SANKALP MISRA | Microbiology | Best Researcher Award

Assist. Prof. Dr. SANKALP MISRA | Microbiology | Best Researcher Award

Assist. Prof. Dr. SANKALP MISRA , Shri Ramswaroop Memorial University , India

Dr. Sankalp Misra is a dedicated microbiologist with a Ph.D. in Microbial Technology, currently working as a Research Associate at CSIR-National Botanical Research Institute (NBRI), Lucknow. Born on November 6, 1988, in India, he has cultivated a robust academic and research career focused on plant-microbe interactions and sustainable agriculture. Fluent in both English and Hindi, Dr. Misra has consistently demonstrated a commitment to addressing real-world agricultural challenges through microbiological innovations. His research explores the symbiotic relationships between soil microbes and plants, particularly under stress conditions such as salinity and drought. With a host of fellowships, awards, and scientific publications to his name, Dr. Misra is not only a prolific researcher but also a valued contributor to India’s agricultural biotechnology community. He is a life member of the Association of Microbiologists of India and continues to contribute actively to scientific dialogue and applied research in microbial ecology.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Experience
    Over 10 years of continuous research in microbial biotechnology, especially plant-microbe interactions, bioremediation, and stress physiology, primarily under the CSIR-NBRI—a top-tier research institution in India.

  2. Focused Scientific Contributions
    His Ph.D. work on salt-tolerant plant growth-promoting rhizobacteria (PGPR) addresses crucial agricultural challenges, with implications in sustainable farming and climate-resilient agriculture.

  3. Prolific Publication Record
    Co-authored over 15 research papers and book chapters in high-impact journals and internationally reputed publishers (Springer, Wiley, Academic Press).

  4. Nationally Recognized Fellowships & Awards

    • ICMR Research Associate & Senior Research Fellowship

    • Gold Medalist in B.Sc.

    • Multiple Best Poster Awards in national and international conferences

    • Consistent CSIR-UGC NET success (31st and 47th ranks)

  5. Professional Engagement
    Holds a Life Membership in The Association of Microbiologists of India, reflecting his active involvement in the scientific community.

  6. Interdisciplinary Expertise
    Skilled in proteomics, metagenomics, microbial ecology, and plant stress biology, showcasing an ability to tackle complex problems from multiple biological angles.

⚙️ Areas for Improvement:

  1. International Exposure
    While the research is nationally strong, global collaborations or international fellowships could further elevate the impact and visibility of his work.

  2. Grant Leadership & Independent Projects
    Leading funded projects as a Principal Investigator (PI) would demonstrate further maturity in research leadership and scientific management.

  3. Patent/Technology Transfer
    Translating research into patents, bio-formulations, or industry partnerships could bridge the lab-to-land gap, enhancing the practical application of his findings.

🎓 Education:

Dr. Sankalp Misra completed his Ph.D. in Microbial Technology from CSIR-NBRI, focusing on the “Characterization of salt tolerant plant growth promoting rhizobacteria from different agro-climatic zones of Uttar Pradesh.” Guided by Dr. Puneet Singh Chauhan, his doctoral work laid a foundation in microbial stress biology. He qualified the prestigious CSIR-UGC NET in both 2013 (47th rank) and 2014 (31st rank), showcasing strong academic competence. He also cleared the CET-Ph.D in 2012. His undergraduate studies were marked by excellence, earning a Gold Medal in B.Sc., emphasizing his early commitment to academic rigor. These achievements underline his solid foundation in microbiology, plant biology, and biotechnological research. Throughout his educational journey, Dr. Misra has consistently demonstrated a deep curiosity for microbial applications in agriculture and an aptitude for integrating advanced scientific methods to address pressing challenges in crop sustainability and soil health.

💼 Experience:

Dr. Sankalp Misra has over a decade of research experience in plant-microbe interactions. He is currently an ICMR-Research Associate at CSIR-NBRI since October 2019. Prior roles include ICMR-Senior Research Fellow and several project fellowships at CSIR-NBRI from 2013 to 2019. These positions allowed him to work on key projects involving soil microbiomes, salt and drought stress in plants, and bioremediation. His extensive hands-on experience ranges from lab-based experiments to field applications, focusing on sustainable and ecological approaches in agriculture. He has significantly contributed to the development of microbial formulations and transgenic studies aimed at improving crop resilience. His continuous association with CSIR-NBRI reflects a stable and productive research career. Each role has helped him refine his techniques in molecular biology, microbiome analysis, and biotechnological innovation, making him a competent and valuable researcher in environmental microbiology and sustainable agricultural practices.

