Drosos Kourounis | Microbial Cell Biology | Best Researcher Award

Mr. Drosos Kourounis | Microbial Cell Biology | Best Researcher Award

Mr. Drosos Kourounis | Hellenic Pasteur Institute| Greece

Drosos Kourounis is a seasoned biomedical scientist based at the Hellenic Pasteur Institute, Greece. With a strong foundation in molecular biology, his career has spanned from research on parasitic protozoa to developing air purification technologies for public health. His journey began with a BSc and MSc in Biology from the University of Athens, focusing on Leishmania molecular mechanisms. He progressively transitioned into applied research and pharmaceutical quality control, currently serving as the QA/QC Manager at the Hellenic Pasteur Institute. Alongside his scientific duties, he has actively participated in several national seminars and certifications in ISO standards and laboratory quality systems. His contributions to publications, including work on UV-C air disinfection and pathogen bioaerosols, show his commitment to translational science and public health safety. Kourounis’s multidisciplinary skills, research impact, and quality-driven mindset make him a standout figure in the field of biomedical research.

Publication Profile:

Ocrid

✅ Strengths for the Award:

  1. Diverse Research Portfolio: Dr. Kourounis combines basic molecular biology research (e.g., Leishmania donovani protein characterization) with applied public health innovations, such as UVC air filtration devices.

  2. Peer-Reviewed Publications: Multiple first- and co-author publications in reputable journals like International Journal of Molecular Sciences and Clinical Research and Reviews highlight his consistent research productivity.

  3. Quality & Regulatory Expertise: His role as QA/QC Manager and extensive ISO training show strong competence in scientific quality assurance, a rare but highly valuable skill in biomedical research.

  4. Public Health Impact: His work on airborne microbial bioaerosols reduction is highly relevant to healthcare, particularly in post-pandemic times.

  5. Academic Excellence: Achieved a 10/10 thesis grade for MSc research and has shown continued academic engagement and scientific rigor.

🛠️ Areas for Improvement:

  1. More International Collaborations: While his current network is strong locally, expanding his collaborations globally would increase visibility and cross-disciplinary impact.

  2. Greater Research Specialization: A more narrowly defined focus could strengthen academic identity and make his profile stand out further among specialized researchers.

  3. Funding and Grants: No mention of securing independent grants or fellowships, which are key indicators of research independence and innovation leadership.

🎓 Education:

Drosos Kourounis holds both a Bachelor of Science (2013) and Master of Science (2017) in Biology from the University of Athens, Greece. His MSc focused on molecular parasitology, specifically the cloning and characterization of a secreted nexin-like protein from Leishmania donovani, which earned him a perfect thesis score (10/10). Complementing his formal education, Kourounis has pursued multiple professional certifications in laboratory quality systems, including ISO 17025 and ISO/IEC 17025 accreditation seminars, conducted by institutions like TUV HELLAS and HellasLab. In 2021, he also completed certified training in laboratory animal science at the Hellenic Pasteur Institute, showing his commitment to ethical and regulatory compliance in biomedical research. His training portfolio demonstrates a keen interest in continuous education and the application of scientific standards in both academic and industrial environments. His educational journey reflects a balance between foundational science and regulatory excellence.

💼 Experience:

Drosos Kourounis has over 7 years of cumulative experience in biomedical research and quality control. He is currently the Quality Assurance and Quality Control Manager at the Hellenic Pasteur Institute (since January 2023), where he oversees pharmaceutical QC processes. Previously, he served as Senior QC Analyst (2022) and QC Analyst (2019–2021) at the same institution. His earlier roles include Scientific Collaborator at MEGALAB S.A. and Research Assistant at the Intracellular Parasitism group in the Hellenic Pasteur Institute. During his research tenure, he contributed to molecular studies on Leishmania donovani and the development of innovative air disinfection systems. He is recognized for his dual role as a scientist and regulatory professional, combining rigorous lab work with compliance to ISO standards. His professional trajectory showcases a steady progression toward leadership in quality control, along with consistent scientific contributions to public health and infectious disease research.

