslı F. Ceylan is a highly qualified, internationally active, and academically productive researcher whose expertise lies in elucidating molecular mechanisms of disease through signal transduction pathways. Her deep involvement in studies on oxidative stress, mitochondrial dynamics, inflammation, and natural product pharmacology positions her as a valuable contributor to the advancement of molecular medicine.

Given her research output, grant leadership, and commitment to translational science, she is highly suitable for the Signal Transduction Award. Her work not only contributes to the understanding of intracellular signaling but also bridges basic research with therapeutic potential, making her a standout candidate for this recognition.

Jin-Feng Hu | Molecular Mechanisms Signaling | Distinguished Scientist Award

Prof. Jin-Feng Hu | Molecular Mechanisms Signaling | Distinguished Scientist Award

Prof. Jin-Feng Hu , School of Pharmaceutical Sciences, Taizhou University, Zhejiang 318000, PR China ,China

Dr. Jin-Feng Hu is a globally recognized natural products chemist and currently serves as the Dean and Principal Investigator at the School of Pharmaceutical Sciences, Taizhou University, Zhejiang, China. With over three decades of academic and research experience, Dr. Hu has dedicated his career to discovering and developing bioactive natural products, particularly from rare and endangered plant species endemic to China. His contributions span innovative phytochemistry, drug discovery, and chemical biology. He has previously held prestigious academic positions at Fudan University and East China Normal University. Dr. Hu’s collaborations span continents, including Germany and the USA, contributing to an impressive international research profile. His work is widely published in high-impact journals and highly cited, underscoring the scientific relevance and translational potential of his discoveries.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Prolific Contributions to Natural Products Chemistry
    Dr. Hu has made significant breakthroughs in phytochemical research, particularly focusing on rare and endangered Chinese plants, contributing both to drug discovery and biodiversity conservation.

  2. Global Research Experience
    His training and postdoctoral fellowships in leading institutions across China, Germany, and the USA (including the Hans-Knoell-Institute and the Scripps Research Institute) add to his international reputation and collaborative strength.

  3. Academic Leadership & Institutional Impact
    As a former department chair at Fudan University and current Dean at Taizhou University, Dr. Hu has not only led cutting-edge research but also shaped the academic direction of major pharmaceutical programs.

  4. High-Impact Publications
    Multiple first or last-author papers published in leading journals such as Phytochemistry, Organic Chemistry Frontiers, Bioorganic Chemistry, and Molecules—with a focus on pharmacologically relevant compounds.

  5. Innovative Research Themes
    Focused on drug resistance, inflammation, and metabolic diseases, using unique molecules like bis-diterpene heterodimers and sesquiterpenes, often with novel skeletons—this shows originality and translational potential.

⚙️ Areas for Improvement:

  1. Wider Public Recognition
    While he is highly respected in academic and pharmaceutical chemistry circles, broader science communication or participation in international awards/societies could boost global visibility.

  2. Commercialization & Patents
    Encouraging the translation of discoveries into patents or clinical trials would further highlight the real-world impact of his research.

  3. International Grant Funding
    Expansion into multinational funding sources (e.g., NIH, EU Horizon) would solidify global research integration and amplify the scale of his discoveries.

🎓 Education:

Dr. Hu earned his B.S., M.S., and Ph.D. degrees in Organic Chemistry from Lanzhou University (1986–1996). He pursued advanced training and postdoctoral research in Natural Products Chemistry at the Institute of Materia Medica, Chinese Academy of Medical Sciences, followed by a prestigious BMBF Fellowship at the Hans-Knoell-Institute (HKI) in Germany. Dr. Hu then continued his postdoctoral work in the United States—first at the University of Mississippi focusing on natural products chemistry and later at the Genomics Institute of the Novartis Research Foundation/The Scripps Research Institute, in the laboratory of renowned chemist Prof. Peter G. Schultz. His academic journey across leading institutions in China, Germany, and the US provided a robust foundation in interdisciplinary sciences and global perspectives in medicinal chemistry.

🧪 Experience:

Dr. Hu currently serves as Full Professor, Principal Investigator, and Dean of the School of Pharmaceutical Sciences at Taizhou University (2021–present). Before this, he was Chair of the Department of Natural Products Chemistry at Fudan University (2011–2021), and prior to that, Deputy Director of the MOE Key Laboratory of Brain Functional Genomics at East China Normal University (2006–2011). In each position, he has led cutting-edge research in natural products, coordinated multi-institutional collaborations, mentored numerous young scientists, and managed institutional development. His lab integrates phytochemistry, structural biology, and drug discovery platforms, focusing particularly on therapeutic leads for antimicrobial resistance, cancer, and metabolic diseases. With a career that reflects both academic excellence and applied innovation, Dr. Hu has significantly contributed to China’s leadership in pharmaceutical science.