🏅 Awards and Honors:

Dr. Misra has received multiple accolades recognizing his scientific excellence. He was awarded the prestigious ICMR Research Associateship (Oct 2019) and Senior Research Fellowship (July 2019), reflecting national-level recognition. His scientific presentations have earned him Best Poster Awards in major conferences, including the 3rd National Seminar on Life Sciences (NSCTLS-2021) and the 6th International Conference on Plants and Environmental Pollution (ICPEP-6, 2018). Academically, he secured top ranks in CSIR-UGC NET (31st in 2014 and 47th in 2013) and earned a Gold Medal in B.Sc., demonstrating exceptional merit throughout his academic and research career. His commitment is further underscored by his life membership in The Association of Microbiologists of India (AMI). These achievements highlight his consistent dedication, peer recognition, and leadership potential in the fields of microbiology and agricultural biotechnology.

🔍 Research Focus:

Dr. Sankalp Misra’s research centers on plant-microbe interactions, especially under environmental stress like salinity and drought. He explores rhizobacteria that promote plant growth and mitigate stress through mechanisms such as ACC deaminase production, metabolomic reprogramming, and soil microbial community enhancement. His interests extend to soil metagenomics, microbial proteomics, and bioremediation, all aimed at achieving sustainable agriculture. A key aspect of his work involves isolating and characterizing stress-tolerant microbes from diverse agro-climatic zones, using them to enhance crop resilience and productivity. His work contributes to global efforts in climate-resilient farming, making him a notable figure in applied agricultural microbiology. He has co-authored numerous high-impact publications and book chapters that explore these themes, confirming his deep engagement in cutting-edge microbial biotechnology.

📚 Publications Top Notes:

  1. 🌱 Enhancement of Drought Tolerance in Transgenic Arabidopsis thaliana Plants Overexpressing Chickpea Ca14-3-3 Gene

  2. 🦠 Novel trends in endophytic applications for plant disease management

  3. 🌍 Rhizobacteria‐Mediated Bioremediation: Insights and Future Perspectives

  4. 🌾 Endospheric Microbiome-Assisted Alteration in the Metabolomic Profiling of Host towards Abiotic Stress Mitigation

  5. 🧬 Revealing the complexity of protein abundance in chickpea root under drought-stress using comparative proteomics

  6. 🔬 Characterization of alkalotolerant Alcaligenes and Bacillus strains for mitigating alkaline stress in Zea mays

  7. 🌿 Drought tolerant Ochrobactrum sp. inoculation helps maintain homeostasis in Zea mays under water stress

  8. ⚗️ ACC deaminase-producing Bacillus spp. mitigate salt stress and enhance Zea mays growth

  9. 🧪 Exploration of Soil Resistome Through a Metagenomic Approach

  10. 🍃 Essential Oils: Potential Application in Disease Management

📝 Conclusion:

Dr. Sankalp Misra is an excellent and deserving candidate for the Best Researcher Award. His consistent contributions to microbial biotechnology, evidenced by a strong portfolio of peer-reviewed publications, government fellowships, and research impact, make him stand out in his field. His work is not only academically significant but also socially and environmentally relevant in addressing global issues like soil degradation, crop yield loss due to climate stress, and sustainable agriculture.

ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN , Ankara Yildirim Beyazit University , Turkey

Dr. Aslı F. Ceylan is an accomplished pharmacologist and academic with a strong foundation in medical pharmacology and translational research. Born in Ankara, Turkey, in 1977, she has dedicated over two decades to advancing our understanding of cellular signaling pathways in disease states. After earning her degrees from Ankara University, she completed a prestigious postdoctoral fellowship at the University of Wyoming, where she began her international research journey. Currently serving at Ankara Yıldırım Beyazıt University School of Medicine, she contributes to both research and education. Fluent in Turkish, English, and Spanish, Dr. Ceylan bridges global scientific collaborations. Her work spans oxidative stress, inflammation, and cellular mechanisms in cardiovascular, metabolic, and neurodegenerative diseases. She is a prolific author and recipient of several international fellowships and project grants. Dr. Ceylan stands out as a dedicated scientist whose work contributes meaningfully to the field of signal transduction and molecular pharmacology.