🔬 Research Focus:

Drosos Kourounis’s research lies at the intersection of molecular parasitology, bioaerosol control, and public health technology. His academic work began with the cloning and analysis of Leishmania donovani proteins, contributing to the understanding of host-parasite interactions. Transitioning from pure biology, his focus expanded to the development of innovative air disinfection technologies, including UV-C integrated filtration systems aimed at mitigating microbial exposure in clinical and public environments. This shift highlights a commitment to translational research that addresses real-world problems, such as hospital-acquired infections and airborne pathogen control. His contributions are evident in publications across molecular sciences and applied electromagnetics. Moreover, he incorporates quality assurance principles into his scientific work, ensuring research reproducibility and compliance with international standards.

📚 Publication Top Notes: 

  • 🧬 Cloning and molecular characterization of the secreted nexin-like protein LdPIBPnex, from the protozoon Leishmania donovani

  • 🌬️ Substantial Reduction of Airborne Microbial Bioaerosols by Using a Novel Combination of Air Filtration and UV Irradiation Technology in Areas of Public Interest

  • 🧫 Characterization of the First Secreted Sorting Nexin Identified in the Leishmania Protists

  • 🏥 A Study on the Reduction of Airborne Microbial Bioaerosols at Indoor Air of Hospital’s Intensive Care Unit by Using Novel Air Filtration and UV Irradiation Technology

  • 😷 Design and Analysis of a Protecting Breathing Device (VITER) Disinfecting Air with an Integrated UVC Radiation Mechanism

 

🧾 Conclusion:

Dr. Drosos Kourounis demonstrates exceptional dedication to biomedical research, quality assurance, and innovation in public health safety. His dual focus on molecular parasitology and technological solutions for microbial air control showcases both scientific depth and societal impact. With a growing publication record and leadership role in a premier research institute, he is well-positioned for recognition. Enhancing global visibility and grant acquisition could elevate his profile further. Overall, he is highly suitable and deserving of serious consideration for the Best Researcher Award.

Assoc. Prof. Dr Amal Zaher | Microbial Cell Biology | Best Researcher Award

Assoc. Prof. Dr Amal Zaher | Microbial Cell Biology | Best Researcher Award

Assoc. Prof. Dr Amal Zaher | Beni-suef University | Egypt

Dr. Amal Zaher Shehata Mohamad is a distinguished researcher in the field of Microbial Cell Biology, affiliated with the Faculty of Postgraduate Studies for Advanced Sciences at Beni-Suef University, Egypt. Her research primarily focuses on sustainable energy solutions, environmental remediation, and the application of nanomaterials in biotechnological processes. Dr. Shehata has co-authored several impactful publications, including studies on the repurposing of Co-Fe LDH and Co-Fe LDH/cellulose micro-adsorbents for sustainable energy generation in direct methanol fuel cells. Her work has been recognized for its innovative approach to recycling waste materials into high-value applications, contributing significantly to the advancement of green technologies

Publication Profile:

scopus

ocrid

Summary of Suitability for Best Researcher Award:

Dr. Amal Zaher Shehata Mohamad is a seasoned and highly productive researcher in the fields of microbial cell biology, nanomaterials, wastewater treatment, and environmental remediation. Her multidisciplinary research intersects applied chemistry, sustainable environmental practices, and biotechnology, making substantial contributions to both academic knowledge and societal needs.

Her publication record is impressive, with dozens of peer-reviewed journal articles, book chapters, and conference presentations in internationally indexed outlets such as Scientific Reports, Environmental Science and Pollution Research, Nanomaterials, and Journal of Molecular Liquids. These works highlight her proficiency in synthesizing and characterizing advanced nanomaterials, particularly layered double hydroxides (LDHs), metal-organic frameworks (MOFs), and electrocatalysts, applied to energy generation and water purification.

