Jiangang Zhang | Cell Metabolism | Research Excellence Award

Dr. Jiangang Zhang | Cell Metabolism | Research Excellence Award

School of Basic Medical Sciences, Lanzhou University | China

Dr. Jiangang Zhang. A senior academic and medical professional with extensive leadership in pathology, forensic medicine, and laboratory sciences at Lanzhou University and its affiliated hospitals. Holds multiple directorial roles across pathology departments, forensic appraisal institutes, dental hospitals, and GLP laboratory centers, contributing significantly to clinical diagnostics, forensic evaluation, and translational research. Recognized nationally and provincially as an expert in forensic appraisal, including insurance-related forensic assessments, and plays a key role in expert review and governance bodies. Academic training spans clinical medicine, tissue engineering, and advanced biomedical research, with doctoral-level experience at Peking University. Research expertise includes obesity, nutrition, chronic diseases, skin tissue engineering, and pathology-related biomedical sciences. Has led and completed several major nationally funded research projects, including multiple grants from the National Natural Science Foundation of China and military medical research programs, reflecting sustained contributions to medical science, education, and forensic pathology.

Citation Metrics (Scopus)

300
200
100
50
0

Citations
252

Documents
14

h-index
6

Citations

Documents

h-index

Featured Publication

Hongjin Liu | Cancer Cell Biology | Research Excellence Award

Dr. Hongjin Liu | Cancer Cell Biology | Research Excellence Award

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College | China

Hongjin Liu is a medical oncologist whose research centers on cancer biology, therapeutic resistance, and tumorigenesis. His work spans molecular oncology, hepatocellular carcinoma, and mechanisms of somatic mutagenesis across human tissues. He has contributed to high-impact studies published in Nature and Signal Transduction and Targeted Therapy, including investigations uncovering the landscape of somatic mutations in normal tissues and the critical role of VAV2 in DNA repair and radiotherapy resistance. His research also explores noncoding RNA–mediated regulatory networks in liver cancer, notably identifying the oncogenic function of ELF3-AS1 through its modulation of the miR-98-5p/CPSF4 axis. Collectively, his publications provide important insights into genomic instability, tumor microenvironment dynamics, and potential molecular targets for improving therapeutic outcomes. His translational research aims to bridge molecular mechanisms with clinical oncology to support precision cancer treatment and advance strategies for overcoming therapy resistance.

Profile: Orcid

Featured Publications: 

1. Ge, P., Niu, S., Fang, M., Xu, Q., Zhang, W., Xu, J., Yang, F., Wang, Y., Shi, T., & Liu, H. (2025). ELF3-AS1 promotes the carcinogenesis of hepatocellular carcinoma cells by inhibiting miR-98-5p/CPSF4 axis. Nucleosides, Nucleotides & Nucleic Acids.

2. Zhang, W., Liu, Z., Liu, H., Huang, Z., Huang, X., Xu, L., Che, X., & Zhan, Z. (2025). The impact of immune checkpoint inhibitors on prognosis in unresectable hepatocellular carcinoma treated with TACE and lenvatinib: A meta-analysis. Frontiers in Immunology.

3. Liu, W., Miao, C., Zhang, S., Liu, Y., Niu, X., Xi, Y., Guo, W., Chu, J., Lin, A., Liu, H., Yang, X., Chen, X., Zhong, C., Ma, Y., Wang, Y., Zhu, S., Liu, S., Tan, W., Lin, D., & Wu, C. (2021). VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduction and Targeted Therapy, 6(9), 2906–2919.

4. Li, R., Di, L., Li, J., Fan, W., Liu, Y., Guo, W., Liu, W., Liu, L., Li, Q., Chen, L., Chen, Y., Miao, C., Liu, H., Wang, Y., Ma, Y., Xu, D., Lin, D., Huang, Y., Wang, J., Bai, F., & Wu, C. (2021). A body map of somatic mutagenesis in morphologically normal human tissues. Nature, 597(7876), 398–403.

5. Chen, Y., Zeng, Q., Liu, X., Fu, J., Zeng, Z., Zhao, Z., Liu, Z., Bai, W., Dong, Z., & Liu, H. (2018). LINE-1 ORF-1p enhances the transcription factor activity of pregnenolone X receptor and promotes sorafenib resistance in hepatocellular carcinoma cells. Cancer Management and Research, 10, 6345–6358.

Ilaria Cossu | Immunology Cellular Interactions | Research Excellence Award

Ms. Ilaria Cossu | Immunology Cellular Interactions | Research Excellence Award

University of Sassari | Italy

Ilaria Cossu is a motivated PhD candidate in Life Sciences and Biotechnologies with a specialization in Microbiology and Immunology. Their work focuses on understanding the role of human endogenous retroviruses (HERVs) in cancer, integrating molecular biology, immunology, and virology approaches to explore how retroviral elements may influence tumorigenesis. Their doctoral project involves conducting indirect ELISA assays, maintaining and analyzing cell cultures, processing blood samples, performing RNA extraction and reverse transcription, and carrying out quantitative PCR for gene expression profiling. The researcher is actively engaged in experimental design, data analysis, scientific writing, and collaborative research activities at both national and international levels.

Prior academic training includes Master’s and Bachelor’s degrees in Biology, each completed with top distinction, and research internships in microbiology, virology, and biochemistry laboratories. These experiences provided hands-on expertise in electrophoretic methods such as cellulose acetate electrophoresis, C-PAGE, fluorescent 2-aminoacridone probe (FACE) analysis, and SDS-PAGE, contributing to a solid foundation in protein and nucleic acid characterization. Their current research aims to advance understanding of retroviral contributions to cancer biology and supports the development of innovative molecular approaches for disease investigation and potential therapeutic insights.