Publication profile:

Orcid

✅ Strengths for the Award:

  1. Extensive Research in Signal Transduction Pathways
    Dr. Ceylan’s body of work demonstrates a consistent and high-impact focus on key signal transduction pathways—including NLRP3 inflammasome activation, mitophagy, ferroptosis, oxidative stress, and autophagy—across cardiovascular, metabolic, and neurological disease models.

  2. International Research Recognition
    She has held prestigious fellowships from NIH, the American Heart Association, and INBRE, contributing to globally relevant research while collaborating with international teams, especially in the U.S. and Europe.

  3. Strong Translational Relevance
    Her research links molecular mechanisms to potential therapies, such as her exploration of aldose reductase inhibitors, natural antioxidants, and neuroprotective compounds (e.g., rosemary extracts), bridging the gap between basic science and clinical relevance.

  4. Consistent Publication Record
    Dr. Ceylan has co-authored over a dozen peer-reviewed publications in the past three years alone, with topics directly tied to signal transduction, and published in reputable journals (e.g., Biochimica et Biophysica Acta, JACC: Basic to Translational Science).

  5. Leadership and Mentorship
    As a Principal Investigator for NIH-funded thematic research projects and an academic at a medical university, she demonstrates strong leadership, mentoring capabilities, and a sustained contribution to the scientific community.

🛠️ Areas for Improvement:

  1. Greater Focus on Human Clinical Studies
    While her animal model work is comprehensive, integrating more human cell or clinical data would increase the translational applicability of her research.

  2. Expanded Thematic Clarity in Signal Transduction
    Some of her recent works, while impactful, focus broadly on pharmacological effects of natural compounds. More thematic emphasis on specific intracellular signaling cascades (e.g., MAPK, PI3K/Akt, or JAK/STAT) could strengthen her profile specifically for a signal transduction-focused award.

  3. Visibility in Global Scientific Forums
    Increased participation as a speaker, panelist, or chair in international conferences focused on signal transduction would enhance her global academic footprint.

📘 Education:

Dr. Aslı F. Ceylan completed her entire academic training in Pharmacology at the prestigious Ankara University Faculty of Pharmacy. She earned her Bachelor of Science (B.Sc.) in Pharmacy in 1998, followed by a Master of Science (M.Sc.) in Pharmacology in 2001. Her strong interest in cellular mechanisms and drug interactions led her to pursue a Ph.D. in Pharmacology, which she successfully completed in 2007. Her doctoral research was further enhanced by a research fellowship at the National Institutes of Health (NIH) during 2004-2005, providing her hands-on experience in internationally recognized labs. This rigorous academic journey solidified her expertise in pharmacological mechanisms and preclinical modeling. Her academic training was consistently supported by competitive scholarships from the Turkish Scientific and Research Council (TÜBİTAK). Dr. Ceylan’s academic path reflects a deep commitment to understanding complex cellular systems and contributes significantly to her current role as a leader in molecular pharmacology and signal transduction.

💼 Experience:

Dr. Aslı F. Ceylan is currently a faculty member at Ankara Yıldırım Beyazıt University School of Medicine, where she serves in the Department of Medical Pharmacology. She has extensive academic and research experience spanning over 20 years. Her postdoctoral research at the University of Wyoming School of Pharmacy (2008–2009) focused on cardiovascular research, where she worked on signal transduction pathways involved in heart failure and metabolic disease. She also held a Principal Investigator (PI) role in NIH-funded INBRE research projects in the U.S. from 2011 to 2020. Dr. Ceylan has consistently contributed to multi-disciplinary research projects and collaborative studies, mentoring young researchers and postgraduate students. She has a solid background in oxidative stress, inflammation, and cellular apoptosis. Her translational approach, blending basic science with therapeutic innovation, aligns perfectly with the goals of signal transduction research. Her international exposure and consistent academic productivity make her a valuable asset to any scientific initiative.

