Zhijie Chang | Extracellular Vesicles | Cell Communication Award

Prof. Zhijie Chang | Extracellular Vesicles | Cell Communication Award

Prof. Zhijie Chang, Tsinghua University, China

Professor Zhijie Chang is a distinguished molecular biologist and tenured professor at the School of Medicine and School of Life Sciences, Tsinghua University, Beijing. His research spans cancer signaling pathways, extracellular vesicle-mediated communication, and stem cell therapy, especially in lung diseases and tumor biology. A seasoned scholar, Dr. Chang earned his Ph.D. in Animal Genetics and Breeding before undertaking postdoctoral training at the University of Alabama at Birmingham. He is currently a respected editor of FEBS Letters and a leader in molecular oncology in China. His recent works highlight the role of CREPT, Smad signaling, and macrophage modulation in cancer and fibrosis. Through decades of academic and translational research, he has significantly advanced our understanding of cell communication in disease contexts. With an extensive publication record in top journals, Dr. Chang remains a leading figure in Asia’s biomedical research landscape.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Pioneering Contributions in Cell Communication
    Prof. Chang’s research on CREPT, Smad proteins, NF-κB/Nrf2, and BMP signaling has directly advanced the understanding of how intracellular and intercellular communication impacts disease progression, especially in cancer and pulmonary disorders.

  2. High-Impact Publications
    He has numerous peer-reviewed articles in prestigious journals such as Nature Communications, Molecular Cancer, Signal Transduction and Targeted Therapy, and Journal of Biological Chemistry, many of which explore molecular and cellular communication in cancer and tissue repair.

  3. Translational Focus
    His integration of mesenchymal stem cell therapy, extracellular vesicles, and gene therapy reflects a strong translational approach, applying basic science to therapeutic innovations—a critical criterion for this award.

  4. Scientific Leadership and Mentorship
    As a tenured professor at Tsinghua University and editor at FEBS Letters, Prof. Chang is a leader in biomedical research and scientific dissemination, actively contributing to academic growth and mentorship.

⚠️ Areas for Improvement:

  1. More Global Recognition
    While well-known in Chinese biomedical circles and respected internationally through publications, increased involvement in global consortia or leadership in international collaborations would further solidify his global scientific footprint.

  2. Public/Community Science Engagement
    Enhancing visibility through public lectures, science communication platforms, or policy advisory roles could broaden the societal impact of his work.

  3. Data-Sharing and Open Science Practices
    Encouraging or highlighting open-access datasets, repositories, or reproducible workflows would align with best practices in modern cell communication research.

🎓 Education:

Professor Zhijie Chang began his academic journey at Northwestern Agricultural University in Yangling, China, where he earned his B.Sc. (1978–1982) in Animal Science. He then continued at the same institution to obtain a combined M.Sc. and Ph.D. in Animal Genetics and Breeding from 1982 to 1989. His graduate research laid the foundation for his future in molecular biology, signaling studies, and genetics. Seeking international exposure and advanced training, he undertook postdoctoral research from March 1997 to October 1998 at the University of Alabama at Birmingham, USA, in the Department of Pathology. There, he specialized in the BMP signaling pathway, gaining expertise in molecular signaling processes critical to cell communication. This blend of domestic and international education has equipped Dr. Chang with both the technical rigor and global perspective needed to pioneer breakthroughs in biomedical science.

💼 Professional Experience:

Professor Zhijie Chang has held a full professorship at Tsinghua University’s School of Medicine since June 2005, where he investigates cancer-related signaling mechanisms. Before this, he completed postdoctoral research at the University of Alabama at Birmingham, focusing on BMP signaling, which strengthened his understanding of developmental and pathological cell signaling. Over the years, he has built a highly productive research lab, contributed extensively to translational medicine, and trained numerous doctoral and postdoctoral researchers. As an editor of FEBS Letters, he also contributes to scientific publishing and peer-review processes. His roles across academia, research, and editorial boards mark him as a multifaceted scientist whose work bridges laboratory insights and therapeutic applications. His collaborative style and consistent research funding reflect his leadership and innovation in molecular oncology and regenerative medicine.

🏅 Awards and Honors:

Professor Zhijie Chang has been recognized multiple times by the Chinese Cell Biology Society for his high-impact publications. In 2003, he received the First Merit Paper Award for his groundbreaking research on hSef-mediated MAPK signaling inhibition in J. Biol. Chem. In 2005, he earned the Third Merit Paper Award for his study on CHIP-mediated degradation of Smad proteins, published in Mol. Cell. Biol.. These awards underscore his early and sustained contributions to deciphering molecular signaling pathways involved in cell communication, differentiation, and oncogenesis. His recent recognitions include publications in top-tier journals like Nature Communications, Molecular Cancer, and Signal Transduction and Targeted Therapy, indicating the continued relevance and innovation of his work. His role as an editor for FEBS Letters further highlights his stature in the field and dedication to advancing cell biology research at national and international levels.

🔬 Research Focus:

Dr. Zhijie Chang’s research primarily investigates cellular communication in cancer and inflammatory diseases, with a focus on CREPT, Smad proteins, and extracellular vesicles. His work dissects how tumor-derived signals modulate the tumor microenvironment, metastasis, and immune cell behavior. He has made critical discoveries regarding the role of CREPT in chromatin looping and transcriptional regulation, especially in triple-negative breast cancer. In pulmonary fibrosis models, he has shown how umbilical cord-derived mesenchymal stem cells (MSCs) modulate macrophage activity via secreted vesicles. Another major area is his exploration of Smurf1, PDK1–Akt, and JAK/STAT3 signaling axes, targeting them for therapeutic intervention in various cancers. His translational approach integrates gene therapy, stem cell-based treatments, and protein signaling studies, bridging basic and clinical sciences. Through collaborative and interdisciplinary methods, Dr. Chang contributes valuable insights into how cells communicate and respond in disease settings.

📚 Publication Top Notes:

  1. 📘 CREPT is required for the metastasis of triple-negative breast cancer through a co-operational-chromatin loop-based gene regulation

  2. 🧪 Clinical investigation on nebulized human umbilical cord MSC-derived extracellular vesicles for pulmonary fibrosis treatment

  3. 🧬 Gene Therapy with Enterovirus 3C Protease: A Promising Strategy for Various Solid Tumors

  4. 🌬 Umbilical cord-derived mesenchymal stem cells preferentially modulate macrophages to alleviate pulmonary fibrosis

  5. CREPT upregulates the antioxidant genes via activation of NF-κB/Nrf2 in acute liver injury

  6. 🔁 An oncoprotein CREPT functions as a co-factor in MYC-driven transformation and tumor growth

  7. 🎯 Targeting Smurf1 to block PDK1–Akt signaling in KRAS-mutated colorectal cancer

  8. 📤 Microenvironment-induced CREPT expression by cancer-derived small extracellular vesicles primes field cancerization

  9. 🔋 Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine

  10. 🍄 Lachnochromonin, a fungal metabolite from Lachnum virgineum, inhibits cell growth and promotes apoptosis in tumor cells through JAK/STAT3 signaling

🧾 Conclusion:

Professor Zhijie Chang exhibits a robust and well-established career built on investigating mechanisms of cell signaling, tumor microenvironment dynamics, and intercellular communication. His scientific rigor, translational impact, and leadership in the field of cell communication make him an outstanding candidate for the Research for Cell Communication Award. Addressing some broader outreach and open science practices could further elevate his profile, but his contributions to foundational and applied research in this domain are already exemplary.

Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada, Osaka Metropolitan University, Japan

Naoki Harada is an Associate Professor at Osaka Metropolitan University, Japan, with extensive expertise in molecular biology, biochemistry, endocrinology, and nutrition. He earned his Ph.D. in Life Sciences from Osaka Prefecture University in 2007. Over the past two decades, Harada has made significant contributions to understanding the physiological and biochemical mechanisms underpinning metabolic diseases, particularly type 2 diabetes. His research, characterized by high citation impact (H-index of 25), centers on pancreatic β-cell function and metabolic regulation. He has published 77 peer-reviewed articles and holds a patent related to therapeutic interventions. Harada has collaborated with leading scientists like Professors Hiroshi Inui and Ryoichi Yamaji, strengthening his academic footprint in both national and international circles. A member of multiple scientific societies, Harada continues to influence the field through impactful research, industry collaboration, and educational leadership.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Consistent Research Output

    • 77 peer-reviewed publications in reputable journals (SCI, Scopus).

    • Recent high-impact studies published in Journal of Biological Chemistry, Scientific Reports, and FASEB BioAdvances.

    • Active research profile with an H-index of 25 and over 1,785 citations.

  2. Innovative Scientific Contributions

    • Identified REDD2 as a novel therapeutic target for type 2 diabetes—bridging basic research with translational medicine.

    • Works across disciplines such as molecular biology, endocrinology, and nutritional biochemistry.

  3. Project Leadership & Industry Engagement

    • Led or participated in 14 major research projects.

    • 5 consultancy/industry-based projects, reflecting application-oriented research.

  4. Academic and Collaborative Network

    • Strong academic collaborations with Professors Hiroshi Inui and Ryoichi Yamaji.