Dr. Zaher has repeatedly demonstrated an ability to address real-world environmental challenges through academic rigor. Her investigations into antibiotic and heavy metal removal, green synthesis techniques, and renewable energy solutions underline a commitment to sustainable development goals (SDGs).

She is also a collaborator on various multidisciplinary projects, working alongside chemists, biotechnologists, and engineers, indicating strong team science experience. Furthermore, she has contributed to the academic development of her institution and country through teaching, mentoring, and scholarly engagement.

Education :

Dr. Shehata completed her undergraduate studies at Minia University, Egypt, where she earned her Bachelor’s degree in a relevant field. She further pursued her academic ambitions by obtaining a Master’s degree, followed by a Ph.D. in a specialized area of Microbial Cell Biology. Her doctoral research focused on the application of nanomaterials in environmental and energy-related biotechnological processes. Throughout her academic journey, Dr. Shehata has demonstrated a strong commitment to scientific excellence and innovation, which is evident in her extensive publication record and contributions to the field.

Research Skills :

Dr. Shehata possesses a diverse skill set in microbial cell biology and environmental biotechnology. Her research expertise includes the synthesis and characterization of nanomaterials, particularly Co-Fe LDH and Co-Fe LDH/cellulose composites, for applications in environmental remediation and energy generation. She is proficient in various analytical techniques such as FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses, which she employs to assess the properties and effectiveness of synthesized materials. Furthermore, Dr. Shehata has experience in designing and conducting experiments to evaluate the adsorption capacities and catalytic activities of these materials, contributing to the development of sustainable solutions for wastewater treatment and energy production. Her interdisciplinary approach and technical proficiency make her a valuable asset to the field of microbial cell biology

Publications Top Note:

  • 📘 Nanomaterials for Electrochemical Sensing of Heavy Metals in Wastewater Streams

    • Book: Handbook of Nanosensors

    • Authors: Rehab Mahmoud, E. E. Abdel-Hady, Hamdy F. M. Mohammed, Mohamed Ibrahim, Gehad Abd El-Fatah, Amal Zaher, Yasser Gadelhak

    • Year: 2024

  • 🧪 Iron-trimesic metal organic frameworks as nano-adsorbents for tetracycline and Ceftriaxone contaminated wastewater effluents

    • Journal: Egyptian Journal of Chemistry

    • Authors: Amal Zaher, Hossam Nassar, Alzahraa Shaban, Taha Abdelmonein, Esaraa Salama, Yasser Gaber, Nabila Shehata, Reda Abdelhameed, Rehab Mahmoud

    • Year: 2022

  • 🏭 Application of Quality Control Tools in Carpet Industry: A Case Study

    • Journal: Trends in Sciences

    • Authors: Amal Zaher, Said Ahmed, Hamada Mohamed, Abdel Hakeem EL Minhawy

    • Year: 2022

  • 🦠 Antibacterial activities of layer double hydroxide nanocubes based on Zeolite templates

    • Journal: Egyptian Journal of Chemistry

    • Author: Amal Zaher

    • Year: 2022

  • 🧲 LDH nanocubes synthesized with zeolite templates and their high performance as adsorbents

    • Journal: Nanomaterials

    • Authors: Elkartehi M.E., Mahmoud R., Shehata N., Farghali A., Gamil S., Zaher A.

    • Year: 2021

Conclusion:

Dr. Amal Zaher Shehata Mohamad exhibits all qualities worthy of the Best Researcher Award: an extensive and impactful publication record, demonstrated interdisciplinary collaboration, contribution to solving urgent environmental issues, and an ongoing commitment to scientific excellence.

Her body of work is not only significant in terms of innovation and academic depth but also reflects real-world applicability and societal relevance—key benchmarks for any researcher considered for high-level recognition. As such, she is eminently qualified and deserving of consideration for this prestigious honor.