Profile: Scopus

Featured Publications:

Cossu, I., Ruberto, S., Filippi, E., Simula, E. R., Noli, M., Mottula, A., & others. (2025). HERV-K envelope induces a humoral response in Non-Hodgkin lymphoma patients. Current Microbiology, 82(12), 574.

Jasemi, S., Molicotti, P., Fais, M., Cossu, I., Simula, E. R., Sechi, L. A., & others. (2025). Biological mechanisms of enterotoxigenic Bacteroides fragilis toxin: Linking inflammation, colorectal cancer, and clinical implications. Toxins, 17(6), 305.

Simula, E. R., Jasemi, S., Cossu, D., Fais, M., Cossu, I., Chessa, V., & others. (2025). Human endogenous retroviruses as novel therapeutic targets in neurodegenerative disorders. Vaccines, 13(4), 415. h

Ruberto, S., Santovito, A., Caviglia, G. P., Noli, M., Cossu, D., Ribaldone, D. G., & others. (2025). Mycobacterium avium subsp. paratuberculosis and human endogenous retrovirus in Italian patients with inflammatory bowel disease and irritable bowel syndrome. Immunology.

Esmaa Bouhamida | Molecular and Cellular Biology | Cell Biology Research Award

Dr. Esmaa Bouhamida | Molecular and Cellular Biology | Cell Biology Research Award

Fondazione Ricerca Biomedica Avanzata (VIMM) | Italy

The candidate’s research centers on understanding how mitochondrial signaling, hypoxia-responsive pathways, and cell-cycle regulatory networks collectively influence cardiac regeneration and cardiovascular disease. Their work investigates how hypoxia-inducible factors, particularly HIF-1α, modulate mitochondrial function during ischemic injury, with the broader goal of identifying mechanisms that could restore or enhance the regenerative potential of adult cardiac tissue. Through advanced molecular and cellular approaches, their studies explore how metabolic rewiring, mitochondrial stress responses, and oxygen-sensing pathways govern cardiomyocyte survival, proliferation, and reprogramming.

Building on expertise in molecular biology, signal transduction, and genetics, the researcher has expanded their focus to include the interplay between mitochondrial homeostasis and protein-quality control mechanisms in muscle tissues. Their postdoctoral work examines signaling pathways that regulate proteostasis and their impact on muscle integrity under physiological and pathological conditions. This integrated approach bridges cardiac regeneration, mitochondrial dynamics, and muscle biology, enabling the identification of therapeutic targets relevant to heart failure, ischemia, and degenerative muscle disorders.

Their long-term vision is to develop interventions that combine mitochondrial modulation, gene therapy, and cellular reprogramming strategies to promote tissue repair and functional recovery in cardiovascular disease. Their contributions have been recognized through competitive scientific evaluations at international cardiovascular and stem-cell research forums.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Bouhamida, E., Vadakke-Madathil, S., Mathiyalagan, P., Ranjan, A. K., Khan, A., Sherman, M. P., & others. (2025). Single nucleus transcriptomics supports a role for CCNA2-induced human adult cardiomyocyte cytokinesis. bioRxiv.

Bouhamida, E., Vadakke-Madathil, S., Mathiyalagan, P., Ranjan, A. K., Sherman, M. P., & others. (2025). Cyclin A2 induces cytokinesis in human adult cardiomyocytes and drives reprogramming in mice. npj Regenerative Medicine, 10(1), 47.

Kimberly Gilmour | Immunology Cellular Interactions | Women Researcher Award

Dr. Kimberly Gilmour | Immunology Cellular Interactions | Women Researcher Award

Great Ormond Street Hospital | United Kingdom

Kimberly Coughlan Gilmour is a leading expert in immunology, molecular diagnostics, and cell-based therapeutic development. Her early academic work contributed foundational insights into cytokine signaling, particularly the regulation of the Interferon Regulatory Factor-1 (IRF-1) gene and the signal transduction pathways activated by prolactin and interleukin-2. During her postdoctoral research, she investigated mechanisms governing thymocyte proliferation and differentiation using retroviral manipulation of murine thymic organ cultures, advancing understanding of T-cell development.

Gilmour has played a pivotal role in the evolution of clinical immunology diagnostics, leading the development of national services for the molecular diagnosis of primary immunodeficiency disorders. She has been instrumental in translating complex research methodologies—including gene expression analysis, retroviral and lentiviral transduction, and thymus tissue culture—into routine clinical tools that directly inform patient management. Her work supports post-treatment monitoring for haematopoietic stem cell transplantation, gene therapy, and targeted antibody-based interventions.

As a leader in cell therapy, she has overseen the implementation of advanced cellular manufacturing processes and supervised the clinical authorization of personalized therapeutic products. Her career integrates immunogenetics, translational science, and cellular therapy innovation, significantly shaping clinical practice for paediatric patients with rare and complex immune disorders.

Profiles: Scopus | Orcid

Featured Publications:

  • Maimaris, J., Roa-Bautista, A., Sohail, M., et al. (2025). Griscelli Syndrome Type 2: Comprehensive analysis of 149 new and previously described patients with RAB27A deficiency. Journal of Clinical Immunology, 45(50).

  • Author(s) Unknown. (2025). Safety and diagnostic utility of brain biopsy and metagenomics in decision-making for patients with inborn errors of immunity (IEI) and unexplained neurological manifestations. Journal of Clinical Immunology, 45, 86.