    • Member of prestigious scientific societies (e.g., Japanese Biochemical Society, Japan Society of Nutrition and Food Science).

  5. Scientific Versatility

    • Contributions span fundamental mechanisms (e.g., oxidative stress, insulin signaling) to dietary interventions (e.g., mogrol, oleamide).

    • Demonstrates ability to bridge molecular insights with systemic physiological outcomes.

⚙️ Areas for Improvement:

  1. International Visibility and Engagement

    • Expanding participation in international conferences and editorial boards could elevate his global scientific standing.

    • Pursuing cross-border collaborations would further enrich the translational value of his work.

  2. Commercialization and Patent Activity

    • While one patent is noted, increased focus on intellectual property development and biomedical commercialization could further validate his applied research strength.

  3. Outreach and Communication

    • More active public science communication (e.g., webinars, policy advocacy, media coverage) would amplify the societal impact of his research.

🎓 Education:

Naoki Harada received his Ph.D. in Life Sciences from Osaka Prefecture University, Osaka, Japan, in September 2007. His doctoral studies laid the foundation for his interdisciplinary research in molecular biology, biochemistry, and endocrinology. Harada’s academic path was driven by a keen interest in the cellular and molecular mechanisms underlying metabolic regulation, particularly in relation to glucose homeostasis and pancreatic function. His education provided him with a solid grounding in experimental techniques, critical thinking, and scientific communication, which have become hallmarks of his later work. The institution, known for excellence in biosciences, enabled Harada to cultivate a strong research acumen. His academic training was complemented by exposure to applied research, linking basic science with clinical and nutritional applications—an approach that he has continued to emphasize throughout his career. His strong educational background plays a pivotal role in his current research endeavors and professional development.

💼 Experience:

Dr. Naoki Harada began his academic career in 2008 as an Assistant Professor at the Graduate School of Life and Environmental Sciences, Osaka Prefecture University. He was promoted to Lecturer in 2015, and subsequently to Associate Professor in 2019. Since 2022, he has served as Associate Professor at the Graduate School of Agriculture, Osaka Metropolitan University. Harada has consistently combined teaching with intensive research, mentoring graduate students while advancing his lab’s focus on metabolic diseases and endocrine physiology. His experience includes leading 14 research projects, consulting on 5 industry-linked nutrition initiatives, and co-authoring over 75 scientific papers. His experience reflects a blend of academic leadership, scientific innovation, and multidisciplinary collaboration. Notably, Harada’s role in identifying REDD2 as a therapeutic target exemplifies his contribution to translational science. He maintains strong academic partnerships and actively contributes to several professional societies, making him a respected figure in Japan’s scientific community.

🔬 Research Focus:

Naoki Harada’s research is at the intersection of molecular biology, endocrinology, and nutrition science, with a particular focus on pancreatic β-cell physiology and glucose metabolism. He investigates how oxidative stress, hormonal signals, and metabolic regulators influence insulin secretion and β-cell viability. One of his pivotal contributions is identifying the REDD2 gene as a negative regulator of β-cell function, offering novel therapeutic targets for type 2 diabetes mellitus. His studies also explore nutrient-sensing pathways, G-protein-coupled receptors, and hormonal modulation of energy metabolism. Harada’s recent work delves into the effects of dietary compounds like mogrol and oleamide on metabolic health, linking molecular mechanisms to real-world dietary interventions. His ability to bridge bench science with clinical and nutritional applications sets his research apart. Through collaborations with leading experts and high-impact publications, Harada continues to advance knowledge in the prevention and treatment of metabolic disorders.

📚 Publications Top Notes:

  • 🧬 REDD2 confers pancreatic β-cell dysfunction in high-fat diet-fed miceJournal of Biological Chemistry, 2025

  • 🦷 Androgens suppress ST3GAL1/4, modulating mucin glycosylation and microbiota in miceBioscience, Biotechnology, and Biochemistry, 2025

  • 🍟 CRTC1 in MC4R cells regulates dietary fat intakeFASEB BioAdvances, 2024

  • 💉 Insulin reduces ER stress-induced apoptosis in INS-1 β-cellsPhysiological Reports, 2024

  • 🍬 Mogrol activates GPBAR1 and insulin secretion, alleviates hyperglycemiaScientific Reports, 2024

  • 🔥 Androgen receptor suppresses β-adrenoceptor-mediated thermogenesisJournal of Biological Chemistry, 2022

  • 🏥 Age-dependent sex differences in NAFLD in TSOD and db/db micePLOS ONE, 2022

  • 🐭 Dietary oleamide attenuates obesity in caged miceBioscience, Biotechnology, and Biochemistry, 2022

  • 🌿 Curcumin targets GPR55 receptornpj Science of Food, 2022

  • 💪 Oleamide rescues muscle atrophy in small-caged miceBritish Journal of Nutrition, 2021

🧾 Conclusion:

Dr. Naoki Harada demonstrates a clear trajectory of research excellence, grounded in scientific rigor and driven by impactful biomedical questions. His ability to identify molecular mechanisms (e.g., REDD2’s role in β-cell dysfunction) and propose therapeutic directions sets him apart as a leading academic in metabolic disease research. His publication record, industry collaborations, and professional memberships underscore a mature and influential academic career.

Marija Gjorgoska | Cancer Cell Biology | Best Researcher Award

Mrs. Marija Gjorgoska | Cancer Cell Biology | Best Researcher Award

Mrs. Marija Gjorgoska | Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana | Slovenia

Marija Gjorgoska is a dedicated biomedical researcher and teaching assistant at the Faculty of Medicine, University of Ljubljana, Slovenia. With a strong background in biochemistry, molecular biology, and bioinformatics, she has contributed significantly to cancer research, focusing on steroid hormone signaling in gynecological cancers. Her scientific work combines analytical expertise in LC-MS/MS with a solid foundation in molecular biology and statistical analysis using R programming. Marija is passionate about advancing clinical diagnostics and cancer treatment through high-precision biomolecular profiling. Her academic journey reflects international exposure through internships in the UK and Macedonia. She is known for her collaborative spirit and commitment to scientific rigor, which has led to multiple high-impact publications. Marija continues to mentor students and contribute to the academic community through her teaching role, making her a rising figure in molecular oncology research.

publication profile:

scopus

Strengths:

  1. High Research Productivity 📈
    Marija Gjorgoska has authored or co-authored 10 peer-reviewed publications in high-impact journals such as Progress in Lipid Research (IF 14.0), Trends in Endocrinology and Metabolism (IF 11.4), and Cancers. Her work shows consistent scientific output, often with first or shared first authorship.

  2. Cutting-Edge Technical Expertise 🔬
    She demonstrates advanced proficiency in LC-MS/MS method development, multi-steroid profiling, and bioinformatics (R programming). This makes her an expert in translational hormone research and biomarker discovery.

  3. Clinical Relevance and Innovation ⚕️
    Her research addresses urgent clinical challenges like endometrial cancer diagnosis and ovarian cancer drug resistance, applying modern analytical techniques combined with machine learning, which positions her at the forefront of personalized medicine.

  4. Recognition and Collaboration 🤝
    She has been awarded prestigious grants (e.g., Society of Endocrinology, UK), collaborated internationally (UK, Macedonia), and contributes to academia as a teaching assistant—all signs of an emerging research leader.

  5. Interdisciplinary Impact 🌐
    Marija effectively integrates molecular biology, biochemistry, analytical chemistry, and computational biology—indicative of her versatility and broad scientific impact.

Areas for Improvement:

  1. Independent Research Leadership
    While she has made substantial contributions as a junior and co-investigator, future work could benefit from establishing herself as a principal investigator or project leader, including securing her own research funding.

  2. Diversification of Research Themes
    Her focus has been predominantly on hormone-related cancers. Expanding into other disease models or mechanisms could broaden her impact and create new collaborative opportunities.

  3. Public Engagement and Outreach
    Enhancing her visibility through conference presentations, science communication, or community health initiatives would further solidify her standing as a leader and advocate for biomedical research.

Education :

Marija Gjorgoska is currently enrolled in a doctoral program in Biomedicine, specializing in Biochemistry and Molecular Biology at the University of Ljubljana. Her academic foundation includes a Master’s degree in Molecular Biology (2018–2021) from the same university, completed with an outstanding GPA of 9.52/10. She also gained international experience through a short-term internship at the University of Birmingham, UK, in 2023, focusing on advanced LC-MS/MS techniques for clinical sample analysis. Earlier in her academic career, she completed a long-term internship at the Research Center for Genetic Engineering and Biotechnology in Skopje, Macedonia (2017), where she worked on genetic diagnostics involving haemoglobinopathies, HPV, HBV, and HCV detection. Her education has consistently emphasized both theoretical knowledge and hands-on laboratory skills, particularly in analytical chemistry, molecular biology, and bioinformatics, all of which shape her current research endeavors in cancer diagnostics and hormonal regulation.