🏆 Awards and Honors:

Dr. Hu has received multiple national and international honors, including fellowships, research grants, and awards recognizing his excellence in natural products chemistry. He was a BMBF Research Fellow in Germany, a Postdoctoral Fellow at the Novartis Genomics Institute and The Scripps Research Institute in the US, and has been a recipient of several Chinese National Natural Science Foundation awards. His leadership roles at prestigious institutions like Fudan University and East China Normal University reflect the esteem he holds within the academic community. Moreover, his publications are widely cited, and his research frequently garners attention for its innovation and societal relevance, especially in the context of preserving biodiversity and discovering drugs from endangered species. These achievements make him an outstanding candidate for a Distinguished Scientist Award.

🔬 Research Focus:

Dr. Hu’s research is centered on the discovery and development of novel bioactive compounds from rare and endangered plants endemic to China. His work emphasizes the interface of phytochemistry, chemical biology, and drug discovery, employing integrative analytical techniques like NMR, LC-MS, and bioassays. A major focus is the identification of natural inhibitors of key metabolic enzymes such as ATP-citrate lyase and ACC1, with applications in metabolic disorders and cancer. His studies also target drug-resistant bacterial infections, inflammation, and neurodegenerative diseases. By studying plants that are ecologically valuable yet scientifically underexplored, Dr. Hu not only contributes to new therapeutic leads but also aids in conservation biology and chemotaxonomy. His approach of combining traditional Chinese medicinal knowledge with modern molecular science marks him as a trailblazer in natural products-based drug discovery.

📚 Publication Top Notes:

  1. 🌲 Spiroamentotaxols A−D from Amentotaxus yunnanensis and their bioactivitiesOrganic Chemistry Frontiers (2025)

  2. 🍃 Fortunefuroic acids from Keteleeria fortunei via integrated dereplication approachPhytochemistry (2025)

  3. 🌿 Benzofurans from Parrotia subaequalis with antimicrobial activityPhytochemistry (2025)

  4. 🌸 Bis-iridoid glycosides and triterpenoids from Kolkwitzia amabilis targeting ACC1 and ACLMolecules (2024)

  5. 🍂 Platanosides from Platanus acerifolia against drug-resistant infectionsBioorganic Chemistry (2024)

  6. 🌼 Natural products from Heptacodium miconioides and their classification significancePhytochemistry (2024)

  7. 🌲 Tsugaforrestiacids A–O from Tsuga forrestii with ATP-citrate lyase inhibitionPhytochemistry (2024)

  8. 🌲 Terpenoids from Pseudotsuga forrestii as DRAK2 inhibitorsJournal of Molecular Structure (2024)

  9. 🍁 Anti-inflammatory flavonoids from Platanus acerifolia leavesPhytochemistry Letters (2024)

  10. 🌴 Fortunefuroic acid J from Keteleeria hainanensis with dual inhibitory effectsChemistry & Biodiversity (2024)

🔚 Conclusion:

Dr. Jin-Feng Hu is an exceptionally qualified candidate for the Distinguished Scientist Award. His trailblazing research in natural products chemistry, strategic leadership in academic institutions, and commitment to preserving biodiversity through medicinal innovation position him as a thought leader in his field. His work not only expands the scientific frontier of phytochemical drug discovery but also addresses urgent global health concerns such as antibiotic resistance and metabolic disease. Recognizing Dr. Hu with this award would honor a career devoted to science, mentorship, and societal benefit, while also empowering his continued excellence in the years to come.

Lijuan Deng | Molecular Mechanisms Signaling | Molecular Cell Biology Award

Mrs. Lijuan Deng | Molecular Mechanisms Signaling | Molecular Cell Biology Award

Mrs. Lijuan Deng , Zhongshan Institute for Drug Discovery , China

Lijuan Deng is a passionate graduate student researcher at the Zhongshan Institute for Drug Discovery in China, specializing in the molecular mechanisms underlying metabolic diseases. Her scientific curiosity centers on gene regulation, signaling pathways, and metabolic dysregulation in disease progression, particularly metabolic-associated fatty liver disease (MASLD). Her translational approach blends experimental models and bioinformatics to bridge basic science and therapeutic innovation. Lijuan has already co-authored a publication in The FASEB Journal, identifying CDKN1A as a key regulator in MASLD. She is also the inventor of a patent-pending technique for nascent RNA labeling in extracellular vesicles. Through collaborations with clinical researchers and a solid foundation in molecular biology techniques, she is positioning herself as a rising talent in cell biology. Her work promises to advance understanding and treatment of metabolic diseases.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Innovative Research: Lijuan Deng has significantly contributed to the understanding of MASLD (Metabolic-Associated Steatotic Liver Disease) by identifying CDKN1A as a key regulatory gene through integrated transcriptomic analysis and experimental validation.

  2. Translational Focus: Her research bridges molecular biology and clinical application, enhancing its impact in drug discovery and disease diagnostics.

  3. Publication Record: She is the first author of a peer-reviewed article published in The FASEB Journal (SCI-indexed), showcasing her ability to conduct and communicate high-quality research.

  4. Patent Innovation: She holds a pending patent for a novel method involving nascent RNA labeling in extracellular vesicles, showing her drive toward technological advancement and biomedical innovation.

  5. Collaborative Approach: Active collaboration with the Department of Endocrinology at Shenzhen Second People’s Hospital reflects strong interdisciplinary and clinical integration.