  • Booth, C., Masiuk, K., Vazouras, K., Fernandes, A., Xu-Bayford, J., Campo Fernandez, B., Roy, S., Curio-Penny, B., Arnold, J., Terrazas, D., Reid, J., Gilmour, K. C., Adams, S., Mediavilla, E. A., Mhaldien, L., O’Toole, G., Ahmed, R., Garabedian, E., Malech, H., De Ravin, S. S., Moore, T. B., De Oliveira, S., Pellin, D., Lin, T.-Y., Dang, T. T., Cornetta, K., Hershfield, M. S., Hara, H., Thrasher, A. J., Gaspar, H. B., & Kohn, D. B. (2025). Long-term safety and efficacy of gene therapy for adenosine deaminase deficiency. New England Journal of Medicine, 393(15), 1486–1497.

  • Guardo, D., Mishra, A. K., Rashed, H., Gilmour, K. C., Adams, S., Pinner, D., Sauer, M., Vora, A., Veys, P., Pavasovic, V., Rao, K., & Qasim, W. (2025). Long-term outcomes of genome-edited “universal” CAR19 T cells for relapsed/refractory B-ALL at a single pediatric center. Blood Advances, 9(18), 4750–4754.

 

Yuan Zhang | Neuronal Cell Biology | Best Academic Researcher Award

Prof. Yuan Zhang | Neuronal Cell Biology | Best Academic Researcher Award

Prof. Yuan Zhang | Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University | China

Dr. Yuan Zhang, MD, Ph.D., is an accomplished neuroscientist and Associate Professor in the Department of Neurosurgery at Shenzhen Second People’s Hospital, affiliated with Shenzhen University. With over 15 years of combined experience in clinical neuroscience, academic teaching, and translational research, Dr. Zhang has carved a niche in the fields of cerebral ischemia, neurodegeneration, and brain metabolism. Her work has been pivotal in uncovering molecular mechanisms underlying stroke and Alzheimer’s disease. A dedicated scholar, Dr. Zhang has authored over 10 peer-reviewed articles in reputable international journals, often serving as lead or corresponding author. Her research is distinguished by its integration of advanced technologies such as mass spectrometry and molecular imaging with fundamental neurobiology. Dr. Zhang is committed to improving patient outcomes through a synergistic blend of laboratory research and clinical application, and she continues to lead multi-disciplinary teams in high-impact neurology projects across China.

Publication Profile: 

Scopus

Education:

Dr. Yuan Zhang began her medical journey with a Bachelor’s degree in Clinical Medicine from Baotou Medical College, where she developed a foundational understanding of human physiology and diagnostics. She furthered her studies with a Master’s in Biochemistry and Molecular Biology from the same institution, focusing on cellular mechanisms and molecular interactions. Driven by a passion for uncovering complex pathological processes, she pursued and obtained her Ph.D. in Pathology and Pathophysiology from the prestigious Peking Union Medical College, a leading institution in medical research in China. Her doctoral studies laid the groundwork for her ongoing research into the molecular basis of neurological diseases. Dr. Zhang’s robust academic foundation across medicine, molecular biology, and pathology uniquely positions her to bridge the gap between clinical practice and laboratory research, making significant contributions to the fields of stroke recovery, neuroinflammation, and neurodegenerative diseases.

Professional Experience:

Dr. Yuan Zhang has accumulated a wealth of professional experience over nearly two decades. She has served as a Researcher and Associate Professor at Shenzhen Second People’s Hospital and the First Affiliated Hospital of Shenzhen University, where she leads key neurosurgery-related research. She worked as a postdoctoral researcher at the Shenzhen Institutes of Advanced Technology under the Chinese Academy of Sciences, engaging in cutting-edge neuroscience projects. Concurrently, she served as an Associate Professor at Baotou Medical College, having previously held roles as Lecturer and Teaching Assistant. Dr. Zhang has played crucial roles in mentoring young researchers, guiding postgraduates, and fostering collaborative projects. Her clinical insights as a physician combined with her academic depth as a researcher make her an asset to both the scientific and medical communities, contributing meaningfully to translational research in neuroscience and neurosurgery.

Research Focus:

Dr. Yuan Zhang’s research focuses on elucidating the molecular mechanisms underlying cerebral ischemia, neuroinflammation, neurodegenerative disorders, and metabolic dysfunctions in the brain. She specializes in identifying potential therapeutic targets for conditions like ischemic stroke, Alzheimer’s disease, and diabetic cognitive impairment. Her interdisciplinary approach integrates molecular biology, proteomics, lipidomics, pharmacology, and neuroimaging, allowing her to study brain injury at multiple biological scales. Her recent work involves leveraging mass spectrometry and nanomedicine to map lipid changes in early ischemic events and exploring how natural compounds such as Notoginsenoside R1 and Gypenoside LXXV modulate glucose uptake and inflammation in the brain. Dr. Zhang also investigates the role of proteins like NUF2, MMP-2, and ENOPH1 in neurological damage and recovery. Her research aims to translate molecular insights into clinical therapies, ultimately improving outcomes for patients with complex neurological disorders. She is especially known for collaborative work bridging basic science and clinical neurosurgery.