Experience:

Marija Gjorgoska has been actively engaged in research since 2020 as a Research Assistant at the Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana. Her core responsibilities include developing and validating LC-MS/MS analytical methods, conducting proteomic and genetic analyses of cancer tissues, and performing bioinformatic evaluations using R programming. In October 2024, she also began serving as a Teaching Assistant for the course “Principles of Biochemistry,” demonstrating her commitment to education and mentorship. Marija’s prior internships have equipped her with valuable skills in prenatal and infectious disease diagnostics. Her research contributions span experimental planning, scientific writing, and instrument maintenance, establishing her as a versatile scientist. Her collaborative projects with international researchers and clinicians further underline her strength in translational biomedical research. This combination of teaching, laboratory, and analytical expertise supports her growing influence in molecular oncology.

Awards and Honors:

Marija Gjorgoska has been recognized for both academic and research excellence. In 2023, she was awarded the Practical Skills Grant by the Society of Endocrinology, UK, enabling her to undergo advanced training in LC-MS/MS at the University of Birmingham. Earlier, in 2021, she received the Krka Recognition with Special Praise for her Master’s thesis, highlighting her early promise as a researcher in molecular biology. Her scientific publications have appeared in top-tier journals such as Progress in Lipid Research and Trends in Endocrinology and Metabolism, some with impact factors exceeding 14.0. Notably, she earned shared first co-authorship in Methods in Enzymology for her work on enzymatic assay development. These accolades reflect her technical excellence, originality, and scientific contributions in the field of steroid metabolism and gynecological cancers. Marija’s achievements distinguish her as a young researcher with significant impact and high potential for further contributions to science and medicine.

Research Focus :

Marija Gjorgoska’s research focuses on the role of steroid hormones in the development and progression of gynecological cancers, particularly endometrial and ovarian cancers. Her work integrates analytical chemistry (LC-MS/MS), bioinformatics, and molecular biology to uncover diagnostic and prognostic biomarkers. She has developed multi-steroid profiling techniques to differentiate between normal and cancerous tissues, aiding early diagnosis. Marija’s studies also address the pre-receptor regulation of androgenic and estrogenic hormones, exploring their signaling dynamics at the tissue level. Using tools such as Mendelian randomization, she investigates genetic influences on hormone-related disease risk. Her interdisciplinary approach combines advanced mass spectrometry, statistical modeling, and clinical collaboration to translate bench science into meaningful medical applications. Through high-impact publications, she contributes to understanding hormone metabolism in cancer microenvironments, with the goal of informing targeted therapies and overcoming drug resistance. Her work is critical for advancing personalized medicine in hormone-driven malignancies.

Publications Top Notes:

  1. 📘 From fallopian tube epithelium to high-grade serous ovarian cancer: A single-cell resolution review of sex steroid hormone signalingProgress in Lipid Research, 2024

  2. 📘 Integration of androgen hormones in endometrial cancer biologyTrends in Endocrinology and Metabolism, 2022

  3. 📘 Steroid sulfatase and sulfotransferases in gynecological cancers: current status and perspectivesEssays in Biochemistry, 2024

  4. 📘 Estrogens and the Schrödinger’s cat in the ovarian tumor microenvironmentCancers, 2021

  5. 📘 Multi-Steroid Profiling and Machine Learning Reveal Androgens as Biomarkers for Endometrial CancerCancers, 2025

  6. 📘 Simultaneous measurement of 17 endogenous steroid hormones by LC-MS/MSJ. of Steroid Biochemistry and Molecular Biology, 2024

  7. 📘 11-oxyandrogens in normal vs. cancerous endometriumFrontiers in Endocrinology, 2024

  8. 📘 Targeting estrogen metabolism to overcome platinum resistance in ovarian cancerBiomedicine & Pharmacotherapy, 2024

  9. 📘 Effect of androgens on risk of endometriosis sub-phenotypes and ovarian neoplasmsJ. of Steroid Biochemistry and Molecular Biology, 2024

  10. 📘 Enzymatic assays for 17β-HSD types 1 and 2 using mass spectrometryMethods in Enzymology, 2023

Conclusion:

Marija Gjorgoska is a highly promising early-career researcher with a strong and growing international publication record, deep technical expertise in analytical biochemistry, and a clear focus on clinically relevant research. Her integration of hormonal pathway analysis with state-of-the-art analytical methods has already contributed valuable insights to the field of gynecological oncology. She has the academic rigor, curiosity, and collaborative drive essential for impactful science.

In my opinion, she is a highly suitable candidate for the Best Researcher Award. Continued mentorship and support toward independent research leadership will elevate her even further in the years to come.

Xiaozhi Liu | Cell-Cell Communication | Best Researcher Award

Prof. Xiaozhi Liu | Cell-Cell Communication | Best Researcher Award

Prof. Xiaozhi Liu, Tianjin Fifth Central Hospital, China

Dr. Xiaozhi Liu, born on December 10, 1979, is a distinguished medical researcher and Director of the Central Laboratory at Tianjin Fifth Central Hospital. With over two decades of experience in neurosurgery and translational research, he has made substantial contributions in neural regeneration and SUMOylation-related mechanisms. Dr. Liu is a prolific academic with numerous publications in top-tier journals and active involvement in multiple National Natural Science Foundation of China projects. His international exposure as a visiting scholar at Duke University Medical Center (2012–2013) enhanced his global scientific perspective. Dedicated to neuroscience innovation, he combines advanced molecular biology techniques with clinical applications to improve patient outcomes in neurological disorders. Recognized for his scientific rigor, leadership, and innovative research approach, Dr. Liu is an exceptional candidate for the Best Researcher Award.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Innovative Research Focus: Dr. Liu’s expertise in SUMOylation, neural regeneration, and gene regulation presents a cutting-edge approach to treating cerebral ischemia, glioblastoma, and cardiac injury.

  2. Strong Grant History: He has led multiple prestigious National Natural Science Foundation of China (NSFC) projects as both PI and co-investigator, with substantial funding and scientific merit.

  3. Impressive Publication Record: Over 15 peer-reviewed publications in impactful journals (Stroke, Aging, Neuroscience, etc.), with topics ranging from brain ischemia to cardiac injury, illustrate interdisciplinary strength.

  4. Leadership Role: As Director of the Central Laboratory, he demonstrates strong research management, mentoring, and institutional collaboration capabilities.

  5. Global Perspective: His time as a visiting scholar at Duke University Medical Center enhanced his academic and cross-cultural research competencies.

  6. Clinical & Basic Science Integration: Combines bench-to-bedside applications, especially in neurosurgery and molecular biology.

⚠️ Areas for Improvement:

  1. International Outreach: While academically robust in China, Dr. Liu could benefit from increased global collaboration, co-authorship with foreign institutes, or keynote speaking roles at international conferences.

  2. Patent & Innovation Translation: There’s potential to strengthen the translational commercialization of his research findings through patents or biotech partnerships.

  3. Public Engagement: Increasing public science communication and media presence could enhance his visibility in broader scientific and policy-making communities.

🎓 Education Background:

Dr. Xiaozhi Liu began his academic journey at Zhangjiakou Medical College, completing a degree in Clinical Medicine in 2003. He pursued his passion for neurosurgery at Tianjin Medical University, where he earned a master’s degree in 2007 and later a Ph.D. in 2017. His academic pursuit extended internationally with a one-year research fellowship at the Duke University Medical Center in the United States (2012–2013), where he specialized in neurosurgical studies. Throughout his academic training, Dr. Liu has demonstrated a deep commitment to the integration of clinical knowledge with cutting-edge biomedical research, particularly in the areas of neuroregeneration and molecular neuroscience. His academic background laid a strong foundation for his contributions to neurobiology, clinical translation, and innovative research in SUMOylation, gene expression regulation, and therapeutic interventions for neurological diseases.

🏥 Work Experience:

Dr. Liu began his clinical career as a Neurosurgery Resident at the Affiliated Hospital of the Chinese People’s Armed Police Force Medical College from 2007 to 2009. He then served as a physician in the Department of Neurosurgery at Tianjin Fifth Central Hospital until 2012. Since December 2013, he has been serving as the Director of the Central Laboratory at the same institution. In this role, he has spearheaded major research initiatives and supervised clinical translational projects in neurobiology. His leadership has been instrumental in establishing a multidisciplinary research environment that bridges clinical neuroscience and molecular biology. His extensive experience in both hospital-based patient care and laboratory-based scientific discovery places him at the intersection of clinical excellence and research innovation. His career trajectory reflects an unwavering commitment to advancing medical science and improving patient care.

🔬 Research Focus:

Dr. Xiaozhi Liu’s research centers on the molecular mechanisms of neuroregeneration, focusing particularly on SUMOylation, gene expression modulation, and neural stem cell therapy. His work explores the protective roles of SUMO-modified proteins in ischemic stroke, glioblastoma suppression, and spinal cord injury recovery. Dr. Liu investigates the role of small RNAs, mitochondrial dynamics, and oxidative stress in neurodegenerative conditions and cardiovascular diseases. His approach combines genomic, proteomic, and cell-based assays to understand the therapeutic potential of modulating cellular stress responses. Ongoing collaborations on stem cell transplantation, chromatin remodeling in cardiac diseases, and translational neuroscience further exemplify his dedication to interdisciplinary science. With an extensive list of national research grants and peer-reviewed publications, Dr. Liu remains at the forefront of biomedical innovations aimed at reversing tissue damage and enhancing neuroplasticity.