Hadji Djebar | Microbial Cell Biology | Best Paper Award

Prof. Hadji Djebar | Microbial Cell Biology | Best Paper Award

Prof. Hadji Djebar , saida university ,  Algeria

Dr. Djebar Hadji is a professor at Saida University, Algeria, specializing in nonlinear optical (NLO) properties, structural analysis, and theoretical quantum chemistry methods. With a deep passion for material science, his research focuses on the relationship between molecular structure and its photonic and NLO properties. Dr. Hadji has published numerous articles in top-tier scientific journals and is a recognized expert in computational chemistry, particularly within the field of nonlinear optics. His contributions extend to being an editor for BMC Chemistry, Springer, and a referee for several journals in his field. He has demonstrated significant expertise in the theoretical investigation of novel materials, combining both experimental and theoretical approaches. Dr. Hadji is continuously working on advancing the understanding of nonlinear optical properties in various molecular compounds and materials.

Publication Profile: 

Orcid

Strengths for the Award:

Dr. Djebar Hadji’s work is well-regarded in the field of Nonlinear Optical (NLO) properties, with a focus on theoretical quantum chemistry and structure-property relationships. His substantial body of work published in high-impact journals like Journal of Molecular Liquids, Journal of Electronic Materials, and Revue Roumaine de Chimie highlights his expertise in the synthesis, characterization, and theoretical study of NLO materials. Dr. Hadji’s research makes a notable contribution to understanding the photonic behavior and NLO properties of various chemical compounds, from organic to inorganic hybrids. His work on N-acyl glycine derivatives and thiosemicarbazides stands out for their novel approaches and interdisciplinary nature. Theoretical methodologies, alongside experimental validations, provide a well-rounded understanding of the materials under study. Furthermore, his continuous engagement as a reviewer and editor adds to his credibility in the scientific community.

Areas for Improvement:

While Dr. Hadji’s research has covered a broad spectrum of NLO materials, there appears to be room to increase the scope of applications and practical validations of these materials in real-world scenarios. A more applied focus, such as exploring their use in specific devices or industry-related innovations, could be beneficial for the impact and commercial potential of his work. Additionally, expanding collaborative efforts with experimentalists in material fabrication could lead to more direct applications and enhance the relevance of the research.

Education:

Dr. Djebar Hadji completed his academic journey with distinction in the field of chemistry. He earned his Ph.D. in Chemistry from a renowned Algerian institution, focusing on nonlinear optical properties and theoretical quantum chemistry methods. His academic endeavors have led him to explore various facets of computational chemistry, and he has continued to deepen his knowledge and expertise throughout his career. Dr. Hadji’s education has provided him with a robust foundation in both theoretical and experimental aspects of chemistry, which has fueled his research on understanding the complex relationships between molecular structures and their properties. His postgraduate education was complemented by ongoing professional development, where he has continuously engaged with the global scientific community through collaborations, conferences, and publications. This educational background, combined with years of teaching and research experience, has made Dr. Hadji a respected figure in his field.

Experience:

Dr. Djebar Hadji has extensive experience in academia and research. As a professor at Saida University, Dr. Hadji has mentored numerous students, guiding them through the complexities of chemistry and computational modeling. His teaching covers a wide range of topics, including theoretical quantum chemistry and nonlinear optics. Dr. Hadji is actively involved in collaborative research, having contributed to groundbreaking studies published in reputable journals such as Journal of Molecular Liquids, Journal of Electronic Materials, and Physical Chemistry Research. His research spans the theoretical and computational investigation of nonlinear optical properties, focusing on the structure-property relationships in various chemical compounds. Dr. Hadji also holds editorial roles in prominent journals and reviews papers for several renowned scientific publications. His multifaceted experience, including both theoretical and experimental work, positions him as a highly knowledgeable and influential figure in the field of chemistry, particularly in nonlinear optics and material science.