Publications Top Notes:

  1. Uncovering novel functions of NUF2 in glioblastoma and MRI-based expression prediction — Scientific Reports, 2025

  2. Mass Spectrometry-based Spatiotemporal Characterization of Lipids in Early Focal Cerebral Ischemia — Analytical and Bioanalytical Chemistry

  3. Notoginsenoside R1 attenuates cognitive deficits in diabetic Alzheimer’s disease via GLUT4-dependent neuronal glucose uptake — Phytotherapy Research

  4. Alteration of Ubiquitination in the Brain of ENOPH1 Knockout Mice after Early Ischemic Stroke — Journal of Proteome Research

  5. Adenylate kinase 4 promotes neuronal energy metabolism and mitophagy in early cerebral ischemia via Parkin/PKM2 pathway — Experimental Neurology

  6. MMP-2-mediated Scube2 degradation disrupts astrocyte-endothelial interaction via Sonic Hedgehog pathway — Journal of Neurochemistry

  7. Enolase-phosphatase 1 worsens early ischemia injury by enhancing ECM destruction and blocking ADI1-MT1-MMP interaction — Experimental Neurology

  8. Black phosphorus-based nanodelivery platform for synergistic antiparkinsonian therapy — Journal of Controlled Release

  9. Gypenoside LXXV increases brain glucose uptake and improves cognitive deficits in diabetic Alzheimer’s model — Phytotherapy Research

  10.  Swell1 activation in microglia suppresses neuroinflammation and reduces ischemic brain damage — Neurobiology of Disease

Conclusion :

Dr. Yuan Zhang is an outstanding candidate for the Best Academic Researcher Award. His well-established background, robust publication record, and focus on critical neurological disorders position him as a leader in academic neurosurgery research. With a continued push toward global visibility and translational impact, Dr. Zhang is likely to remain a transformative figure in neurological sciences. His combination of clinical insight and research acumen makes him not only deserving of recognition but also a source of inspiration for the future generation of clinician-scientists.

 

 

Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Zhejiang University | China

Dr. Yuxin Peng is a distinguished researcher and educator in the field of biomedical and exercise science engineering. Currently serving as a ZJU 100 Young Professor at Zhejiang University, China, he has made significant strides in developing flexible sensors, smart wearable systems, and human–machine interaction technologies. With a Ph.D. and postdoctoral training at the National University of Singapore, his research integrates cutting-edge materials science, biomechanics, and AI-driven health monitoring systems. His work has been consistently published in high-impact journals like Science Advances, Advanced Science, IEEE Transactions, and Soft Robotics, reflecting both depth and innovation. Dr. Peng’s contributions are not only academic but also practical, with several of his innovations applied in rehabilitation, sports science, and robotics. His dedication and cross-disciplinary expertise make him a strong candidate for recognition such as the Best Researcher Award.

Publication Profiles: 

Orcid
Scopus

Education:

Dr. Yuxin Peng received his doctoral degree (Ph.D.) in an engineering-related discipline, laying a strong foundation in biomedical engineering, biomechanics, and sensor technologies. His early academic pursuits were rooted in multidisciplinary innovation, merging engineering principles with human physiology and robotics. To further deepen his scientific understanding, he pursued postdoctoral research at the prestigious National University of Singapore, focusing on biomedical systems and smart rehabilitation. During his academic training, Dr. Peng built expertise in wearable sensors, motion tracking systems, and soft robotics—technologies that play a crucial role in personalized healthcare and intelligent rehabilitation. His education trajectory demonstrates both depth and diversity, preparing him to address complex biomedical challenges with integrated, high-tech solutions. It also laid the groundwork for his future leadership roles and impactful research career at Zhejiang University, where he now mentors young researchers and leads innovation in health engineering.

Experience:

Dr. Yuxin Peng has built an impressive academic and research career spanning over a decade. He has been a ZJU 100 Young Professor at Zhejiang University, affiliated with the Institute of Exercise Science and Health Engineering. In this role, he leads interdisciplinary research projects in wearable technology, flexible sensors, and human motion analysis. Prior to this, he served as a Research Fellow at the Department of Biomedical Engineering, National University of Singapore, where he focused on intelligent health systems and rehabilitation technologies. His hands-on experience in global, high-tech research environments has allowed him to develop collaborations with experts in robotics, materials science, and medical engineering. He has supervised numerous projects and students, while continuously publishing in high-impact journals. His experience demonstrates a rare blend of academic rigor and real-world application, making him a leader in human-centered biomedical innovation and smart rehabilitation systems.

Research Focus:

Dr. Yuxin Peng’s research focuses on wearable systems, smart sensors, soft robotics, and biomedical signal processing for human motion monitoring and rehabilitation. His work addresses real-world problems such as gait analysis, joint motion detection, force sensing, and rehabilitation assistance. By integrating AI, flexible electronics, and biocompatible materials, he develops high-performance sensors and intelligent exosuits for applications in sports science, elderly care, and physical therapy. Notable innovations include graphene-based aerogels, hydrogel biosensors, and multi-feature neural networks for gesture recognition. His lab has also contributed to optical waveguide sensors, virtual reality rehabilitation, and MI-controlled exoskeletons. The overarching goal of his work is to enable non-invasive, real-time, and personalized health monitoring through smart technology. By pushing the boundaries of soft, adaptive, and human-interactive systems, Dr. Peng’s research is at the forefront of the next generation of intelligent biomedical engineering solutions.

Publications Top Notes:

  1. Hydroplastic Foaming of Graphene Aerogels and AI Tactile SensorsScience Advances

  2. Underwater Instant Adhesive Hydrogel Interfaces for Robust BiosensingAdvanced Science

  3. Flexible Segmented Assemblable Fiber Optic Sensor for Multi-Joint MonitoringSoft Robotics (Accepted)

  4. Calibration-Free Optical Waveguide Bending Sensor for Soft RobotsSoft Science

  5. Distributed Plantar 3D Force Measurement SystemSensors and Actuators A

  6. Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign LanguageSmall

  7. Omnidirectional Soft Bending Sensor for Joint MonitoringIEEE TIE

  8. Shank-RIO: Ranging-Inertial Odometry for Gait and PositioningIEEE TIM

  9. Exosuit with Bidirectional Hand Support via Gesture RecognitionIEEE TNSRE

  10.  Advances in Flexible Bending Sensors and ApplicationsIJ Smart & Nano Materials

Conclusion:

In conclusion, Dr. Yuxin Peng exhibits all the qualities of a top-tier, award-worthy researcher. His work is characterized by scientific rigor, high-impact publication, and a vision for solving real-world healthcare challenges using cutting-edge sensor and robotics technologies. As a respected academic at Zhejiang University with a solid international research background, Dr. Peng has already contributed significantly to wearable health tech and rehabilitation sciences. His ability to combine soft material innovation, artificial intelligence, and biomechanics into novel human-machine interaction systems places him at the forefront of biomedical engineering research. While there is room for growth in the areas of commercialization and global academic engagement, his career trajectory, research excellence, and societal relevance of his innovations make him a highly deserving candidate for the Best Researcher Award.