🏆 Awards and Honors:

Dr. Aslı F. Ceylan has earned numerous national and international fellowships and honors throughout her career. She was awarded the Postdoctoral Fellowship by the American Heart Association and the University of Wyoming in 2008, which significantly propelled her research on cardiovascular signaling. She also received a Ph.D. research fellowship from the NIH (2004–2005), supporting her studies in cell signaling and oxidative stress. Domestically, she was funded by TÜBİTAK (Turkish Scientific and Research Council) for both her master’s and Ph.D. degrees. Most notably, she served as Principal Investigator for NIH INBRE Thematic Research Projects from 2011 to 2020, underlining her leadership and innovation in biomedical research. These accolades reflect her ongoing commitment to excellence in pharmacological science and her impact on the field of signal transduction, particularly in cardiovascular and neurodegenerative diseases. Her strong track record of competitive funding and recognition underscores her eligibility for the Signal Transduction Award.

🔬 Research Focus:

Dr. Ceylan’s research is centered on signal transduction pathways involved in oxidative stress, inflammation, mitophagy, and ferroptosis. Her work delves into the molecular mechanisms underlying cardiovascular diseases, diabetic complications, neurodegenerative disorders, and cancer, with a particular focus on mitochondrial function and cellular defense systems. She employs both in vivo and in vitro models to study how specific pharmacological agents modulate pathways like NLRP3 inflammasome activation, aldose reductase inhibition, and autophagy. Additionally, her recent research explores the therapeutic potential of natural compounds such as carnosol, carnosic acid, and rosemary extract in modulating redox balance and apoptotic pathways. Her interdisciplinary approach links natural product pharmacology with molecular signaling, making her contributions relevant across multiple domains. The translational value of her research, aiming to bridge the gap between bench and bedside, aligns directly with the core objectives of signal transduction studies and reinforces her eligibility for this distinguished award.

📚 Publications Top Notes:

  1. 🧬 Cardiomyocyte-specific deletion of endothelin receptor A obliterates cardiac aging via mitophagy and ferroptosis (2024)

  2. 🧫 Tackling chronic wound healing using nanomaterials: Advancements and future perspectives (2023)

  3. 🧪 Dual-acting aldose reductase inhibitor impedes oxidative stress in diabetic rat tissues (2023)

  4. 👁️ Cemtirestat induces ocular defense against glycotoxic stress in diabetic rats (2023)

  5. 🍷 NLRP3 inhibition protects against ethanol-induced cardiotoxicity in FBXL2-dependent manner (2023)

  6. 💉 Oxytocin and enalapril reduce epidural fibrosis post-laminectomy in rats (2023)

  7. 🧠 Calcium dobesilate therapy in cerebral hypoxia/reperfusion injury in rats (2023)

  8. 🧬 Beclin1 deficiency attenuates alcohol-induced cardiac dysfunction via ferroptosis inhibition (2022)

  9. 💓 Parkin insufficiency exacerbates cardiac remodeling through mitochondrial Ca2+ overload (2022)

  10. ❤️‍🩹 Beclin 1 haplosufficiency compromises stem-cell cardioprotection post-MI (2022)

🧾 Conclusion:

Dr. Aslı F. Ceylan is a highly qualified, internationally active, and academically productive researcher whose expertise lies in elucidating molecular mechanisms of disease through signal transduction pathways. Her deep involvement in studies on oxidative stress, mitochondrial dynamics, inflammation, and natural product pharmacology positions her as a valuable contributor to the advancement of molecular medicine.

Given her research output, grant leadership, and commitment to translational science, she is highly suitable for the Signal Transduction Award. Her work not only contributes to the understanding of intracellular signaling but also bridges basic research with therapeutic potential, making her a standout candidate for this recognition.

Esmail El-Fakharany | cell biology | Best Researcher Award

Prof. Esmail El-Fakharany | cell biology | Best Researcher Award

Prof. Esmail El-Fakharany  , city of scientific research and technological applications , Egypt

Dr. Tamer Abdelrazik is a distinguished researcher in the field of biological sciences and biotechnology, specializing in microbiology, virology, and the preparation of therapeutic agents. He has contributed significantly to the scientific community with over 102 published papers and 16 book chapters. Dr. Abdelrazik holds an esteemed academic position as a part-time research fellow at Pharos University in Alexandria and the Pharmaceutical and Fermentation Industries Development Centre (PFIDC), Alexandria, Egypt. He is also recognized for his leadership as the principal investigator of several funded research projects, focusing on COVID-19 treatments, cancer therapeutics, and environmental technologies. Dr. Abdelrazik’s academic and research achievements have led to his recognition in Stanford’s ranking of the top 2% of impacting scientists globally.