📚 Publication Top Notes:

  1. 🧠 Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in transgenic miceStroke, 2014

  2. 🧬 Interactions of connexin 43 and aquaporin-4 in glioma-induced brain edemaMol Med Rep, 2015

  3. 🧠 Neuron-specific SUMO knockdown worsens outcome after brain ischemia in miceNeuroscience, 2017

  4. 🦴 Silencing Ubc9 suppresses osteosarcoma and enhances chemosensitivity via Connexin 43 SUMOylationInt J Oncol, 2018

  5. ❤️ SERCA2a: a key protein in the calcium cycle of heart failureHeart Fail Rev, 2019

  6. 💓 Zinc-induced SUMOylation of Drp1 protects heart from ischemia-reperfusion injuryOxid Med Cell Longev, 2019

  7. 🧠 Genetic polymorphisms and transcription in intracranial aneurysm involving NOTCH3Aging (Albany NY), 2019

  8. 🧪 Saikosaponin-d inhibits hepatoma and enhances chemosensitivity via SENP5-dependent Gli1 SUMOylationFront Pharmacol, 2019

  9. 🧬 Parkin and Nrf2 prevent apoptosis in endplate chondrocytes via mitophagyLife Sci, 2019

  10. 🧫 MitoQ protects against disc degeneration by targeting mitochondrial dysfunctionCell Prolif, 2020

🧾 Conclusion:

Dr. Xiaozhi Liu stands out as a highly qualified and deserving candidate for the Best Researcher Award. His blend of clinical neurosurgery, translational laboratory research, and molecular innovation, particularly in SUMOylation and neuroprotection, positions him at the forefront of modern biomedical science in China. With a leadership role in a major hospital, strong national research recognition, and a substantial academic footprint, he exemplifies excellence in research and mentorship.

Abdulatif AL-Haj | Cytoskeleton Cell Motility | Innovative Research Award

Dr. Abdulatif AL-Haj | Cytoskeleton Cell Motility | Innovative Research Award

Dr. Abdulatif AL-Haj | Ruhr Universität Bochum | Germany

Dr. Abdulatif Al Haj is a highly accomplished biochemist and molecular cardiology researcher originally from Syria, currently residing in Germany. With extensive academic and professional experience across Europe and the Middle East, Dr. Al Haj has built a multidisciplinary career in molecular biology, biotechnology, and medical education. He holds a doctorate in biology and biotechnology, with a strong focus on actin dynamics and cardiovascular disease. Fluent in Arabic, German, English, and French, he has effectively bridged scientific research with public health, education, and social integration roles. His work includes teaching, paramedic service during the pandemic, and involvement in migrant integration and healthcare initiatives. He has contributed to peer-reviewed publications and collaborated with notable researchers in Germany. Dr. Al Haj exemplifies international scientific cooperation and interdisciplinary application of biosciences for societal benefit.

publication profile:

scopus

🔍 Strengths for the Award:

  • 🔬 Cutting-Edge Research: Key discoveries in actin cytoskeleton regulation and thymosin beta4′s role in cardiac repair

  • 🌍 Global Impact: Extensive collaborations in Germany and Syria, advancing both education and research

  • 📚 Scientific Output: Author of multiple high-impact journal articles and presenter in international scientific symposia

  • 👨‍🏫 Cross-disciplinary Excellence: Combines life sciences, education, and healthcare

  • 🧪 Innovative Thinking: Integrated research on cofilin/ADF, Arp2/3 complex, and cardiomyocyte remodeling

🚧 Areas for Improvement:

  • Broader dissemination of findings through more international conferences

  • Increase involvement in grant-funded principal investigator (PI) roles

  • Enhance digital presence via scientific networking platforms (e.g., ResearchGate, ORCID)

🎓 Education :

Dr. Al Haj earned his diploma and Master’s degrees in Biotechnology and Biochemistry from the University of Damascus, Syria. He later completed a Doctorate in Biology and Biotechnology with a dissertation on the modulation of cofilin/ADF and thymosin beta4 in cell migration. His academic pursuits also include studies in Educational Planning, Natural Sciences, and Microbiology at the Technical University of Applied Sciences Berlin and Ruhr University Bochum. Additionally, he undertook postgraduate training in Education and Psychology, Business English, and quality management under TÜV-certified programs. Dr. Al Haj further enriched his academic repertoire with continuous professional development courses in process management, norm standards (ISO 9001), and nutrition. His commitment to lifelong learning reflects a passion for combining theoretical science with applied clinical and educational practices.

🧪 Experience :

Dr. Al Haj has accumulated extensive research and teaching experience across several prestigious institutions. At the Ruhr University Bochum, he worked with Prof. Hans Georg Mannherz on actin-regulating proteins, contributing to innovative cardiology research. He held posts at Catholic and Central Clinics as a scientist, served as a paramedic at Herne Vaccination Center, and worked as a social worker and integration coach. His academic duties included teaching biology, chemistry, and physics, and serving as an Arabic language teacher in Berlin. Additionally, Dr. Al Haj took on project management and quality assurance roles at LVQ Further Education gGmbH and underwent TÜV training for process management. His unique blend of clinical, educational, and social service roles highlights his commitment to interdisciplinary collaboration and societal contribution.

🔬 Research Focus :

Dr. Al Haj’s research centers on molecular and experimental cardiology, cytoskeletal proteins (cofilin/ADF), and cell migration. His doctoral and postdoctoral work explored the effects of thymosin beta4 and actin-regulating proteins on cellular motility—essential for understanding cardiac development and cancer metastasis. His published work includes significant studies on the Arp2/3 complex, actin dynamics, and the influence of sGC activators on cardiac cells from hypertensive and heart failure patients. Beyond molecular cardiology, he has explored radioimmunoassay techniques, EBV-associated gastric carcinoma, and embryological development of cardiac muscle from branchial arch progenitors. His multidisciplinary approach blends biochemistry, histology, anatomy, and clinical diagnostics, bridging basic research with therapeutic applications. His ongoing interest in student assessment and e-learning underscores a commitment to scientific education and training.

📚 Publications Top Notes :

  1. 🧬 Inhibition of Arp2/3 Complex after ADP-Ribosylation of Arp2 by Binary Clostridioides ToxinsCells, 2022

  2. ❤️ sGC Activator Causes Beneficial Remodeling in Cardiomyocytes from Hypertensive Rats and Heart Failure PatientsFront. Physiol.

  3. 🧠 Chicken Second Branchial Arch Progenitor Cells Contribute to Heart Musculature In Vitro and In VivoDevelopmental Dynamics, 2020

  4. 🧫 Characteristics of Gastric Carcinoma Associated with Epstein Barr Virus in AlgeriaDer Pharmacia Lettre, 2017

  5. 🦴 Etiology and Pathogenesis of Arthrofibrosis at the Cellular LevelArthroscopy, 2016

  6. 🧪 HeLa Cells and the Human Colon Carcinoma BE, 3LNLN and EB3 Cell Lines – Dissertation Work

  7. 🎓 Research on Assessing Students’ Academic Performance in Bloom’s Cognitive Level

🧾 Conclusion :

Dr. Abdulatif Al Haj is a strong candidate for the Innovative Research Award, distinguished by his relentless pursuit of molecular innovation, interdisciplinary approach, and commitment to public health and education. His work on actin-binding proteins and cardiac regeneration holds promising implications for heart disease treatment and personalized medicine. His track record demonstrates scientific creativity, rigor, and societal relevance.

Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof . Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof . Dalia Saleh | National Research Centre | Egypt

Dr. Dalia Osama Abd El Fattah Saleh is a distinguished pharmacologist with over two decades of experience in experimental pharmacology and drug development. She holds a Ph.D. in Pharmacology from Cairo University and currently serves as a Professor at the National Research Centre in Cairo, Egypt. Dr. Saleh has contributed to numerous high-impact scientific journals and has led pioneering work in the areas of metabolic disorders, drug safety, and vascular pharmacology. Her multidisciplinary collaborations and continuous professional development from institutions like King’s College London demonstrate her dedication to excellence in research and education. She is also recognized for her commitment to academic instruction and quality assurance, having served as a Quality Assurance Director. Her work bridges scientific discovery and real-world therapeutic applications, making her a strong candidate for innovation-focused research awards.

publication profile:

scopus

Strengths for the Award:

  1. Robust Academic Background:
    Dr. Saleh holds a Ph.D. in Pharmacology from Cairo University and has a long-standing academic and research career in pharmacology and drug development. Her doctoral and master’s theses reflect a strong foundation in vascular pharmacology, metabolic disorders, and endocrine influence—fields of enduring relevance.