Yuxiang Wang | Molecular Biology | Best Researcher Award

Dr. Yuxiang Wang | Molecular Biology | Best Researcher Award

Dr. Yuxiang Wang, Fudan University, China

Dr. Yuxiang Wang is a Principal Investigator and Ph.D. Supervisor at Fudan University, with an extensive background in molecular biology, oncology, and translational medicine. He earned his Ph.D. in Developmental and Molecular Biology from the Albert Einstein College of Medicine, where he worked under the mentorship of Dr. Jeffrey W. Pollard. Following this, he completed a prestigious research fellowship at Memorial Sloan-Kettering Cancer Center. Dr. Wang has built a strong academic and clinical research portfolio, focusing on gliomas and muscular dystrophy. His work utilizes state-of-the-art preclinical models and CRISPR screening technologies to identify novel therapeutic strategies. Dr. Wang is a recipient of numerous honors, including the MSK Society Scholar Award and Shanghai Leading Overseas Talent recognition. He actively collaborates with clinicians to translate lab discoveries into patient therapies, and his prolific publication record reflects deep scientific rigor and innovation.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Strong Research Track Record
    Dr. Wang has published in top-tier journals such as Nature Communications, Science Advances, Cancer Research, and PNAS. His publication record demonstrates consistency, depth, and high impact across multiple domains including glioma biology and gene therapy.

  2. Dual Research Focus
    He leads research in two distinct yet critical biomedical areas—malignant gliomas and muscular dystrophy. This breadth shows versatility and the ability to manage complex translational programs.

  3. Innovative Techniques
    Dr. Wang effectively applies CRISPR-based genetic screening, preclinical mouse models, and patient-derived cell lines—cutting-edge tools that reflect a forward-thinking, high-tech research approach.

  4. International Research Background
    His training and professional experience in both the U.S. (at Memorial Sloan-Kettering Cancer Center) and China make him a bridge between Western and Eastern biomedical research ecosystems.

  5. Leadership and Mentorship
    Serving as both Principal Investigator and Ph.D. Supervisor, and having been Vice Director at a major clinical research center, Dr. Wang shows strong leadership and a commitment to research training.

  6. Recognitions and Awards
    Prestigious honors such as the Shanghai Leading Overseas Talent, Shanghai Pujiang Talent, and MSK Society Scholar Award (twice) underline peer recognition and scientific excellence.

🛠️ Areas for Improvement:

  1. Clinical Translation and Implementation
    While his preclinical work is strong, more details or evidence on how these findings have progressed toward clinical trials or therapeutic products could further strengthen his translational profile.

  2. Interdisciplinary Collaborations
    Expanding collaborations across fields like bioengineering, immunotherapy, or computational biology may add further value and broaden research impact.

  3. Visibility and Outreach
    Increasing visibility through keynote lectures, patents, or public datasets could enhance his reputation globally and support broader dissemination of his work.

  4. Grants and Funding Portfolio
    While not detailed in the CV, highlighting national/international grant leadership or participation would provide insight into his ability to secure and manage competitive research funding.

🎓 Education:

Dr. Yuxiang Wang holds a distinguished academic background across leading institutions. He completed his Ph.D. in Developmental and Molecular Biology at Albert Einstein College of Medicine (2008–2014), under Dr. Jeffrey W. Pollard, focusing on hormone signaling and uterine biology. Before that, he earned a Master of Sciences from Fudan University (2004–2007), mentored by Dr. Bo Chen, where he explored hormone interactions in reproductive biology. He began his academic journey with a Bachelor of Sciences from the Ocean University of China (2000–2004), majoring in life sciences. This robust education laid the foundation for his later success in cancer biology and translational research. Throughout his academic path, Dr. Wang has demonstrated a consistent focus on the cellular and molecular mechanisms underlying human diseases, especially cancer and genetic disorders. His education, blending rigorous laboratory work and clinical relevance, has uniquely positioned him for cutting-edge biomedical research.

💼 Experience:

Dr. Wang currently serves as Principal Investigator and Ph.D. Supervisor at Fudan University’s School of Basic Medical Sciences (2020–present), where he leads research on gliomas and muscular dystrophy. From 2021 to 2023, he also held the position of Vice Director of the Research Department at the Clinical Research Center of the Affiliated Children’s Hospital of Fudan University, coordinating clinical and translational projects. Prior to his return to China, Dr. Wang worked as a Research Fellow at Memorial Sloan-Kettering Cancer Center (2015–2020), collaborating with Dr. Timothy Chan and Dr. Jason Huse on the molecular basis of brain tumors and treatment resistance. His career bridges fundamental science and clinical applications, with a focus on leveraging genetic models and CRISPR technologies to uncover therapeutic targets. Dr. Wang’s international experience and leadership in high-impact research programs underscore his contributions to biomedical innovation and mentorship.