Publication Profile:

Orcid

Strengths for the Award:

Dr. Tamer Abdelrazik demonstrates exceptional research achievements in the fields of biological sciences, biotechnology, and applied biomedical sciences. His impressive track record includes over 102 journal papers and 16 book chapters, with significant contributions to the understanding of antimicrobial agents, cancer therapies, and novel drug delivery systems. Notably, his leadership on projects like “Lactoferrin-Zinc nanocombinations for COVID-19” reflects his innovative approach in addressing global health challenges. Additionally, his inclusion in Stanford’s top 2% ranking of impacting scientists for 2023 showcases his prominence and impact in scientific research. His high H-index (28) and academic supervision of 9 M.Sc. and 13 Ph.D. students highlight his dedication to advancing research and mentoring future scientists.

Areas for Improvement:

While Dr. Abdelrazik’s research output is impressive, expanding the scope of his studies into other emerging fields such as AI-driven drug discovery or sustainability in biomedical engineering could strengthen his scientific legacy. Further interdisciplinary collaborations could also enhance his research portfolio, bringing new perspectives into his work.

Education:

Dr. Tamer Abdelrazik holds an extensive academic background in biological sciences and biotechnology. His early academic training was conducted at recognized institutions in Egypt, followed by advanced studies leading to multiple degrees in the field of microbiology, immunology, and biochemistry. His educational journey enabled him to hone expertise in molecular biology, protein chemistry, tissue culture, and the study of antiviral and anticancer agents. Throughout his academic tenure, Dr. Abdelrazik demonstrated excellence in both theoretical knowledge and experimental practices, often publishing the outcomes of his studies in high-impact journals. He continues to guide future researchers through his supervision of several MSc and Ph.D. students. His education in both the practical and theoretical aspects of biomedical sciences underpins his success as a prominent researcher in various subfields, including therapeutic protein development and environmental biotechnology.

Experience:

Dr. Tamer Abdelrazik’s professional career spans over 15 years, during which he has built a reputation as a leading researcher in the fields of microbiology, biotechnology, and molecular biology. He started his career as a lab specialist at the National Research Centre, Cairo, where he worked from 2006 to 2011. Since 2023, he has held part-time research fellowships at Pharos University and PFIDC, Alexandria, Egypt. In addition to his research duties, he has served as a mentor, advising 9 MSc and 13 Ph.D. students. Dr. Abdelrazik has been the principal investigator on numerous grant-funded projects, focusing on advanced therapies for cancer, COVID-19, and environmental issues. His innovative work, particularly in the development of antimicrobial filters, nanomedicines, and drug delivery systems, has positioned him as a key figure in both academic and industrial research. His career is marked by constant collaboration with national and international research institutions.

Awards and Honors:

Dr. Tamer Abdelrazik has been recognized for his outstanding contributions to scientific research, especially in the fields of biotechnology and medical sciences. He was awarded the prestigious State Encouragement Award in 2019 by the Egyptian Academy of Science and Technology for his advancements in medical technologies. In 2014, he received a certificate from SRTA-City for his significant research achievements and distinguished publications. More recently, Dr. Abdelrazik was ranked in the top 2% of the most impactful scientists globally by Stanford in 2023. These accolades are a testament to his contributions in developing therapeutic agents, including antiviral and anticancer treatments, and his work in environmental health technologies. Dr. Abdelrazik’s recognition by such esteemed institutions highlights his dedication to advancing scientific knowledge and improving human health. These awards solidify his status as a key figure in his field and underscore his influence on global research.