  2. Consistent Research Productivity:
    Her recent publication record (2022–2024) is prolific and impactful, with studies published in high-visibility journals such as Scientific Reports, Biochemistry and Cell Biology, Naunyn-Schmiedeberg’s Archives of Pharmacology, and Environmental Science and Pollution Research. Her work covers cutting-edge pharmacological topics, including:

    • AMPK/mTOR signaling pathways,

    • Neuroprotection and anti-inflammatory mechanisms,

    • Herbal and synthetic compounds in disease modulation,

    • Hepatic encephalopathy, diabetic nephropathy, and cystitis models.

  3. Interdisciplinary and Translational Approach:
    Dr. Saleh bridges basic pharmacological research with clinical relevance. Her investigations into molecular pathways (e.g., NF-κB, PI3K/Akt, SIRT-1) are grounded in disease models, thus demonstrating translational potential. Her inclusion of both natural and synthetic agents further adds diversity and innovation to her research.

  4. Capacity Building and International Exposure:
    She has participated in Continuing Professional Development modules at King’s College London, emphasizing drug safety, statistics, and ethics—key areas in modern drug development. This international engagement underscores her commitment to staying updated and aligned with global standards.

  5. Institutional Contribution and Leadership:
    As a Professor and former Quality Assurance Director at the National Research Centre (NRC), she has contributed to institutional excellence, including achieving ISO 9001/2008 certification. These roles reflect her leadership, organizational, and strategic planning skills.

Areas for Improvement:

  1. Principal Investigator Leadership:
    While her name appears consistently in multi-author studies, further highlighting her role as the principal investigator (PI) or corresponding author could strengthen her case for innovation leadership.

  2. Patents or Product Development:
    There is no mention of patents or direct product development based on her findings. Translating research into tangible therapeutics or clinical trials would significantly elevate her eligibility for innovation-specific awards.

  3. Global Collaborations and Grants:
    Although she has participated in international seminars, active global collaborations or leading major international grants/projects would further establish her as a global innovator.

  4. Public/Industry Impact:
    While the academic impact is strong, showcasing industry partnerships or policy-level influence (e.g., contributions to clinical guidelines or regulatory science) would align more directly with innovation awards that emphasize practical application.

🎓 Education Summary :

Dr. Dalia Saleh completed her higher education at Cairo University’s Faculty of Pharmacy, where she earned her Master of Science in Pharmacology in 2009 and Doctor of Philosophy in Pharmacology in 2012. Her M.Sc. thesis focused on the vascular and biochemical effects of rosiglitazone in diabetic rats, reflecting early interests in metabolic pharmacology. Her Ph.D. expanded on this foundation by exploring estrogen’s potential role in managing vascular changes related to insulin resistance. Both theses demonstrated robust experimental designs and contributed new insights into the interplay between hormonal and metabolic pathways in disease models. Dr. Saleh has since built on this academic background with advanced training in clinical drug development, safety, and biostatistics at King’s College London in 2023, indicating a continued commitment to integrating modern pharmaceutical science and translational research into her academic portfolio. This rich educational foundation underpins her success as a researcher and educator.

🔬 Research Focus :

Dr. Saleh’s research focuses on experimental pharmacology, with a special interest in metabolic diseases, drug-induced toxicities, inflammation, and vascular pharmacology. Her studies frequently involve animal models to investigate the mechanisms of drug action and to evaluate the protective or therapeutic roles of natural products and synthetic compounds. A recurring theme in her work is exploring the modulation of signaling pathways like AMPK, NF-κB, PI3K/mTOR, and Nrf2 in the context of oxidative stress, inflammation, and cellular apoptosis. She has also studied the role of hormonal influences in disease models, such as estrogen’s effect on insulin resistance. Her research employs modern analytical techniques and integrates molecular biology with pharmacodynamics to derive mechanistic insights. This strong focus on mechanistic pharmacology enhances her work’s relevance in drug development, particularly for conditions such as diabetic complications, hepatic encephalopathy, nephropathy, and chemotherapy-induced toxicities.

📚 Publications Top Note:

  1. 🧪 Eugenol alleviates acrylamide-induced testicular toxicity via AMPK/pAKT/mTOR modulationScientific Reports, 2024

  2. 🧠 Trimetazidine prevents cisplatin neuropathy through AMPK, Nrf2, and NF-κB pathwaysBiochemistry and Cell Biology, 2023

  3. 🔬 Novel chromone-thiazolopyrimidines as TNF-α, IL-6, and PGE2 inhibitorsPolycyclic Aromatic Compounds, 2023

  4. 🚽 Chrysin protects against cyclophosphamide-induced hemorrhagic cystitis via anti-inflammatory signalingChemico-Biological Interactions, 2023

  5. 🧃 Linagliptin & L-arginine synergy in gastric hyperacidity via EP4 receptor upregulationNaunyn-Schmiedeberg’s Archives of Pharmacology, 2023

  6. 🧠 L-arginine reduces thioacetamide-induced hepatic encephalopathy via NF-κB downregulationEnvironmental Science and Pollution Research, 2023

  7. 🌿 Calotropis procera seed oil shows anti-inflammatory and antiparasitic activityArabian Journal of Chemistry, 2022

  8. 🛡️ Olmesartan mitigates diabetic nephropathy via AGE/PKC and TLR4/SIRT-1 pathwaysEuropean Journal of Pharmacology, 2022

  9. 🍃 Plumbago species show anti-fibrotic effects in liver fibrosis rat modelsScientific Reports, 2022

  10. 🫀 Omega-3 combats doxorubicin-induced liver toxicity via Nrf2/PI3K/Akt signalingPending Publication

Conclusion:

Dr. Dalia O. Saleh presents a strong candidacy for the Research for Innovative Research Award, particularly due to her sustained publication record, mechanistic depth in pharmacology, and commitment to professional development and institutional excellence. Her work spans innovative mechanistic explorations and novel therapeutic evaluations, showing real promise in addressing current pharmacological challenges.

Lingyan Zhou | Cell Death Pathway | Best Researcher Award

Dr. Lingyan Zhou | Cell Death Pathway | Best Researcher Award

Dr. Lingyan Zhou , Shandong Provincial Hospital Affiliated to Shandong First Medical University , China

Dr. Lingyan Zhou is a dedicated neuroscientist and clinician specializing in the pathogenesis of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. Currently serving in the Department of Neurology at Shandong Provincial Hospital affiliated with Shandong First Medical University, Dr. Zhou holds a doctorate and has made notable contributions to neurodegeneration research through high-impact publications and cutting-edge studies. Her work focuses on molecular mechanisms such as protein aggregation, homocysteinylation, and neuroprotection, with particular attention to α-synuclein and DJ-1. Dr. Zhou has co-authored more than 15 peer-reviewed articles in top-tier journals like Nature Communications, Science Advances, and Aging Cell, earning recognition for her insights into disease-modifying pathways. A researcher with a strong translational focus, she bridges the gap between bench and bedside, aiming to develop therapeutic strategies that can mitigate or reverse neurodegenerative processes. Her commitment to science and patient-centered research makes her a strong candidate for the Best Researcher Award.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record in High-Impact Journals
    Dr. Zhou has consistently published in top-tier journals such as Nature Communications, Science Advances, Aging Cell, and Movement Disorders, reflecting the significance and innovation of her work. Many of these are Q1 journals with high impact factors.

  2. Focused Research on Neurodegeneration
    Her core focus on the molecular basis of Alzheimer’s and Parkinson’s disease, especially novel mechanisms like N-homocysteinylation, STAT1-PARP1, and microRNA signaling, demonstrates depth and relevance to global health priorities.

  3. Translational Impact
    Her research bridges basic science and clinical application, particularly through studies on neuroprotection, early disease biomarkers, and potential therapeutic targets.

  4. Early Career Excellence
    Despite being in the early stages of her career, Dr. Zhou has already authored or co-authored over 17 peer-reviewed publications, many as first or corresponding author, which is exceptional at this stage.

  5. Multidisciplinary Collaborations
    Dr. Zhou’s collaborations with experts across genetics, immunology, bioinformatics, and neurology highlight her integrative approach to complex diseases.

  6. International Visibility
    Multiple articles are indexed in PubMed, Crossref, and DOIs, showing her research has international academic presence and reach.

⚠️ Areas for Improvement:

  1. Greater International Exposure
    While her publication record is strong, further participation in international neuroscience conferences, workshops, or global consortia would enhance visibility and foster leadership roles.

  2. Grant Leadership and Independent Funding
    As she progresses, securing independent research funding and leading grant-funded projects will further demonstrate research independence and strengthen her candidacy for top-tier awards.

  3. Mentorship and Teaching Roles
    Involvement in structured mentorship or supervision of Ph.D./postdoctoral researchers could be better highlighted to show contributions to research training and capacity building.

  4. Innovation Translation Pathway
    Filing patents or initiating translational collaborations with biotech/pharma could underline the practical applicability of her findings.