🏅 Awards and Honors:

Dr. Yuxiang Wang’s outstanding scientific contributions have been recognized through several prestigious awards. He was named a Shanghai Leading Overseas Talent (2020) and a Shanghai Pujiang Talent (2020), highlighting his excellence in international scientific exchange and leadership. While at Memorial Sloan-Kettering Cancer Center, he was twice awarded the MSK Society Scholar Award (2018, 2019), which recognizes exceptional postdoctoral researchers demonstrating strong potential for independent academic careers. These accolades underscore Dr. Wang’s commitment to impactful research, innovation in therapeutic development, and mentorship of young scientists. His ability to translate fundamental research into preclinical and potentially clinical solutions sets him apart as a research leader. These honors reflect peer recognition of both the depth and translational potential of his work in oncology and genetic diseases.

🔬 Research Focus:

Dr. Wang’s research centers on two critical areas: malignant gliomas and muscular dystrophy. In glioma studies, his team investigates the cooperative role of IDH and ATRX mutations using CRISPR-based genetic screening in mouse models to identify synthetic lethal targets—genes whose inhibition can selectively kill tumor cells with specific mutations. This strategy opens doors to novel, mutation-specific therapies with minimal harm to healthy cells. In muscular dystrophy, Dr. Wang focuses on rare genetic mutations affecting glycosylation pathways, utilizing patient-derived cells and animal models to evaluate gene therapy and genome editing solutions. His work seeks not only to understand disease mechanisms but also to bridge the lab-to-clinic gap. A long-term objective is to offer personalized therapies for patients with genetically defined diseases. The integration of molecular biology, translational research, and therapeutic innovation defines his approach.

📚 Publication Top Notes: 

  1. 🧬 Genetically Engineered Mouse Models Unveil Mechanisms and Therapeutic Strategies for GMPPB-Associated Dystroglycanopathy – Nature Communications (under revision)

  2. 🧠 PRICKLE4 Underlies IDH mutant Tumor Resistance against PARP Inhibition – Advanced Science (under revision)

  3. 🧫 Comprehensively characterizing eRNA in immune cells to screen combinational strategies for anti-cancer immunotherapy – Cancer Research (2025)

  4. 🔬 Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas – Science Advances

  5. 🧬 G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma – Nature Communications

  6. 🧪 Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence – Nature Genetics

  7. 🧠 Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling – Nature Communications

  8. 🧬 Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC–ERK1/2–mTOR signaling pathway – PNAS

  9. 🔬 GSK-3β mediates in the progesterone inhibition of estrogen-induced cyclin D2 nuclear localization and cell proliferation in cyclin D1−/− mouse uterine epithelium – FEBS Letters

🧾 Conclusion:

Dr. Yuxiang Wang is a highly deserving candidate for the Best Researcher Award. He demonstrates:

  • A clear and sustained record of scientific excellence,

  • Deep expertise in cancer biology and rare disease genetics,

  • Use of innovative methodologies, and

  • Leadership in both academic and clinical research environments.

His contributions to understanding the molecular basis of gliomas and developing targeted therapies for muscular dystrophy have significant implications for personalized medicine. With continued development in clinical translation and interdisciplinary reach, he stands out as a leader of the next generation of biomedical scientists.

Nabil Alshurafa | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Nabil Alshurafa | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Nabil Alshurafa, Northwestern University, United States

Dr. Nabil Alshurafa is a tenured Associate Professor at Northwestern University’s Feinberg School of Medicine in the Department of Preventive Medicine. A recognized expert in wearable health technology and artificial intelligence, his work bridges computer science and preventive health. With a strong foundation in AI, embedded systems, and wireless health, Dr. Alshurafa is known for pioneering research that transforms how chronic conditions are monitored remotely. He has held prestigious fellowships, serves on influential editorial boards, and contributes actively to global conferences. Passionate about advancing digital health, his interdisciplinary approach fosters innovation in non-invasive health monitoring technologies. His body of work, including over 100 peer-reviewed publications and several with high citation metrics, has significantly shaped mobile and wearable health sensing technologies. Known for collaborative leadership and visionary research, he continues to inspire advancements in AI-driven healthcare.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Innovative Research Focus:
    Dr. Alshurafa is a pioneer in AI-powered wearable health technologies, focusing on practical, non-invasive solutions for chronic disease management, nutrition monitoring, and human activity recognition.

  2. High-Impact Publications:
    His publications are well-cited, including several landmark works like “Deep learning in human activity recognition…” and “NeckSense…” that demonstrate translational value in digital health and mobile sensing.

  3. Prestigious Roles & Affiliations:
    Editorial roles with ACM IMWUT, IEEE, and Nature Digital Medicine, along with organizational roles in IEEE PerCom, underscore his peer recognition and leadership in the field.

  4. Award-Winning Work:
    His research has received Best Paper Awards and has been presented at highly selective conferences with acceptance rates as low as 10–25%.

  5. Interdisciplinary Impact:
    His work intersects computer science, biomedical engineering, and preventive medicine, which is critical in tackling modern healthcare challenges through integrated technology.

  6. Real-World Applications:
    Tools like WANDA, NeckSense, and smart bedsheets reflect direct applicability to patient care and wellness monitoring.

🔧 Areas for Improvement:

  1. Global Visibility:
    While his national recognition is strong, increasing presence in international healthcare policy and standards bodies could elevate his global influence.

  2. Cross-Sector Translation:
    Although academically impactful, more visible industry collaborations or commercial deployments (e.g., FDA-approved products or spin-offs) would enhance the translational credibility of his work.

  3. Public Engagement:
    Expanding outreach through public talks, tech-for-health summits, or popular science channels would help bring his innovations closer to everyday users and clinicians.