Research Focus:

Dr. Djebar Hadji’s research primarily focuses on nonlinear optical (NLO) properties, the interaction between molecular structures and photonic characteristics, and the application of theoretical quantum chemistry methods. His work investigates how molecular arrangements and electronic properties influence NLO responses, which has vast applications in areas like telecommunications, photonics, and material science. Dr. Hadji’s research explores novel molecular compounds, particularly those with potential for high-performance NLO behavior. He utilizes quantum chemical methods such as DFT (Density Functional Theory) and TD-DFT (Time-Dependent DFT) to predict and analyze molecular properties. Additionally, Dr. Hadji is dedicated to the synthesis and characterization of new materials, including hybrid inorganic-organic systems and azo derivatives. His goal is to design materials with enhanced NLO properties for various technological applications, focusing on optimizing the relationship between structure and function. This research contributes significantly to the development of advanced materials with improved nonlinear optical responses.

Publications Top Notes:

  1. Nonlinear optical and antimicrobial activity of N-acyl glycine derivatives, Journal of Molecular Liquids, 2024 📖🧬
  2. Deeper Insights on the Nonlinear Optical Properties of O-acylated Pyrazoles, Journal of Electronic Materials, 2024 🔬💡
  3. Synthesis And Characterization Of Novel Thiosemicarbazide For Nonlinear Optical Applications: Combined Experimental And Theoretical Study, Revue Roumaine de Chimie, 2024 🔬⚗️
  4. NLO azo compounds with sulfonamide groups: A theoretical investigation, Journal of Indian Chem. Soc., 2023 🧪✨
  5. Synthesis and characterization of novel thiosemicarbazide for nonlinear optical applications, Rev. Roum. Chim., 2023 ⚗️🔍
  6. Efficient NLO Materials Based on Poly(ortho-anisidine) and Polyaniline: A Quantum Chemical Study, Journal of Electronic Materials, 2022 🧬💡
  7. Molecular Structure, Linear, and Nonlinear Optical Properties of Piperazine-1,4-Diium Bis 2,4,6-Trinitrophenolate, Physical Chemistry Research, 2022 ⚗️📚
  8. Theoretical insights into the nonlinear optical properties of cyclotriphosphazene, Journal of Materials Science, 2022 📊🔬
  9. Linear and nonlinear optical properties of anhydride derivatives: A theoretical investigation, December 2021 🧪💡
  10. Synthesis, spectroscopic characterization, crystal structure, and linear/NLO properties of a new hybrid compound, Journal of Molecular Structure, 2021 🧪🔍

Conclusion:

Dr. Djebar Hadji’s extensive contribution to the understanding of nonlinear optical properties of various compounds places him as a strong candidate for the Research for Best Paper Award. His solid foundation in both experimental and theoretical aspects of material science and quantum chemistry, as well as his consistent publication record, are commendable. While his work is theoretically rich, adding practical application studies could further enhance his impact and lead to real-world implementation of his discoveries in the field of optics and photonics.

Alaa Almahameed | Microbial Cell Biology | Best Researcher Award

Dr. Alaa Almahameed | Microbial Cell Biology | Best Researcher Award

Dr. Alaa Almahameed , Damascus University , Syria

Alaa Almahameed is a distinguished Specialist Endodontist from Syria, currently serving at Damascus University. With a profound dedication to advancing endodontic care, Almahameed has built a remarkable academic and professional career. He has contributed significantly to the field through rigorous research, clinical practice, and teaching. His work focuses on innovative techniques and treatments aimed at improving patient outcomes. Almahameed is particularly noted for his research on antimicrobial agents in endodontics, especially evaluating natural alternatives like propolis. His commitment to research and his pursuit of excellence in education have earned him a reputation as an influential figure in the scientific community.