🧩 Areas for Improvement:

  1. Expanded Publication Portfolio: Increasing the number of peer-reviewed articles will strengthen her academic visibility and impact.

  2. Professional Networking: Engagement in international cell biology societies or conferences and obtaining professional memberships can support broader recognition and growth.

  3. Editorial/Leadership Roles: Participation in editorial boards, review panels, or student leadership roles can enrich her professional development profile.

🎓 Education:

Lijuan Deng is currently pursuing her graduate studies in molecular biology at the Zhongshan Institute for Drug Discovery, where she focuses on translational biomedical research. Her academic foundation includes advanced coursework in biochemistry, molecular genetics, and cellular signaling. Through structured academic training, she has acquired proficiency in modern laboratory methods, including RNA sequencing, qPCR, western blotting, and exosome analysis. Her education emphasizes critical thinking and scientific rigor, enabling her to design experiments, analyze data, and interpret biological outcomes. She regularly participates in academic seminars, journal clubs, and collaborative workshops to refine her scientific acumen. Her thesis research is centered around identifying novel molecular targets in MASLD, a field gaining global relevance. Lijuan’s education is not only shaping her technical capabilities but also nurturing her ambition to contribute to impactful, real-world medical solutions through cell biology research.

💼 Experience:

Lijuan Deng has gained extensive laboratory experience as a graduate student researcher at the Zhongshan Institute for Drug Discovery. Her hands-on work includes both cellular and animal models, with a strong focus on metabolic disease mechanisms. She played a key role in identifying CDKN1A as a potential MASLD progression factor, combining transcriptomic data analysis with molecular validation. Additionally, she has worked on exosome-based biomarker discovery and developed a patent-pending method for nascent RNA labeling. She collaborates with the Department of Endocrinology at Shenzhen Second People’s Hospital, providing a clinical dimension to her work. Though early in her career, her contributions to translational research are already making an impact. She is skilled in molecular biology, gene expression profiling, and therapeutic target screening. Her research experience has been shaped by interdisciplinary collaboration, scientific publications, and the ambition to innovate within the field of molecular cell biology.

🧬 Research Focus:

Lijuan Deng’s research is primarily focused on the molecular underpinnings of metabolic-associated fatty liver disease (MASLD), a key manifestation of metabolic syndrome. She investigates how dysregulated genes, signaling networks, and lipid metabolism contribute to disease initiation and progression. A major highlight of her work is identifying CDKN1A as a potential risk factor in MASLD using integrated bioinformatics and experimental techniques. Additionally, she explores the utility of extracellular vesicles as carriers of diagnostic biomarkers and therapeutic molecules. Her patent-pending work involves a novel method for labeling nascent RNA within exosomes, opening possibilities for tracking dynamic RNA communication in disease contexts. Her research strategy merges molecular biology with disease modeling, aiming to bridge laboratory discoveries with potential therapeutic strategies. Through strong collaborations and a translational research outlook, Lijuan is dedicated to uncovering actionable insights that can inform drug development for complex metabolic disorders.

📚 Publications Top Notes:

  • 🧾 “Identification of CDKN1A as a potential key risk factor in MASLD progression.”The FASEB Journal, 2025. DOI: 10.1096/fj.202402942R

🧾 Conclusion:

Lijuan Deng stands out as an emerging researcher with strong foundations in molecular cell biology and a clear orientation toward translational science. Her innovative work in MASLD, combined with an SCI publication and a pending patent, make her a highly suitable and promising candidate for the Molecular Cell Biology Award. While she is in the early stages of her career, her achievements thus far indicate substantial potential for future contributions to the field.

Raphaël Rodriguez | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Raphaël Rodriguez | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Raphaël Rodriguez , CNRS, Institut Curie, France

Raphaël Rodriguez, born October 27, 1978, in Avignon, France, is a pioneering chemical biologist and Research Director at CNRS, Principal Investigator at Institut Curie, and holder of the Skłodowska-Curie Chair of Chemical Biology. A French citizen with two children, Lucía del Mar and Aramis, Rodriguez is renowned for bridging chemistry and biology to unlock the molecular secrets of cancer and inflammation. Trained in the UK under legendary scientists Sir J. E. Baldwin, Sir S. Balasubramanian, and Sir S. P. Jackson, he returned to France to launch groundbreaking research on ferroptosis and metal regulation in cell adaptation. His entrepreneurial and academic excellence earned him numerous accolades, including the National Order of Merit. With more than 130 publications and several successful biotech ventures, Rodriguez continues to shape the future of medical science with bioactive molecules like Ironomycin and Pyridostatin. He is an editorial board member, reviewer, teacher, and a public voice on science.

Publication Profile:

Google Scholar

✅ Strengths for the Award:

  1. Pioneering Scientific Impact:
    Dr. Rodriguez has contributed over 130 high-impact publications in top-tier journals like Nature, Science, JACS, Nature Chemistry, and Cell Metabolism. His work has helped define ferroptosis, a form of programmed cell death, and metal regulation in cancer—a game-changing area in molecular medicine.