🎓 Education:

Dr. Lingyan Zhou received her doctorate from Wuhan University, one of China’s leading research institutions, between September 2020 and June 2023. During her Ph.D. training, she developed expertise in molecular neuroscience and translational medicine, with a specific focus on the pathological mechanisms underlying Parkinson’s and Alzheimer’s diseases. Her research explored cellular stress pathways, protein misfolding, and epigenetic regulation in neurodegeneration, leading to multiple first-author publications in high-impact journals. Her academic background provided a solid foundation in experimental techniques such as immunohistochemistry, gene expression analysis, and in vivo disease modeling. The interdisciplinary approach at Wuhan University enriched her understanding of both clinical neurology and basic neuroscience. This rigorous academic training has equipped Dr. Zhou with the analytical and research skills necessary for advancing innovation in neurodegenerative disease treatment.

🧪 Experience:

Since July 2023, Dr. Lingyan Zhou has been serving in the Department of Neurology at Shandong Provincial Hospital affiliated with Shandong First Medical University, where she engages in both clinical practice and translational neuroscience research. Prior to that, she completed her doctoral studies at Wuhan University, where she developed a deep interest in the role of homocysteine metabolism and genetic regulation in Parkinson’s disease. Over her career, she has collaborated with multidisciplinary teams to investigate molecular and cellular mechanisms of neurodegeneration and published extensively in internationally recognized journals. Her current position allows her to continue high-impact research while mentoring junior colleagues and participating in multi-center studies. Her combined experience in basic research, clinical neurology, and academic collaboration has established her as a key contributor in the field of neurodegenerative diseases, positioning her well for leadership roles and research recognition such as the Best Researcher Award.

🧠 Research Focus:

Dr. Lingyan Zhou’s research is centered on understanding the molecular and cellular mechanisms that drive neurodegenerative diseases, with an emphasis on Alzheimer’s and Parkinson’s disease. Her work has shed light on pathological protein modifications, such as N-homocysteinylation of α-synuclein and DJ-1, which contribute to protein aggregation and neurotoxicity. Additionally, she investigates the neuroprotective roles of vitamins, retinoic acid, and microRNAs in slowing disease progression. Dr. Zhou is also exploring how infectious diseases like SARS-CoV-2 may trigger or exacerbate neurological disorders, expanding the understanding of systemic factors in brain health. Her studies leverage both in vitro and in vivo models to unravel pathways involving STAT1, PARP1, and Notch signaling. By identifying potential therapeutic targets and biomarkers, her research aims to guide the development of novel treatment strategies that could improve outcomes for patients suffering from movement disorders and cognitive decline.

📚 Publications Top Notes:

  1. 🧪 N-homocysteinylation of alpha-synuclein promotes its aggregation and neurotoxicityAging Cell (2022)

  2. 🧠 Association of vitamin B2 intake with cognitive performance in older adults: a cross-sectional studyJ Transl Med (2023)

  3. 🧬 Homocysteine and Parkinson’s diseaseCNS Neurosci Ther (2023)

  4. 🧴 Retinoic Acid Prevents alpha-Synuclein Preformed Fibrils-Induced Toxicity via Inhibiting STAT1-PARP1 SignalingMol Neurobiol (2023)

  5. 🧫 N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson’s diseaseAging Cell (2024)

  6. 🦠 SARS-CoV-2: Underestimated damage to nervous systemTravel Med Infect Dis (2020)

  7. 💊 Potential therapeutic drugs for ischemic stroke based on bioinformatics analysisInt J Neurosci (2019)

  8. 🧬 PTPN22 Gene Polymorphisms and Stroke SusceptibilityDis Markers (2019)

  9. 🧪 IL-18 Gene Polymorphisms and Risk of Ischemic Stroke: A Meta-analysisNeuroreport (2019)

  10. 🚬 Aromatic hydrocarbon receptor links smoking and rheumatoid arthritisClin Exp Rheumatol (2020)

🧾 Conclusion:

Dr. Lingyan Zhou demonstrates an exceptional trajectory for a young neuroscience researcher. Her deep and original contributions to unraveling molecular mechanisms in neurodegeneration, particularly Parkinson’s and Alzheimer’s disease, make her highly deserving of recognition. The breadth and quality of her publication record—combined with her translational outlook—signal a rising star in neurodegenerative disease research.

yu chen | Molecular Mechanisms Signaling | Best Researcher Award

Prof. yu chen | Molecular Mechanisms Signaling | Best Researcher Award

Prof. yu chen , Chengdu University of Technology , China

Prof. Yu Chen is a leading researcher in the field of perovskite solar cells, with a particular emphasis on interfacial engineering and charge transport materials. He is currently a Principal Investigator at the Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering. His academic journey spans top institutions in China, culminating in a Ph.D. from Nanjing University of Science and Technology under the guidance of Prof. Shenli Zhang and Prof. Wenhua Zhang. Prof. Chen has co-authored numerous high-impact journal articles, including in Nature Communications, Advanced Materials, and Chemical Engineering Journal, significantly contributing to the field of renewable energy. His innovative approaches to improving stability and efficiency in perovskite photovoltaics have earned him national recognition. Prof. Chen’s work blends academic rigor with practical innovation, aiming to push the boundaries of solar cell technologies toward commercial viability and sustainability.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  • High-impact Publications: Prof. Chen has published extensively in top-tier journals such as Nature Communications, Advanced Materials, Angewandte Chemie, and Advanced Functional Materials, indicating global recognition and scientific rigor.

  • Cutting-edge Research Focus: His work on perovskite solar cells, especially on buried interface engineering, inorganic transport layers, and molecular self-assembly, addresses fundamental and applied challenges in next-generation photovoltaic technologies.

  • Innovation & Application: Techniques like guanylation reaction for MACl removal and ion compensation strategies demonstrate a deep understanding of material-device interplay and have direct implications for industrial application.

  • Leadership & Funding: As a Principal Investigator at Chengdu University of Technology, leading national-level projects (e.g., Qomolangma Talent Program), Prof. Chen has proven both scientific leadership and funding competitiveness.

  • International Collaboration: His co-authorship with global leaders such as Prof. Shengzhong Liu and Prof. Wenhua Zhang strengthens his international research presence.

⚠️ Areas for Improvement:

  • Broader Research Diversification: While his specialization in perovskites is a clear strength, expanding into hybrid systems (e.g., tandem solar cells with silicon or organic-inorganic integration) could elevate his interdisciplinary impact.

  • Industry Partnership: Greater collaboration with industrial partners or startups could accelerate the commercial translation of his innovations.

  • International Fellowships or Visiting Positions: Engaging in international academic exchanges or fellowships (e.g., Marie Curie, Humboldt) could further enhance global visibility.

🎓 Education:

Prof. Yu Chen completed his Ph.D. in Materials Science from Nanjing University of Science and Technology (2019–2023) under the supervision of Prof. Shenli Zhang and Prof. Wenhua Zhang. During this period, he focused on advanced interfacial design and ion migration in perovskite solar cells. He earned his M.Eng. in Chemical Engineering from Changzhou University (2016–2019), mentored by Prof. Ningyi Yuan and Prof. Wenhua Zhang, where he laid the foundation for his research on inorganic materials. His academic journey began with a B.Eng. in Materials Science from Pujiang University (2012–2016), under the supervision of Prof. Jian Huang. This strong and progressive academic background empowered Prof. Chen with a multi-scale understanding of materials synthesis, structural engineering, and device-level optimization — skills now central to his research on high-efficiency photovoltaic technologies.

💼 Experience:

Since 2023, Prof. Yu Chen has been serving as a Principal Investigator at Chengdu University of Technology’s College of Materials and Chemistry & Chemical Engineering. He leads a research group focused on developing next-generation perovskite solar cells, emphasizing stable, efficient, and scalable photovoltaic systems. Prof. Chen has developed several novel techniques involving inorganic hole/electron transport layers and interfacial dipole engineering. His experience spans fundamental research, technology translation, and academic collaboration with prestigious researchers such as Prof. Shengzhong Liu and Prof. Yihui Wu. He is also the recipient and presiding investigator of projects like the “Qomolangma Talent Introduction Program” and the Youth Foundation of Sichuan Natural Science Foundation. His role combines leadership, mentorship, and high-level experimental research, making him an influential figure in China’s renewable energy academic landscape.

🏅 Awards and Honors:

Prof. Yu Chen has received several prestigious accolades for his outstanding contributions to solar cell research. In 2019, he was honored with the “Excellent Wall Poster Award” at the China Material Conference, recognizing his innovative visualization of research. In 2023, he earned the title of “Outstanding Graduate” from the China Academy of Engineering Physics, showcasing both his academic excellence and research impact. As the Principal Investigator of prominent research programs such as the Qomolangma Talent Introduction Program, he has demonstrated leadership and vision. His work has been continuously supported by competitive grants, including the Youth Foundation of the Sichuan Natural Science Foundation. These honors reflect not only Prof. Chen’s personal achievements but also his potential to lead transformative advancements in solar energy technologies, particularly in high-efficiency, stable, and scalable perovskite solar cells.

🔬 Research Focus:

Prof. Yu Chen’s research focuses on the design and development of highly efficient and stable perovskite solar cells, with specific expertise in buried interface engineering, inorganic charge transport materials, and defect passivation strategies. His work emphasizes inverted perovskite solar architectures, which promise better long-term stability and commercial adaptability. A key aspect of his research is understanding how molecular self-assembly and interfacial dipole regulation can enhance charge extraction and minimize recombination losses. He has developed novel methods to remove residuals, such as MACl, and form stable 2D perovskite structures in situ, improving device performance. By integrating materials chemistry, device physics, and advanced fabrication, Prof. Chen addresses critical bottlenecks in the field. His research not only advances academic understanding but also aligns with industrial needs for reliable and sustainable photovoltaic technologies.