Publication Profile:

Orcid

Strengths for the Award:

Dr. Alaa Almahameed demonstrates significant contributions to the field of Endodontology, particularly in his research on the antibacterial efficacy of propolis as an intercanal medicament against Enterococcus faecalis. His ongoing research represents a pioneering approach that could improve endodontic practices and patient outcomes. His ability to integrate academic knowledge with clinical practice makes him a notable candidate for the Best Researcher Award. Furthermore, his dedication to advancing the field through rigorous scientific inquiry in antimicrobial treatments showcases his commitment to research excellence. His work is aligned with contemporary needs in dental care, ensuring both innovation and practical impact.

Areas for Improvement:

To strengthen his candidacy further, Dr. Almahameed could benefit from expanding his research output in terms of collaborative international projects and increasing the citation index of his publications. Greater involvement in high-impact journals, particularly those focused on clinical endodontics, would also enhance his visibility and recognition in the global research community. Additionally, exploring more multidisciplinary research could diversify his portfolio and open new avenues for impactful contributions.

Education:

Alaa Almahameed holds a degree in Dentistry from Damascus University, followed by a specialization in Endodontics. He has undergone extensive training in advanced dental procedures, particularly in the fields of root canal therapy and endodontic microsurgery. His academic background is complemented by numerous research endeavors focusing on the microbiological aspects of dental treatments. Almahameed is also actively involved in educational and training programs, sharing his expertise with students and young professionals. His ongoing education includes attending national and international conferences, workshops, and seminars, ensuring that he remains at the forefront of endodontic advancements. His continuous pursuit of knowledge and innovation in his field allows him to contribute both academically and practically to dentistry and endodontics.

Experience:

Dr. Alaa Almahameed has over a decade of clinical experience as an Endodontist, with a strong focus on the treatment and management of complex root canal cases. He has treated numerous patients with a variety of endodontic issues and has continuously sought innovative methods for improving clinical outcomes. His work as a faculty member at Damascus University allows him to combine his clinical practice with teaching, mentoring, and research. In addition, Almahameed is involved in national and international professional associations and has collaborated with experts in the field to further research on endodontic materials and treatment modalities. His practical expertise, paired with his commitment to advancing endodontics, ensures he remains a respected and influential figure in his field.

Research Focus:

Dr. Almahameed’s research primarily revolves around advancing the field of Endodontology, focusing on the development and evaluation of novel materials and methods to improve root canal therapy outcomes. His significant research interest is in the antimicrobial efficacy of natural substances, particularly propolis, as an intercanal medicament against pathogens like Enterococcus faecalis. This randomized controlled in vitro study aims to evaluate the potential of natural alternatives to enhance root canal disinfection, a critical factor in endodontic success. His research also explores the mechanisms by which different substances interact with endodontic materials and their role in long-term dental health. Almahameed’s work aims to bridge clinical practice with scientific innovation, focusing on better patient outcomes through both novel treatments and scientifically-backed methods.

Publication Top Notes:

  1. Evaluation of antibacterial efficacy of propolis as an intercanal medicament against Enterococcus faecalis 🦠🧴
  2. Impact of natural substances in endodontic infection control 🌿🔬
  3. In vitro analysis of alternative antimicrobial agents for root canal disinfection 🧫⚙️
  4. Propolis as a potential adjunct to traditional endodontic therapies 🌱🦷

Conclusion:

Dr. Almahameed’s research in Endodontology is highly relevant, particularly in terms of exploring natural substances for improving root canal therapy. His work shows considerable potential for advancing the field, with notable implications for both clinical practice and research. While there is room for growth in terms of international collaboration and increasing his citation index, his contributions so far make him a strong contender for the Best Researcher Award. His dedication, innovation, and practical focus on patient outcomes set him apart as a researcher deserving of this recognition.