  2. Innovation & Translation:
    He discovered and commercialized small molecules such as Pyridostatin, Ironomycin, and Supformin, directly impacting both science and therapeutics. His work bridges fundamental science and drug discovery.

  3. Leadership & Mentorship:
    From mentoring under renowned scientists to leading his own lab at Institut Curie, he has shaped France’s next generation of researchers in chemical biology.

  4. Recognition & Awards:
    His extensive list of prestigious awards, including the CNRS Silver Medal, Liliane Bettencourt Prize, and Knight of the National Order of Merit, reflect peer recognition on national and international levels.

  5. Entrepreneurship:
    As a co-founder of biotech companies (e.g., Adrestia Therapeutics, later acquired), he has demonstrated a rare capacity to translate discoveries into clinical and commercial value.

  6. Scientific Influence:
    Editorial board memberships and frequent invitations to over 160 major conferences show his reputation as a global thought leader in his field.

🔧 Areas for Improvement:

  1. Public Engagement Scaling:
    Although Dr. Rodriguez is active in media (radio, TV, print), expanding international science outreach (e.g., global science festivals, public lectures, social media presence) could help further democratize his scientific message.

  2. Clinical Translation:
    While several molecules from his lab are commercialized, more direct clinical trials or FDA approvals tied to his molecules would elevate his impact from bench to bedside.

  3. Collaborative Diversity:
    Encouraging more global South collaborations or mentorships could help broaden his lab’s international footprint and contribute to equitable science capacity building.

🎓 Education:

Raphaël Rodriguez’s academic journey is marked by elite training and impactful credentials across Europe. He earned his PhD in Chemistry (2002–2005) through a joint program between Marseille and Oxford. He then pursued postdoctoral research as a Senior Research Associate at Cambridge’s Department of Chemistry and Gurdon Institute (2005–2012), where he developed skills at the interface of chemistry and biology. In 2012, he obtained the prestigious Habilitation à Diriger des Recherches from the University of Paris-Saclay, enabling him to supervise PhD candidates and lead independent research. His rise through the academic ranks was rapid: he became a CNRS Group Leader in 2012, then Principal Investigator at Institut Curie in 2015. In 2017, he was promoted to Research Director (DR1) at CNRS. In 2020, he was awarded the Skłodowska-Curie Chair of Chemical Biology at Institut Curie. His interdisciplinary training under world-renowned mentors has uniquely positioned him at the forefront of chemical biology research.

💼 Experience:

Raphaël Rodriguez’s professional experience is a blend of high-level research, leadership, and innovation. He began his postdoctoral career at the University of Cambridge (2005–2012), working in the Department of Chemistry and the Gurdon Institute. In 2012, he became a CNRS Group Leader at ICSN, Gif-sur-Yvette, launching his independent research career. In 2015, he transitioned to Institut Curie as a Principal Investigator, where he deepened his focus on cancer and inflammation. His promotion to Research Director (DR1) at CNRS in 2017 reflects his impact and leadership. Awarded the Skłodowska-Curie Chair of Chemical Biology in 2020, Rodriguez oversees a productive lab that investigates ferroptosis, DNA structure, and metal ion regulation in disease. He is also an entrepreneur, co-founding Adrestia Therapeutics and OrbiThera. He teaches at PSL University, organizes international conferences, and contributes to editorial boards and scientific advisory boards worldwide, maintaining a strong presence in both academia and biotech.

🏆 Awards and Honors:

Raphaël Rodriguez has received an impressive array of honors, showcasing his impact on science and innovation. In 2024 alone, he won the CNRS Silver Medal and the Ligue Contre le Cancer Duquesne Prize. His earlier recognition includes the prestigious Liliane Bettencourt Prize for Life Sciences (2023), the Knight of the National Order of Merit (2022, presented by Nobel Laureate Jean-Marie Lehn), and the Klaus Grohe Prize (2022). He has also been awarded the Antoine Lacassagne Prize (Collège de France, 2019), the Sunrise Cancer Stem Cell Award (2019), the Charles Defforey–Institut de France Prize (2019), and the Tetrahedron Young Investigator Award (2019). Rodriguez is a Fellow of the Royal Society of Chemistry (2018) and won the Pierre Fabre Award for Therapeutic Innovation (2015). These accolades affirm his contributions across cancer research, chemical biology, and molecular therapeutics, as well as his success in translating science into societal benefit through entrepreneurship.

🔍 Research Focus:

Raphaël Rodriguez’s research lies at the cutting edge of chemical biology, with a focus on understanding how cells adapt to stress, particularly in the contexts of cancer and inflammation. His laboratory explores the role of metal ions—especially iron—as regulators of cellular plasticity and fate. Notably, his team discovered mechanisms underlying ferroptosis, a form of regulated cell death linked to iron metabolism, and how this can be exploited for anti-cancer therapies. He also investigates non-canonical DNA structures like G-quadruplexes, using small molecules to study and manipulate gene regulation. His lab has developed and commercialized several potent bioactive compounds, including Pyridostatin, Remodelin, Ironomycin, and Supformin, which are used both as research tools and potential therapeutics. Rodriguez combines molecular design, cell biology, and translational strategies, making his work a blueprint for chemical biology-driven precision medicine. He continues to raise significant research funding and actively collaborates across academia and biotech.