📚 Publication Top Notes:

  1. 🧪 Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cellsNature Communications, 2025

  2. ⚗️ High‐Efficiency Perovskite Solar Cells Enabled by Guanylation Reaction for Removing MACl ResidualAngewandte Chemie Int. Ed., 2025

  3. 🧬 Tailoring Buried Interface and Minimizing Energy Loss by Aluminum Glycinate MoleculesAdvanced Materials, 2025

  4. 🧫 A regulation strategy of self-assembly molecules for achieving efficient inverted perovskite solar cellsPCCP, 2024

  5. 🧠 A Comprehensive Review of Organic Hole‐Transporting Materials for Inverted Perovskite Solar CellsAdvanced Functional Materials, 2024

  6. 🔍 Elimination of Buried Interface Defects for Efficient Wide-Bandgap Perovskite Solar CellsChinese Journal of Chemical Physics, 2023

  7. 🧱 Research Progress of Inorganic Hole Transport Materials in Perovskite Solar CellsJournal of Inorganic Materials, 2023

  8. 🔋 Ion Compensation of Buried Interface Enables Efficient MA‐Free Perovskite Solar CellsAdvanced Functional Materials, 2022

  9. 💊 Defect mitigation using d-penicillamine for stable MA-free perovskite solar cellsChemical Science, 2021

  10. ⚙️ Reducing carrier transport barrier in anode interface enables stable inverted mesoscopic perovskite solar cellsChemical Engineering Journal, 2021

🔚 Conclusion:

Prof. Yu Chen stands out as a highly promising and already accomplished materials scientist. His strong academic record, innovative research on energy materials, leadership in national research programs, and consistent output in prestigious journals make him exceptionally qualified for the Best Researcher Award. While early in his career, his trajectory shows the hallmark of a future leader in clean energy research. With minor expansions in scope and outreach, Prof. Chen is poised to become a central figure in advancing sustainable photovoltaic technologies.

Alessandra Luchini | Cell-Cell Communication | Best Researcher Award

Prof. Alessandra Luchini | Cell-Cell Communication | Best Researcher Award

Prof. Alessandra Luchini , George Mason University , United States

Dr. Alessandra Luchini is a tenured professor at George Mason University in the School of Systems Biology and serves as Director of the Biosciences Ph.D. Program. A native of Italy, she holds a Ph.D. in Bioengineering and a degree in Chemical Engineering cum laude from the University of Padova. She completed her postdoctoral training in proteomics and nanotechnology at George Mason University. Dr. Luchini’s pioneering research integrates nanotechnology with biomedical diagnostics to enhance disease detection and treatment, particularly in cancer, infectious, and inflammatory diseases. She has co-authored numerous peer-reviewed publications and is a co-inventor on several patents. Dr. Luchini also co-founded two biotech companies: Ceres Nanosciences and Monet Pharmaceuticals. Recognized nationally and internationally, she was named one of Popular Science’s “Brilliant 10” and received Virginia’s Outstanding Faculty Award in 2023. Her work bridges academia, innovation, and industry in pursuit of transformative healthcare solutions.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Distinguished Academic and Leadership Role: Tenured professor and director of the Ph.D. Biosciences program at George Mason University, reflecting leadership in both research and education.

  2. Innovative Translational Research: Her work bridges nanotechnology and proteomics to create real-world diagnostic solutions, particularly for cancer, infectious diseases, and neurological conditions.

  3. Entrepreneurial Impact: Co-founder of two biotech companies (Ceres Nanosciences and Monet Pharmaceuticals) that commercialize her academic innovations, demonstrating translational relevance.

  4. Recognition and Awards: Named among the “Brilliant 10” by Popular Science (2011) and recipient of the Virginia Outstanding Faculty Award (2023), showcasing external validation of excellence.

  5. Scientific Productivity: Author of peer-reviewed publications across high-impact journals with an H-index of 31, indicating influence and citation of her work.

  6. Active Research Funding: Current DoD-funded project as Principal Investigator on Lyme disease diagnostics reflects continued support and relevance of her work.

🔍 Areas for Improvement:

  1. Wider Global Collaboration: While she has excellent U.S. academic and biotech engagement, increasing international collaborations (e.g., with European or Asian institutions) could enhance global research impact.

  2. Public Science Communication: Dr. Luchini’s impactful research could benefit from more visibility in mainstream science communication outlets or public forums, particularly on topics like microbiome and cancer diagnostics.

  3. Mentorship Metrics: While she leads a Ph.D. program, formal documentation of mentorship outcomes (e.g., student success stories, awards) could further strengthen her educational impact profile

🎓 Education:

Dr. Alessandra Luchini’s educational journey began in Italy at the prestigious University of Padova, where she earned her degree in Chemical Engineering cum laude. Driven by her passion for biomedical innovation, she pursued a Ph.D. in Bioengineering at the same institution, graduating in 2005. Her doctoral studies provided a foundation in the integration of engineering principles with life sciences, focusing on biomolecular processes. In 2007, she completed postdoctoral training in Proteomics and Nanotechnology at George Mason University in the United States. This specialized training equipped her with expertise in advanced diagnostic tools and molecular profiling technologies. Her educational background uniquely combines strong engineering fundamentals with deep biological insight, allowing her to develop groundbreaking diagnostic platforms and translational research that bridges basic science with clinical applications. Dr. Luchini’s academic credentials laid the groundwork for a prolific research career in bioengineering, nanomedicine, and systems biology.

🧪 Experience:

Dr. Luchini began her U.S.-based academic career at George Mason University in 2007 and has steadily advanced to the role of Professor with tenure since 2020 in the School of Systems Biology. She has served as Graduate Program Director for the Ph.D. in Biosciences since 2019. Her leadership extends beyond the classroom, guiding graduate students and junior researchers in fields such as proteomics, nanotechnology, and infectious disease diagnostics. From 2015 to 2020, she was an Associate Professor and contributed extensively to curriculum development and translational research. Dr. Luchini has also co-founded Ceres Nanosciences (2008) and Monet Pharmaceuticals (2019), which commercialize technologies stemming from her research. Her interdisciplinary work spans collaboration with immunologists, chemists, and clinicians, contributing to large-scale projects funded by entities such as the U.S. Army. Her experience reflects a rare blend of academic rigor, entrepreneurial drive, and real-world impact.

🏅 Awards and Honors:

Dr. Alessandra Luchini’s excellence in research and education has earned her prestigious recognitions. In 2023, she was honored with the Outstanding Faculty Award by the State Council of Higher Education for Virginia, the highest faculty award in the state. She was previously named one of Popular Science’s “Brilliant 10” scientists in 2011, highlighting her innovative contributions to nanotechnology and disease diagnostics. These honors underscore her leadership in biomedical engineering, translational research, and mentorship. Dr. Luchini has also been a Principal Investigator on numerous federally funded research projects and holds several issued patents in proteomic diagnostics, which have led to real-world biotech applications. Her scientific impact is reflected in an H-index of 31, showcasing her influential publication record. She is also recognized for public engagement, contributing to both academic and industrial innovation. These achievements solidify her as a leading candidate for a Best Researcher Award.

🔬 Research Focus:

Dr. Alessandra Luchini’s research lies at the intersection of proteomics, nanotechnology, and molecular diagnostics. Her core aim is to improve early detection and therapeutic strategies for diseases such as cancer, Lyme disease, tuberculosis, and neurological disorders. She is a recognized leader in the development of affinity nanoparticle platforms, enabling the capture of disease biomarkers from biofluids like urine and saliva. Recent studies explore how bacterial extracellular vesicles affect calcium signaling in breast cancer, revealing new pathways for early intervention. Her work in protein painting mass spectrometry identifies key binding sites relevant to autoimmune and infectious diseases, while her collaborations with biotech firms bring these discoveries into diagnostic tools. Dr. Luchini is known for applying systems biology to real-world clinical problems, translating lab findings into impactful solutions. Her research integrates computational biology, clinical proteomics, and nanomaterials to open new frontiers in personalized medicine and public health diagnostics.