Research Focus:

Dr. Tamer Abdelrazik’s research primarily focuses on advancing medical biotechnology and environmental technologies. He is particularly known for his work in virology, microbiology, and the development of antiviral agents, with a focus on COVID-19. Additionally, his research addresses cancer therapeutics, especially the formulation of nano-complexes to treat various carcinomas. Dr. Abdelrazik’s work includes the investigation and development of novel bioactive compounds such as antimicrobial agents and the fabrication of therapeutic proteins and enzymes. His ongoing projects also explore environmental applications, such as antimicrobial air filters integrated with air-conditioning systems and water purification membranes. His research aims to merge scientific knowledge with practical solutions to address global health challenges. Moreover, he is dedicated to enhancing the delivery of therapeutic agents through innovative drug delivery systems, with a special emphasis on tissue culture, protein chemistry, and immunology.

Publications Top Notes:

  1. Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with α-Amylase, Lipase, and Trypsin 🧑‍🔬🍀 (2024)
  2. Influence of Cedar Essential Oil on Polyvinyl Alcohol/Cedar Oil/Kaolin Composite Hydrogels 🌲💧 (2023)
  3. Preparation and Physicochemical Characterization of Gelatin–Aldehyde Derivatives 🧪🧬 (2022)
  4. Fatty N-Hexadecanyl Chitosan Derivatives for Biomedical Applications 🧬💉 (2022)
  5. Development of Polyvinyl Alcohol/Kaolin Sponges for Wound Healing Promotion 💉🌱 (2021)
  6. Green Cation Exchange Membrane Doped with Ceramic Nanotubes for Fuel Cells 🔋🔬 (2021)
  7. Effects of Octenyl Succinic Anhydride on Rice Starch Emulsions 🍚💡 (2020)
  8. Antimicrobial Activity of Modified Aminated Chitosan with Aromatic Esters 🦠🍃 (2019)
  9. Cinnamyl O-amine Functionalized Chitosan for Drug Delivery 💊🌿 (2019)
  10. Development of Polyelectrolyte Membranes for Direct Methanol Fuel Cells 🔋🧪 (2019)
  11. Smart Alginate/Chitosan Microcapsules for Colon-Specific Drug Delivery 💊👨‍🔬 (2019)

Conclusion:

Dr. Abdelrazik’s outstanding academic and research contributions make him a highly deserving candidate for the Research for Best Researcher Award. His consistent achievements in high-impact publications, leadership in research projects, and innovative scientific discoveries have placed him at the forefront of his field, solidifying his reputation as an influential researcher.

 

 

 

Ping lu | Environment | Best Researcher Award

Assoc Prof Dr. Ping lu | Environment | Best Researcher Award

Assoc Prof Dr. Ping lu , China university of mining and technology , China

Dr. Ping Lu is an Associate Professor at China University of Mining and Technology, specializing in Environmental Science and Engineering. With a Ph.D. from the University of North Carolina at Charlotte, she has dedicated her career to researching environmental contaminants and their impact on public health. Dr. Lu has authored numerous publications and contributed significantly to the field through innovative research projects focused on pollution prevention, management, and remediation. Her work has led to the development of advanced techniques to combat antibiotic resistance and improve environmental health. An active educator, she teaches core courses to undergraduate and graduate students, emphasizing sustainable development and environmental control.

Publication Profile

Google Scholar

Strengths for the Award

Dr. Ping Lu’s extensive research contributions in environmental science, particularly in the areas of contaminant investigation and remediation, showcase her commitment to safeguarding public health. With a high citation index of 553 and 37 published journals, her work demonstrates significant impact and innovation. Her development of advanced remediation techniques, such as ‘polarity exchange’ electrokinetic remediation, highlights her ability to provide practical solutions to pressing environmental challenges. Additionally, her involvement in high-profile research projects, coupled with her role in educating future scientists, underscores her dedication to both research and teaching.

Areas for Improvement

While Dr. Lu’s research is robust, further engagement with international collaborations could enhance the global impact of her work. Expanding her outreach to diverse research communities may lead to new perspectives and innovative approaches. Additionally, increasing public engagement initiatives could raise awareness of her findings and promote wider adoption of her remediation strategies.

Education 

Dr. Ping Lu holds a Ph.D. in Infrastructure and Environmental Systems from the University of North Carolina at Charlotte, where she developed a strong foundation in environmental research. Prior to that, she earned her Bachelor’s degree in Environmental Science from China University of Mining and Technology (CUMT). Her academic training provided her with the expertise needed to investigate complex environmental issues and design effective remediation strategies. Throughout her career, Dr. Lu has remained committed to advancing her knowledge and skills in environmental science, continually integrating new findings into her teaching and research practices. Her educational journey reflects a profound dedication to addressing environmental challenges and promoting public health through innovative research.