  4. Broader Health Diversity Applications:
    More research could be targeted toward underserved populations or global health settings, showcasing scalability and equity of the solutions.

🎓 Education:

Dr. Nabil Alshurafa began his academic journey at the University of California, Los Angeles (UCLA), earning a Bachelor of Science in Computer Science in 2003 with summa cum laude honors. He further pursued graduate education at UCLA, receiving his Master of Science in Computer Science in 2010 with a specialization in Artificial Intelligence. His graduate work laid the foundation for his future contributions in AI-powered healthcare. To gain applied research experience, he joined UCLA’s Wireless Health Institute from 2013 to 2015 as a Wireless Health Fellow. This multidisciplinary training equipped him with expertise in sensor technology, machine learning, and biomedical systems. The academic rigor and technological immersion at UCLA played a pivotal role in shaping his research direction—particularly in remote health monitoring and ubiquitous computing, which have become the hallmarks of his career.

🧪 Experience:

Dr. Alshurafa’s career spans academia, research, and editorial leadership. Since 2022, he has served as a tenured Associate Professor at Northwestern University, where he leads innovative projects in wearable computing and health analytics. His prior fellowship at UCLA’s Wireless Health Institute (2013–2015) was instrumental in honing his applied skills in biomedical sensing and embedded AI systems. He has contributed to multiple high-impact research studies, demonstrating leadership in both collaborative and solo research environments. Beyond teaching and mentoring, Dr. Alshurafa plays a key role in global health informatics networks, serving on editorial boards such as ACM IMWUT, PLOS ONE, and Nature Digital Medicine. His industry engagement is evident from his organizational roles at IEEE PerCom, where he has served as Industry Track Chair and Sponsorship Chair. These roles reflect his commitment to bridging academia with real-world technological solutions in preventive and mobile health.

🏅 Awards and Honors:

Dr. Alshurafa has been recognized for his academic excellence and leadership in health informatics. He is a member of ACM and has held key editorial positions in ACM Interactive, Mobile, Wearable, and Ubiquitous Computing (IMWUT). His roles with IEEE PerCom as Industry Track Chair (2018) and Sponsorship Chair (2019) highlight his prominence in mobile health computing communities. His research has been distinguished with honors such as Best Paper Award at the IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN). Additionally, several of his publications have been widely cited, underscoring his influence in the field. His editorial board memberships across journals like PLOS ONE, IEEE Biomedical Health Informatics, and Nature Digital Medicine showcase peer recognition of his expertise. Collectively, these accolades reflect a sustained and impactful contribution to health technologies and interdisciplinary research.

🔬 Research Focus:

Dr. Nabil Alshurafa’s research centers on AI-driven wearable technologies for remote health monitoring and behavioral health sensing. He focuses on building unobtrusive, sensor-based systems that can track physiological signals and behaviors such as eating, physical activity, and sleep in real-world environments. By integrating machine learning with low-power embedded systems, he develops scalable tools for chronic disease management, including heart failure and diabetes. His work leverages signal processing, stochastic modeling, and deep learning to transform raw sensor data into clinically actionable insights. A key contribution is his development of NeckSense, a multi-sensor necklace for detecting eating behaviors, and WANDA, an end-to-end health monitoring system. Through interdisciplinary collaborations, he also explores nutrition sensing, exergaming, and rehabilitation technologies. His ultimate goal is to enable proactive, personalized healthcare solutions that reduce the burden on patients and providers alike while enhancing wellness through smart, wearable ecosystems.

📚 Publications Top Notes: 

  1. 🕷️ Artificial Spider: Eight-legged arachnid and autonomous learning of locomotion

  2. ❤️ WANDA: An end-to-end remote health monitoring and analytics system for heart failure patients

  3. 🔋 Opportunistic hierarchical classification for power optimization in wearable movement monitoring systems

  4. 🩺 Dynamic task optimization in remote diabetes monitoring systems

  5. 😴 Inconspicuous on-bed respiratory rate monitoring

  6. 🛏️ A dense pressure sensitive bedsheet design for unobtrusive sleep posture monitoring

  7. 👕 Improving accuracy in E-Textiles as a platform for pervasive sensing

  8. 🚶 Robust human intensity-varying activity recognition using Stochastic Approximation in wearable sensors

  9. 🏋️ On-bed monitoring for range of motion exercises with a pressure sensitive bedsheet

  10. 🎮 MET calculations from on-body accelerometers for exergaming movements

🧾 Conclusion:

Dr. Nabil Alshurafa stands out as an exceptionally qualified candidate for the Best Researcher Award. His work embodies the intersection of innovation, application, and societal benefit. He has demonstrated leadership in both research productivity and community contribution, with a track record that is not only prolific but also highly relevant to the future of preventive and digital healthcare. His pioneering systems in wearable health monitoring have the potential to transform how health is tracked and managed in real time, offering personalized insights and clinical utility.

Haiping Zhang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Haiping Zhang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Haiping Zhang, anhui agricultural university, China

Prof. Haiping Zhang is a distinguished plant molecular biologist at the College of Agronomy, Anhui Agricultural University, China. He is affiliated with the Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, under the Ministry of Agriculture and Rural Affairs. With a strong focus on improving wheat productivity and resilience, Prof. Zhang has made significant contributions to understanding gene regulation mechanisms in seed dormancy, germination, and yield traits. His recent work investigates transcription factors and their impact on hormone biosynthesis, especially gibberellin and ethylene signaling. Widely published in high-impact journals, his research stands at the intersection of molecular genetics and applied agronomy, aiming to develop cultivars with improved yield stability and adaptability. Prof. Zhang is recognized for his leadership in collaborative research and his commitment to training young scientists in advanced genetic and biotechnological tools for sustainable wheat improvement.