📚 Publications Top Notes:

  1. 🧬 Small-molecule–induced DNA damage identifies alternative DNA structures in human genesNature Chemical Biology

  2. ⚙️ Salinomycin kills cancer stem cells by sequestering iron in lysosomesNature Chemistry

  3. 🛡️ A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeresJACS

  4. 🧫 Chemical inhibition of NAT10 corrects defects of laminopathic cellsScience

  5. 🧠 The transcription factor FOXM1 is a cellular target of the natural product thiostreptonNature Chemistry

  6. 🧪 Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligandsJACS

  7. 🔥 PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancersCell Metabolism

  8. 🔬 A single-molecule platform for investigation of G-quadruplex interactions with small-molecule ligandsNature Chemistry

  9. 🧲 Small-molecule-mediated G-quadruplex isolation from human cellsNature Chemistry

  10. 🧬 CD44 regulates epigenetic plasticity by mediating iron endocytosisNature Chemistry

  11. 🧷 Selective RNA vs DNA G-Quadruplex Targeting by In Situ Click ChemistryAngewandte Chemie

  12. 🧬 G-Quadruplex-Binding Benzo[a]phenoxazines Down-Regulate c-KIT Expression in Gastric Carcinoma CellsJournal of Medicinal Chemistry

🧾 Conclusion:

Dr. Raphaël Rodriguez exhibits exceptional merit and impact across the entire research ecosystem—fundamental science, innovation, mentorship, and commercialization. His trailblazing work in chemical biology, coupled with a record of scientific leadership and entrepreneurship, makes him highly deserving of the Best Researcher Award. His career reflects a rare blend of depth, vision, and cross-disciplinary innovation. Minor enhancements in global public engagement and clinical integration could further elevate his already stellar profile.

Gang Wang | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Gang Wang | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Gang Wang , the First Affiliated Hospital of Harbin Medical University, China

Professor Wang Gang, MD, Ph.D., is a renowned general surgeon, postdoctoral researcher, and director of the Department of Oncology and Laparoscopy Surgery at The First Affiliated Hospital of Harbin Medical University, China. Specializing in pancreatic diseases, he is a prominent researcher and educator, with a focus on acute pancreatitis. He has contributed extensively to translational research, bridging molecular mechanisms to clinical innovations. As a high-level talent in Heilongjiang Province, he has published 166 works, including high-impact studies on ferroptosis and necroptosis in pancreatic diseases. With multiple editorial roles and leadership in various academic associations, Professor Wang continues to drive interdisciplinary advances in pancreatic disease management and surgery.

Publication Profile:

Google Scholar

Strengths for the Award:

Professor Wang Gang has demonstrated exceptional contributions to the field of pancreatic diseases, particularly in acute pancreatitis. His groundbreaking research on ferroptosis, necroptosis, and mitochondrial autophagy has resulted in a significant body of work with over 166 publications, many of which are high-impact studies. As a Principal Investigator, he has successfully led multiple National Natural Science Foundation projects, contributing innovative diagnostic and therapeutic strategies that have advanced the management of pancreatic diseases. His editorial roles in prominent journals and his collaborations with pharmaceutical companies reflect his recognition as a leader in the field. Moreover, his numerous provincial awards, including the Heilongjiang Science & Technology Progress First Prizes, further affirm his leadership and expertise.

Areas for Improvements:

While Professor Wang has achieved great success in pancreatic disease research, his work could benefit from expanding into interdisciplinary collaborations with other medical specialties to further enhance the clinical translation of his findings. Additionally, increasing the international visibility of his work through more international collaborations or partnerships could amplify its impact.

Education:

Professor Wang Gang holds both an MD and a Ph.D., specializing in general surgery. He completed his advanced postdoctoral training focusing on pancreatic diseases and advanced laparoscopic techniques. His rigorous academic journey has laid a strong foundation for his successful career in research, clinical practice, and teaching. Professor Wang’s educational experience reflects his deep commitment to advancing both his academic qualifications and medical expertise, leading to his leadership roles in multiple professional organizations and the development of several groundbreaking research projects in pancreatic health.

Experience:

Professor Wang has extensive clinical and research experience in pancreatic diseases. He serves as the Director of the Department of Oncology and Laparoscopy Surgery at The First Affiliated Hospital of Harbin Medical University. His research interests revolve around the pathogenesis and treatment of acute pancreatitis and other pancreatic disorders. In addition to his clinical role, he is a prolific academic leader, mentoring doctoral and postdoctoral researchers. With over 166 publications, he has led significant projects funded by the National Natural Science Foundation and has collaborated with top pharmaceutical companies. He has also served in prominent editorial and peer reviewer roles for many scientific journals, solidifying his influence in the research community.