Experience

Dr. Ping Lu has extensive experience in academia and research, currently serving as an Associate Professor in Environmental Science and Engineering at CUMT. Her research portfolio includes numerous projects funded by national and provincial grants, focusing on groundwater pollution, ecological restoration, and contaminant behavior in various environments. Dr. Lu has collaborated with key institutions, including the CDC, to enhance her research’s practical implications. Additionally, she has served on editorial boards, contributing to the dissemination of vital research findings. With a citation index of 553 and over 37 published journals, her work has significantly influenced the field. Dr. Lu also engages in consultancy projects, providing her expertise to industries seeking sustainable practices. Through teaching and mentorship, she has inspired the next generation of environmental scientists, fostering a culture of innovation and dedication within her department.

Research Focus 

Dr. Ping Lu’s research primarily delves into environmental contaminants, their behavior, and innovative remediation techniques. Her work is centered on understanding the processes governing the migration and proliferation of antibiotic-resistant microorganisms and pathogenic contaminants. She has developed cost-effective treatment methods, including ‘polarity exchange’ electrokinetic remediation and advanced mesoporous materials synthesis, to combat environmental pollution effectively. Dr. Lu’s investigations address critical issues in groundwater pollution, contaminant removal, and public health safeguarding. Her ongoing projects include studying Cryptosporidium transmission in sewage treatment plants and exploring the acid-generating mechanisms in coal mining areas. By combining theoretical insights with practical applications, Dr. Lu aims to provide sustainable solutions for environmental health challenges, contributing to the broader understanding of contamination processes and their regulatory implications.

Publication Top Notes

  1. Electrokinetic remediation of chromium-and cadmium-contaminated soil from abandoned industrial site 🌍
  2. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment 🔬
  3. Environmental cumulative effects of coal underground mining ⛏️
  4. Main challenges of closed/abandoned coal mine resource utilization in China 🇨🇳
  5. Degradation mechanisms of cefotaxime using biochar supported Co/Fe bimetallic nanoparticles 🌱
  6. Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron 💧
  7. Distribution and bioavailability of metals in subsidence land in a coal mine China ⚖️
  8. Removals of cryptosporidium parvum oocysts from swimming pool water by diatomaceous earth filtration 🏊‍♀️
  9. Review of antibiotic pollution in the seven watersheds in China 📚
  10. Review of swimming-associated cryptosporidiosis and Cryptosporidium oocysts removals from swimming pools 🦠
  11. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration 🧪
  12. Cryptosporidium Contamination and Attributed Risks in Yunlong Lake in Xuzhou, China 🚰
  13. Synthesis of amino-functionalized mesoporous materials with environmentally friendly surfactants 🌿
  14. Low impact development design for urban stormwater management-a case study in USA 🇺🇸
  15. Environmental concerns of shale gas production in China 🌐
  16. A full-scale study of Cryptosporidium parvum oocyst removals from swimming pools via sand filtration 🏖️
  17. Improvement in electrokinetic remediation of chromium contaminated soil with polarity exchange technique ⚡
  18. Removal of sulfonamide resistance genes in fishery reclamation mining subsidence area by zeolite 🧬
  19. Distribution of antibiotic resistance genes and microbial communities in a fishery reclamation mining subsidence area 📊
  20. Controlling factors of shortcut nitrification in sequencing batch reactor 🔄

Conclusion

In conclusion, Dr. Ping Lu is an exemplary candidate for the Best Researcher Award. Her innovative contributions to environmental science and public health, combined with her teaching dedication, position her as a leader in her field. With opportunities for further collaboration and outreach, her future research could yield even greater impacts on global environmental health challenges.