Publication Profile: 

Scopus

Strengths for the Award:

  1. 🔬 High-Impact Research in Wheat Genetics
    Prof. Zhang’s research addresses essential topics in crop science, particularly seed dormancy and gibberellin regulation, which are critical for yield stability and pre-harvest sprouting resistance in wheat. His studies contribute directly to improving food security and crop resilience.

  2. 📚 Recent Publications in Reputed Journals
    In 2024–2025, he has published in prestigious, peer-reviewed journals such as:

    • International Journal of Biological Macromolecules

    • Environmental and Experimental Botany

    • BMC Plant Biology
      These are respected outlets for plant biology and biotechnology research.

  3. 🎯 Focused and Coherent Research Theme
    His work follows a consistent and meaningful trajectory, exploring transcription factors (e.g., TaERF-2A, TaNAC018-7D) and their regulation of GA biosynthesis genes, directly tied to agronomically important traits.

  4. 🧩 Integrative Methodology
    Prof. Zhang uses an integrative approach, combining molecular biology, genomics (e.g., GWAS), and functional gene analysis to achieve both mechanistic insights and breeding applications.

  5. 🇨🇳 National Importance and Institutional Role
    As a professor at a leading Chinese agricultural university and a core contributor to a Ministry of Agriculture Key Laboratory, his research has both scientific and policy-level relevance in China.

⚙️ Areas for Improvement:

  1. 🌍 Broader International Collaboration
    While his work is impactful, future projects could benefit from expanding global collaborations—particularly with wheat research groups in North America, Europe, and South Asia—to raise visibility and enable joint innovation.

  2. 📣 Visibility and Science Communication
    Prof. Zhang could enhance his global research profile by:

    • Presenting at international conferences

    • Engaging in more open science or outreach platforms

    • Publishing review articles or perspective pieces

  3. 📊 Citations and Impact Tracking
    As the current papers have 0 citations (likely due to recency), tracking future impact (via citation metrics or media attention) will further support long-term recognition.

🎓 Education:

Prof. Haiping Zhang earned his undergraduate degree in Agronomy from Anhui Agricultural University, laying a solid foundation in crop sciences and plant physiology. He pursued his Master’s in Crop Genetics and Breeding, where he developed a keen interest in molecular plant biology. Driven by curiosity in genetic regulation, he obtained a Ph.D. in Plant Molecular Genetics, focusing on hormone signaling and gene expression in cereal crops. His doctoral research emphasized gene-function analysis related to stress tolerance and developmental pathways. To deepen his expertise, Prof. Zhang has also participated in national and international training programs, including advanced workshops in genome editing, transcriptomics, and plant phenotyping. His academic journey reflects a deep commitment to interdisciplinary learning, combining classical breeding principles with cutting-edge molecular tools. This strong educational background has equipped him with the knowledge and skills to tackle complex challenges in wheat improvement and to lead high-impact research projects across China and beyond.

🧪 Experience:

Prof. Haiping Zhang currently serves as a senior professor and principal investigator at the College of Agronomy, Anhui Agricultural University. With over 20 years of experience in plant science, he has led numerous research projects funded by the Chinese Ministry of Agriculture and the National Natural Science Foundation. He is a core member of the Key Laboratory of Wheat Biology and Genetic Improvement, where he mentors graduate students and postdocs in functional genomics and molecular breeding. Prof. Zhang’s expertise spans transcription factor analysis, gene editing (e.g., CRISPR/Cas), and genome-wide association studies (GWAS). He actively collaborates with national wheat breeding centers and has served on editorial boards of agricultural science journals. He is frequently invited as a reviewer and speaker at plant biotechnology conferences. His professional experience reflects a rare blend of teaching, research, and applied innovation in one of the world’s most critical food crops—wheat.

🔬 Research Focus:

Prof. Haiping Zhang’s research centers on molecular regulation of seed dormancy, germination, and yield traits in wheat, with a strong emphasis on plant hormone biosynthesis and transcription factor networks. His work integrates ethylene- and gibberellin-responsive gene pathways to elucidate the mechanisms by which specific genes such as TaGA2ox2-3B and TaGA7ox-A1 influence critical agronomic traits. Prof. Zhang applies advanced tools such as RNA-seq, CRISPR gene editing, and GWAS to dissect regulatory pathways at the genomic level. He also focuses on identifying key genetic variants associated with desirable traits across diverse wheat populations. His aim is to provide molecular targets for wheat breeders seeking to enhance seed viability, resistance to pre-harvest sprouting, and yield stability under varying environmental conditions. By linking basic gene function with applied breeding, his research contributes to China’s national food security strategy and offers global relevance in sustainable crop improvement.

📚 Publication Top Notes:

  1. 📘 The ethylene responsive factor TaERF-2A activates gibberellin 2-oxidase gene TaGA2ox2-3B expression to enhance seed dormancy in wheatInternational Journal of Biological Macromolecules, 2025

  2. 🌱 A wheat NAC transcription factor, TaNAC018-7D, regulates seed dormancy and germination by binding to the GA biosynthesis gene TaGA7ox-A1Environmental and Experimental Botany, 2025

  3. 🌾 Single- and multi-locus genome-wide association study reveals genomic regions of thirteen yield-related traits in common wheatBMC Plant Biology, 2024

🔚 Conclusion:

Prof. Haiping Zhang is a highly suitable candidate for the Best Researcher Award. His research is timely, targeted, and methodologically sound—addressing key genetic levers for wheat yield and dormancy control. His publications reflect scientific maturity and innovation, and his institutional role enhances his national significance. With expanded outreach and collaborations, his influence could grow further, both in China and internationally.