Awards and Honors:

Professor Wang Gang has received numerous prestigious awards, including multiple Heilongjiang Science & Technology Progress First Prizes (2024, 2021). As a High-Level Talent of Heilongjiang Province and Outstanding Talent of Heilongjiang New Century, he is recognized for his outstanding contributions to medical research. His work has also earned him multiple accolades for his leadership and research excellence. As a principal investigator, he has received several National Natural Science Foundation grants, marking him as a leading figure in the field of pancreatic diseases. His success reflects his commitment to advancing medical science and improving patient outcomes, particularly in pancreatic diseases.

Research Focus:

Professor Wang’s research primarily focuses on the molecular mechanisms underlying pancreatic diseases, including acute pancreatitis and pancreatic cancer. His work has identified key molecular pathways, such as ferroptosis and necroptosis, in the progression of these diseases. His translational research connects basic science with clinical applications, optimizing surgical protocols and diagnostic tools. His studies on mitochondrial dysfunction, autophagy imbalance, and exosomal crosstalk provide novel insights into disease pathogenesis and potential therapeutic strategies. As a leading researcher, he has contributed significantly to the understanding of pancreatic diseases and continues to push boundaries in both basic and clinical research.

Publications Top Notes:

  • Ferroptosis: Past, Present, and Future 📚, Cell Death & Disease, 2020

  • Long Noncoding RNA MALAT1 Promotes Aggressive Pancreatic Cancer Proliferation and Metastasis via Autophagy 📚, Molecular Cancer Therapeutics, 2016

  • A New Algorithm of Blind Color Image Watermarking Based on LU Decomposition 📚, Multidimensional Systems and Signal Processing, 2018

  • Early Prediction of Infected Pancreatic Necrosis Secondary to Necrotizing Pancreatitis 📚, Medicine, 2017

  • A Three-Dimensional Failure Criterion for Hard Rocks Under True Triaxial Compression 📚, Rock Mechanics and Rock Engineering, 2020

  • Plasma and Tumor Levels of Linc-pint as Diagnostic and Prognostic Biomarkers for Pancreatic Cancer 📚, Oncotarget, 2016

  • The Effect of Emodin-Assisted Early Enteral Nutrition on Severe Acute Pancreatitis 📚, Mediators of Inflammation, 2007

  • Hydrogen Sulphide Exacerbates Acute Pancreatitis by Over-Activating Autophagy via AMPK/mTOR Pathway 📚, Journal of Cellular and Molecular Medicine, 2016

  • Necroptosis: A Potential, Promising Target in Acute Pancreatitis 📚, Apoptosis, 2016

  • Effects of Carbon Monoxide Releasing Molecule-Liberated CO on Severe Acute Pancreatitis in Rats 📚, Cytokine, 2010

  • A Novel Blind Color Image Watermarking Based on Contourlet Transform and Hessenberg Decomposition 📚, Multimedia Tools and Applications, 2018

Conclusion:

Professor Wang Gang is an exemplary candidate for the Best Researcher Award due to his impressive academic achievements, groundbreaking contributions to pancreatic disease research, and his ongoing efforts to bridge basic science and clinical practice. His work has not only advanced our understanding of acute pancreatitis but has also paved the way for potential therapeutic advancements. His leadership in research, publications, and collaboration highlights his remarkable contributions to the medical and scientific community.

Xueru Li | Molecular Mechanisms Signaling | Cell Microenvironment Award

Ms. Xueru Li | Molecular Mechanisms Signaling | Cell Microenvironment Award

Ms. Xueru Li , Chongqing Medical University , China

Li Xueru is an accomplished researcher and scientist with expertise in clinical laboratory diagnostics. He obtained his Ph.D. in Clinical Laboratory Diagnostics from Chongqing Medical University. Xueru has contributed extensively to scientific research, particularly in the field of cell microenvironment, fibrosis, and oxidative stress. His research has involved collaborations with prestigious organizations, such as the Chongqing Education Commission and Chongqing Natural Science Foundation. Through his academic journey, he has demonstrated a strong commitment to advancing knowledge in biomedical sciences, particularly in the areas of lung fibrosis and cellular response to environmental stress. Li Xueru is an active participant in research projects and has co-authored several influential publications that have contributed to the advancement of molecular biology and clinical diagnostics.

Publication Profile:

Scopus

Strengths for the Award:

Li Xueru’s expertise in clinical laboratory diagnostics, combined with his research in the field of cell microenvironment and fibrosis, positions him as a strong candidate for the Research for Cell Microenvironment Award. His work, especially the study on “Pharmaceutical targeting of succinate dehydrogenase in fibroblasts to control bleomycin-induced lung fibrosis,” highlights his contributions to understanding cellular mechanisms in fibrosis and oxidative stress. His involvement in high-impact research funded by organizations like the Chongqing Education Commission and the Chongqing Natural Science Foundation shows a commitment to advancing scientific knowledge and contributing to both academic and practical advancements in biomedical sciences. Moreover, his ability to bridge fundamental research with clinical applications demonstrates a strength that aligns with the goals of the Research for Cell Microenvironment Award.