 

 

Arash Mokhtari | Medicinal Plant | Best Researcher Award

Dr Arash  Mokhtari |  Medicinal Plant |  Best Researcher Award

Research fellow at  Agriculture Biotechnology Research Institute of Iran (ABRII), Iran

Arash Mokhtari is a distinguished Agricultural Biotechnologist with extensive expertise in plant tissue culture and advanced biotechnological methodologies. He earned his Ph.D. in Agricultural Biotechnology from the University of Tehran, Iran, where he achieved National Rank 2 with his research on elicitor-mediated gene expression in Valeriana officinalis. His Master’s degree, also from the University of Tehran, focused on the effect of plant growth regulators on somatic embryogenesis in wheat.

Profile:

Research Excellence

Innovative Research: Dr. Mokhtari’s research in plant tissue culture and agricultural biotechnology is cutting-edge. His work on the elicitor-mediated expression of genes in Valeriana officinalis, and optimization of bioactive compound extraction methods, demonstrates significant contributions to the field of agricultural biotechnology.

Publication Record: With numerous high-impact publications, including studies on efficient production and accumulation of valuable compounds, Dr. Mokhtari has a robust record of disseminating his research. His papers are published in reputable journals, reflecting the high quality and relevance of his work.

Leadership and Impact

Leadership Roles: As Head of the Plant Tissue Culture Laboratory and Advanced Research Greenhouses at the Agricultural Biotechnology Research Institute, Dr. Mokhtari has shown leadership in both research and practical applications. His role in managing teams and optimizing research protocols indicates his capability in driving significant advancements in his field.

National Recognition: Dr. Mokhtari has achieved high national rankings in his academic endeavors, including his Ph.D. and Master’s studies, which underscores his excellence and impact in the field of agricultural biotechnology.

Practical Applications

Agricultural Biotechnology: His research directly impacts agricultural practices by improving plant propagation techniques and enhancing crop yield efficiency. The practical applications of his work in plant tissue culture and genetic improvement are crucial for advancing agricultural productivity.

Professional Affiliations

Institutional Involvement: Dr. Mokhtari is affiliated with prestigious institutions, including the Agricultural Biotechnology Research Institute of Iran and the College of Agriculture and Natural Resources at the University of Tehran. His involvement with these organizations highlights his commitment to advancing agricultural biotechnology.

Conclusion

Dr. Arash Mokhtari’s extensive research contributions, leadership in advanced biotechnology research, and the practical implications of his work make him a highly suitable candidate for the Research for Best Researcher Award. His innovative approaches and significant achievements in plant biotechnology stand out as exemplary in his field.

Publication Top Notes:

  • “A highly efficient method for somatic embryogenesis of Kelussia odorotissima Mozaff., an endangered medicinal plant” in Plant Cell, Tissue and Organ Culture (PCTOC), 2017.
  • “Effect of plant growth regulators on direct shoot regeneration of wheat immature embryonic explants” in Journal of Agricultural Engineering and Biotechnology, 2013.
  • “Direct regeneration from leaves and nodes explants of Physalis peruviana L.” in International Journal of Farming and Allied Sciences, 2013.
  • “Rosmarinic acid and anthocyanin content improvement by foliar application of Fe and Zn fertilizer in Lemon balm (Melissa officinalis L.)” in International Journal of Advanced Biological and Biomedical Research, 2014.
  • “Plant regeneration through callus induction on medicinal herb Viola odorata – Role of plant growth regulators and explants” in Agriculture & Forestry, 2015.
  • “Callus induction and plant regeneration of Valeriana officinalis are affected by different leaf explants and various concentrations of plant growth regulators” in BioTechnologia, 2016.
  • “Rapid micropropagation of Cucumis sativus var. Dastgerdi (Iranian cultivar) by Node Culture Technique” in British Biotechnology Journal, 2014.
  • “Effect of Plant Growth Regulators on Seed Germination and Development of Protocorm and Seedling of Phalaenopsis amabilis (L.) Blume (Orchidaceae)” in Annual Research & Review in Biology, 2014.
  • “Engineering of secondary metabolites in tissue and cell culture of medicinal plants: an alternative to produce beneficial compounds using bioreactor technologies” in Crop Improvement: Sustainability Through Leading-Edge Technology, Springer Publications, 2017.
  • “Interactive effects of plant growth regulators and explants on direct shoot regeneration of Viola odorata” in BioTechnologia, 2016.
  • “Influence of plant growth regulators on in vitro culture and regeneration of Dracocephalum kotschyi” in International Journal of Agriculture Innovations and Research, 2014.