📚 Publications Top Notes:

  1. 🧫 Urinary bacteriophage cooperation with bacterial pathogens…Commun Biol, 2025

  2. 🧪 Urinary Borrelia Peptides Correlate with GSQ-30 Scores…J Cell Immunol, 2025

  3. 🧏 Hearing Science Accelerator: Sudden Sensorineural Hearing Loss…Otol Neurotol, 2024

  4. 🧬 A set of diagnostic tests for detection of active Babesia duncani…Int J Infect Dis, 2024

  5. 🧠 Protein Painting Mass Spectrometry in Discovery of Interaction Sites…ACS Chem Neurosci, 2024

  6. 🖼️ Wheat-Based Glues in Conservation and Cultural Heritage…J Proteome Res, 2024

  7. 🧬 Identification of Unambiguous Borrelia Peptides…Methods Mol Biol, 2024

  8. 🧠 Molecular profiling reveals nucleoside metabolism in medulloblastoma…Acta Neuropathol Commun, 2023

  9. 🧬 PD-L1 Interface Region Responsible for PD-1 Binding…J Biol Chem, 2023

  10. 💊 Drug discovery efforts at George Mason University…SLAS Discov, 2023

🧾 Conclusion:

Dr. Alessandra Luchini is exceptionally well-qualified for a Best Researcher Award. Her unique combination of high-impact research, translational innovation, academic leadership, and entrepreneurial success places her in the top tier of candidates. Her multidisciplinary approach—spanning bioengineering, nanomedicine, and molecular diagnostics—addresses some of the most pressing challenges in modern medicine. While minor areas such as broader global outreach and science communication could be enhanced, these do not diminish her outstanding achievements. Her track record reflects both depth and breadth of contribution, making her a strong, deserving candidate for this recognition.

Fabian Fries | Gene Regulation Epigenetics | Young Scientist Award

Dr. Fabian Fries | Gene Regulation Epigenetics | Young Scientist Award

Dr. Fabian Fries , Universitätsklinikum des Saarlandes , Germany

Dr. Fabian N. Fries is a German ophthalmologist and senior consultant at Saarland University Medical Center. Born on July 18, 1990, in Germany, he has cultivated a career marked by clinical excellence, research productivity, and international experience. Following his medical studies at Saarland University, he gained practical experience across the U.S., Brazil, and Germany. Dr. Fries has authored over 15 peer-reviewed publications and earned an H-index of 16, reflecting his impactful contributions in ophthalmology. A polyglot and DAAD scholar, he is also actively engaged in professional societies like the German Ophthalmological Society. His research interests include corneal diseases, ocular surface disorders, and regenerative therapies involving limbal stem cells. Apart from his medical pursuits, he’s a competitive athlete, excelling in tennis and athletics. Dr. Fries combines clinical competence, research acumen, and a collaborative mindset, positioning him as an outstanding candidate for early-career research recognition.

Publication Profile:

Orcid

✅ Strengths:

  1. 📈 Strong Research Metrics

    • H-index: 16, i10-index: 22, and 742 citations—solid indicators of impactful and consistent academic output.

    • Authored 15 peer-reviewed publications in high-impact journals like The Ocular Surface, Experimental Eye Research, and International Journal of Molecular Sciences.

  2. 🧬 Innovative Research Focus

    • His work bridges molecular biology and clinical ophthalmology, especially in limbal stem cell deficiency, PAX6 gene regulation, miRNA expression, and corneal diseases.

    • Focus on translational science with direct implications for therapy and regenerative medicine.

  3. 🌍 International Exposure

    • Completed clinical internships in USA, Brazil, and Germany, showcasing adaptability, cultural competence, and international collaboration.

  4. 💼 Professional Leadership

    • Currently a Senior Consultant at Saarland University Medical Center.

    • Certified teaching assistant, actively mentoring young medical professionals.

  5. 🏅 Recognized Excellence & Extracurriculars

    • Multiple scholarships: DAAD, e-fellows.net, and Saarland University.

    • Athlete-scholar with national-level performance in tennis and athletics, highlighting discipline, commitment, and well-rounded personality.

  6. 🧠 Tech-Savvy & Multilingual

    • Proficient in SPSS, Java, SAP ERP, and fluent in 6 languages, positioning him uniquely for cross-disciplinary, global projects.

📉 Areas for Improvement:

  1. 🌐 Global Research Fellowships or Visiting Scientist Roles

    • While he has international clinical experience, postdoctoral research fellowships abroad (e.g., US, UK, or Japan) could further enrich his research perspective and expand collaborations.

  2. 📣 Greater Visibility as a Lead Investigator

    • Most of his studies are in collaboration with senior figures. More first-author or corresponding-author publications, and leading independent research grants, would bolster his profile.

  3. 🎤 Science Communication/Public Engagement

    • Active roles in public engagement, conferences, or science communication platforms would amplify his influence and visibility outside academic circles.

🎓 Education:

Dr. Fries completed his Abitur in Saarland, Germany in 2009 and subsequently pursued medicine at Saarland University, completing his state medical examination in 2016. His medical education was enriched by several international internships: Children’s of Alabama (USA), Instituto de Neurologia de Curitiba (Brazil), and various institutions in Germany. These experiences provided him with a strong foundation in global healthcare environments and interdisciplinary approaches to medical problems. His training emphasized ophthalmology, medical technology, and corneal research. In addition to his clinical education, he developed proficiency in research methodologies, statistical software (SPSS), and even programming in Java—an uncommon strength among clinicians. His multilingualism (German, English, French, Spanish, Portuguese, Latin) further reflects a well-rounded academic and professional profile. He has also received scholarships from the DAAD, Saarland University, and e-fellows.net. This robust educational background is a solid base for his continued clinical and academic excellence in ophthalmology.

💼 Professional Experience:

Dr. Fries is currently a Senior Consultant in Ophthalmology at Saarland University Medical Center (since 2021), where he also completed his residency (2016–2021). He brings over a decade of experience in clinical practice, teaching, and research. His clinical roles have spanned multiple specialties and continents, including stints at Children’s of Alabama, the Instituto de Neurologia de Curitiba, and top institutions in Germany. He has participated in pioneering electronic health record integration projects and led efforts in corneal transplant innovations. His experience also includes medical internships in both hospitals and private practices, providing a broad spectrum of exposure from surgical practice to patient-centered outpatient care. Additionally, he is a certified teaching assistant at Saarland University and has been actively involved in the supervision of junior residents and students. His commitment to high-standard care and continuous education is evident in his leadership roles and collaborative projects.

🏆 Awards and Honors:

Dr. Fries has received several academic and research accolades that highlight his potential as a leading young scientist. He was awarded scholarships from the prestigious DAAD (German Academic Exchange Service), Saarland University, and e-fellows.net, reflecting academic excellence and leadership. His athletic achievements include participation in the German University Tennis Championships (2015, 2016), where he won multiple regional titles and achieved a 5th place ranking in the German Team Athletics Championships (2014). In research, his contributions are recognized through a strong H-index of 16, 742 citations, and an i10-index of 22, underlining consistent and impactful scientific productivity. He is a member of key academic societies, including the German Ophthalmological Society, Professional Association of Ophthalmologists, and others since 2016. His well-rounded excellence in science, teaching, international exposure, and sports makes him an exceptional candidate for the Research for Young Scientist Award.

🔬 Research Focus:

Dr. Fabian Fries focuses his research on ocular surface diseases, particularly limbal stem cell deficiency, corneal dystrophies, and regenerative approaches in ophthalmology. His work dives deep into molecular mechanisms, such as PAX6 signaling, microRNA pathways, and retinoic acid signaling, all pivotal in corneal health and disease. Using advanced cell culture models and patient tissue analysis, his research offers insights into pathophysiological processes affecting corneal epithelial integrity. Additionally, he explores the impact of genetic mutations and inflammatory mediators on disease progression. Dr. Fries has contributed significantly to translational research, bringing lab discoveries into clinical settings, notably in corneal transplantation and novel therapeutic strategies. He also examines digital integration in ophthalmology via projects like FIDUS EHR implementation. His interdisciplinary, collaborative, and bench-to-bedside approach places him at the forefront of young clinician-scientists driving innovation in ophthalmology.

📚 Publications Top Notes:

  1. 🧬 Effect of MiRNA 204-5P Mimics and LPS on Retinoic Acid Signaling in Limbal Epithelial Cells

  2. 🔬 Decreased PAX6 and DSG1 in Corneal Epithelium of EBMD, SND, and Pterygium Patients

  3. 🧫 FABP5 and DSG1 Downregulation after PAX6 Knockdown in Limbal Cells

  4. 💻 Employee Survey Post-FIDUS EHR Introduction at Saarland Eye Hospital

  5. 👁 Endothelial Cell Density and Corneal Thickness Post-Keratoplasty for Acanthamoeba Keratitis

  6. 🩸 Intravenous Fibrinolysis for Nonarteritic Central Retinal Artery Occlusion – Feasibility Study

  7. ⚠️ Pronounced Band Keratopathy in Refsum’s Syndrome – Case Report

  8. 🔎 Unilateral Macular Pigment Epitheliitis in a 38-Year-Old – Diagnostic Insights

  9. 🧬 MicroRNA and Gene Expression Changes in Limbal Deficiency Modulated by PAX6 Mutation

  10. 🧠 Acute Visual Loss from Basilar Artery Aneurysm-induced Subarachnoid Hemorrhage

🏁 Conclusion:

Dr. Fabian N. Fries stands out as a highly qualified, ambitious, and impactful early-career scientist whose research bridges the gap between basic science and clinical innovation in ophthalmology. His contributions to ocular surface research, particularly in the context of limbal stem cells and gene regulation, are of significant academic and therapeutic value. He brings a unique mix of clinical excellence, internationalism, technological proficiency, and scientific curiosity.