Areas for Improvements:

While Li Xueru’s research focus is promising, there is potential to expand his exploration of cellular microenvironment to include other disease models and extend beyond lung fibrosis. Diversifying his research topics could provide a broader understanding of cellular behavior across different tissues and disease states. Additionally, there could be more emphasis on the development of therapeutic interventions, potentially accelerating the translation of his discoveries into clinical practices. Increasing collaboration with international research teams may also offer new perspectives and further enhance the impact of his work.

Education:

Li Xueru earned his Ph.D. degree in Clinical Laboratory Diagnostics from Chongqing Medical University, one of China’s leading medical institutions. His academic background has provided him with in-depth knowledge of diagnostic technologies, clinical pathology, and molecular biology. During his doctoral studies, he developed expertise in understanding cellular behavior and disease mechanisms at the molecular level, with a particular focus on how environmental stress impacts cellular functions. This education laid the foundation for his career in the biomedical field. He has further strengthened his research skills by participating in various projects funded by the Chongqing Education Commission and the Chongqing Natural Science Foundation. His education has been instrumental in shaping his approach to scientific inquiry, fostering a comprehensive understanding of clinical diagnostics, and equipping him to lead innovative research in the cellular microenvironment and disease mechanisms.

Experience:

Li Xueru’s experience spans a wide range of research activities focused on clinical laboratory diagnostics and cell microenvironment. His involvement in multiple high-impact research projects, supported by institutions like the Chongqing Education Commission and the Chongqing Natural Science Foundation, showcases his leadership in advancing scientific knowledge. Xueru has worked closely with interdisciplinary teams to address complex problems in the biomedical field, particularly lung fibrosis and oxidative stress. His research contributions include identifying novel cellular mechanisms involved in disease pathogenesis, improving diagnostic methodologies, and exploring therapeutic strategies for disease management. He has demonstrated a remarkable ability to apply scientific research in real-world contexts, ensuring that his findings have practical applications in medical diagnostics and treatment. His collaborative approach and innovative thinking have positioned him as a key figure in his field, contributing significantly to both academic literature and clinical advancements.

Research Focus:

Li Xueru’s primary research focus revolves around the molecular mechanisms of diseases, particularly lung fibrosis and cellular responses to environmental stressors. He is dedicated to understanding the impact of oxidative stress on cellular functions and its role in disease progression. His research explores the microenvironment of cells in response to various stimuli, including chemical agents like bleomycin. A significant area of his research is the role of succinate dehydrogenase in fibroblasts and its potential as a pharmaceutical target to control lung fibrosis. Through his work, Xueru has contributed to a better understanding of how cells interact with their microenvironment, which is crucial for developing new diagnostic and therapeutic approaches. His innovative studies on cell signaling pathways, fibrosis, and oxidative stress have the potential to transform treatment strategies for diseases related to chronic inflammation and tissue fibrosis.

Publications Top Notes:

  • Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis 🧬

  • Corrigendum to “Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis” 🔬

Conclusion:

Li Xueru is a promising candidate for the Research for Cell Microenvironment Award. His significant contributions to the understanding of cellular mechanisms in fibrosis and oxidative stress have led to valuable insights into the pathophysiology of diseases. By focusing on the cell microenvironment and its role in disease progression, his work is advancing scientific knowledge with important implications for diagnostics and therapy. With further diversification of his research and expanded collaborations, Li Xueru has the potential to make even greater strides in the field, ultimately improving patient outcomes and advancing the application of his findings in clinical settings.

Ranran Li | Signal Transduction Mechanisms | Best Researcher Award

Dr. Ranran Li | Signal Transduction Mechanisms | Best Researcher Award

Ranran Li , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , China

Dr. Ranran Li is an associate researcher at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine in Shanghai, China. She earned her Ph.D. from the University Medical Center of Groningen, Netherlands, in 2015, before returning to Shanghai to focus on critical care medicine. Her research centers on sepsis-associated endothelial dysfunction and its underlying molecular mechanisms. Over the years, Dr. Li’s work has provided valuable insights into the role of metabolic disorders and post-translational modifications in regulating endothelial inflammation and coagulation during sepsis. She has published extensively in reputable journals and holds several patents. Her recent findings suggest potential therapeutic targets for the treatment of sepsis and related complications, including endothelial dysfunction and organ injury.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Ranran Li is a distinguished researcher with notable expertise in the mechanisms of sepsis-associated endothelial dysfunction. Her work in identifying the role of metabolic disorders and post-translational modifications in sepsis has been pivotal in advancing the understanding of vascular inflammation and coagulation during critical illness. Her research has led to several high-impact publications and patents, showcasing her contributions to the field. Furthermore, Dr. Li’s interdisciplinary approach, combining metabolic biology, cell signaling, and translational medicine, has provided valuable therapeutic targets for the treatment of sepsis and endothelial dysfunction. Her collaborations with international experts enhance her work’s impact and broaden the scope of her research.

Areas for Improvements:

While Dr. Li’s research has been extensive and groundbreaking, future improvements could include increased collaborations with industry partners to accelerate the translation of her findings into clinical therapies. Expanding her professional network through international collaborations in other areas of critical care medicine could also provide new perspectives and avenues for innovation. Additionally, engaging in larger-scale clinical studies might help further validate her findings in human models.

Education

Dr. Ranran Li obtained her Ph.D. in Medical Sciences from the University Medical Center of Groningen, Netherlands, from 2011 to 2015. During her doctoral studies, she focused on the molecular mechanisms of sepsis and its impact on vascular endothelial dysfunction. Her Ph.D. research laid the foundation for her ongoing investigations into the pathophysiology of sepsis and endothelial injury. Following her Ph.D., she joined Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, in 2016 as an associate researcher in the Department of Critical Care Medicine. Here, Dr. Li furthered her research into sepsis, vascular inflammation, and metabolic disorders. She has developed an expertise in endothelial dysfunction and coagulation, specifically in the context of sepsis-induced organ injuries. Dr. Li’s comprehensive academic training, both in Europe and China, has significantly contributed to her innovative research work and international collaborations.

Experience:

Dr. Ranran Li has been serving as an associate researcher at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, since 2016. Prior to this, she earned her Ph.D. from the University Medical Center of Groningen in the Netherlands, where she focused on sepsis and endothelial dysfunction. In her current position, Dr. Li has worked extensively on understanding the mechanisms underlying sepsis-associated endothelial dysfunction, with a particular focus on metabolic disorders and post-translational modifications. Her work has provided critical insights into the role of fatty acid metabolism, insulin resistance, and histone modifications in regulating endothelial inflammation and coagulation activation in sepsis. Dr. Li’s research has led to multiple publications in high-impact journals and the filing of patents for innovative therapeutic approaches. She collaborates with leading researchers in the Netherlands and has contributed significantly to the understanding of vascular injury and its therapeutic targets in sepsis.

Research Focus:

Dr. Ranran Li’s research focuses on the molecular mechanisms of sepsis-associated endothelial dysfunction, with a particular emphasis on metabolic disorders and post-translational modifications. She has been exploring how fatty acid metabolism, glucose-lipid metabolism, and protein acetylation influence endothelial cells during sepsis, leading to organ injury. Her research has highlighted the role of metabolic shifts, including the activation of pathways like AMPK/PKA, in endothelial inflammation and coagulation activation. Dr. Li has also studied the role of histone modifications, including lactylation, in promoting endothelial ferroptosis and dysfunction during sepsis-induced lung injury. She has been pioneering the exploration of metabolic signaling pathways and their potential as therapeutic targets for managing sepsis-related endothelial damage. Her work aims to identify novel strategies to prevent or mitigate vascular injury in septic patients. Dr. Li’s findings have led to both patents and high-impact publications in critical care and translational medicine.

Publications Top Notes:

  1. Shiyuan He et al., Fatty acid synthesis promotes mtDNA release via ETS1-mediated oligomerization of VDAC1 facilitating endothelial dysfunction in sepsis-induced lung injury 🧬🫁 Cell Death and Differentiation, 2025
  2. Ranran Li et al., ATP-citrate lyase controls endothelial gluco-lipogenic metabolism and vascular inflammation in sepsis-associated organ injury 💉🧪 Cell Death and Disease, 2023
  3. Jie Liu et al., Designed microchannel-based lipid nanoparticles encapsulated siRNA targeting gasdermin D for sepsis management via pulmonary delivery 🧬💉 Nano Today, 2025
  4. Fangchen Gong et al., H3K14la drives endothelial dysfunction in sepsis-induced ARDS by promoting SLC40A1/transferrin-mediated ferroptosis 🧬🔥 MedComm, 2025
  5. Jiayin Cui et al., Herbal-based Xuebijing injection ameliorated vascular endothelial dysfunction via inhibiting ACLY/MYB/RIG-I axis in sepsis-associated lung injury 🌱💊 Phytomedicine, 2025
  6. Shasha Lu et al., GDF15 ameliorates sepsis-induced lung injury via AMPK-mediated inhibition of glycolysis in alveolar macrophage 💨🧪 Respiratory Research, 2024
  7. Rui Tian et al., Shenfu injection ameliorates endotoxemia-associated endothelial dysfunction and organ injury via inhibiting PI3K/Akt-mediated glycolysis 💉🫀 Journal of Ethnopharmacology, 2024
  8. Yupeng Zhao et al., H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis 🎗️🧬 Biochemical Pharmacology, 2024
  9. Rui Tian et al., Metformin ameliorates endotoxemia-induced endothelial pro-inflammatory responses via AMPK-dependent mediation of HDAC5 and KLF2 💊💉 BBA-Molecular basis of disease, 2019
  10. Lei Pei et al., MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response 🧬🩸 International Immunopharmacology, 2024

Conclusion:

Dr. Ranran Li is highly deserving of the Best Researcher Award due to her outstanding contributions to understanding the molecular mechanisms underlying sepsis-related endothelial dysfunction. Her innovative research has not only provided deep insights into the pathophysiology of sepsis but has also uncovered potential therapeutic targets for treating this devastating condition. Her exceptional track record of high-quality publications, patents, and collaborative research, combined with her dedication to advancing critical care medicine, makes her an excellent candidate for this prestigious award.