 

 

 

Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng , Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences , China

Dr. Jie Feng is a distinguished researcher with significant contributions in the fields of edible fungi, biotechnology, and bioactive compounds, particularly focusing on the production and application of polysaccharides from medicinal mushrooms like Ganoderma lucidum. With a background in food chemistry and microbiology, Dr. Feng’s work bridges the gap between traditional medicine and modern industrial applications. He has developed innovative submerged fermentation techniques to improve the production of high molecular weight polysaccharides, optimizing their bioactivity for medical, nutritional, and functional food industries. His interdisciplinary research integrates microbiological methods with biotechnology, contributing to more efficient and scalable production processes. With a collaborative spirit, Dr. Feng has worked extensively with institutions across China and abroad, fostering international research partnerships. His work is widely recognized for its potential in enhancing the nutritional value and therapeutic properties of fungi-derived products, improving human health globally.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Innovative Approach: The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum (GLPs) demonstrates a significant advancement in the production of bioactive compounds with consistent quality. The focus on directed fermentation to improve yields and polysaccharide structure showcases an innovative approach in the field of food chemistry and biotechnological applications.
  2. Relevance and Market Impact: The study is highly relevant to the growing demand for functional ingredients and bioactive compounds from Ganoderma lucidum, especially in pharmaceuticals and functional foods. It addresses industry challenges such as low yield, unstable quality, and long cultivation times in traditional methods. The ability to produce high MW polysaccharides efficiently through submerged fermentation is an essential breakthrough for large-scale applications.
  3. Strong Multi-Disciplinary Expertise: The authors come from a range of institutions (Shanghai Academy of Agricultural Sciences, University of Shanghai for Science and Technology, and the Institute of General and Physical Chemistry in Belgrade), showing the successful collaboration of experts in food microbiology, fermentation science, chemistry, and biotechnology. This interdisciplinary teamwork strengthens the credibility and quality of the research.
  4. Contribution to Bioactivity Understanding: The research contributes to the deeper understanding of the structure-function relationships of GLPs, particularly the immunostimulatory effects of the β-glucan polysaccharides. This opens doors for further investigations into the therapeutic potential of Ganoderma lucidum.
  5. Impact on Biotechnological Production: The controlled conditions of submerged fermentation could offer a more reliable, scalable, and efficient method to produce high-quality polysaccharides for diverse applications, especially in the pharmaceutical and functional food industries.

Areas for Improvement:

  1. Long-Term Stability and Variability: While the research focuses on improving the consistency of high molecular weight polysaccharides, it would be beneficial to explore the long-term stability of the production system and any batch-to-batch variability that could affect commercial scalability. Further exploration of how fermentation scale impacts long-term product stability would be important for real-world industrial applications.
  2. Environmental and Economic Considerations: In an industrial setting, the economic viability and environmental impact of submerged fermentation should be explored further. Incorporating life cycle assessments or a comparison of the economic aspects (e.g., cost-efficiency, energy consumption) of submerged fermentation versus traditional cultivation could provide a more comprehensive analysis of the approach’s benefits.
  3. Further Structural Elucidation of Polysaccharides: The study briefly mentions the structural aspects of the polysaccharides (β-glucan backbone), but further detailed analysis of the molecular configuration and any possible modifications during fermentation could provide additional insights into their bioactivity and potential for therapeutic use.
  4. Exploring Broader Applications: Expanding the research to explore how the produced GLPs interact with other bioactive compounds or their broader applications in nutrition and functional foods could enhance the scope of the work. It could also lead to exploring synergistic effects in combination with other ingredients in the food or pharmaceutical industries.

Education:

Dr. Jie Feng holds a Ph.D. in Food Science from Shanghai Academy of Agricultural Sciences, China, where he specialized in the biotechnology of edible fungi and fermentation processes. Before obtaining his doctoral degree, he completed his Master’s in Microbiology from the University of Shanghai for Science and Technology, focusing on the optimization of microbial fermentation. Throughout his academic journey, Dr. Feng demonstrated a keen interest in microbiology, biotechnology, and food chemistry, working on various projects that explored the bioactive properties of polysaccharides and their applications in functional foods. His doctoral research laid the foundation for innovative submerged fermentation processes for producing high molecular weight polysaccharides. His education reflects a deep understanding of both the theoretical and practical aspects of microbiology and biotechnological applications in food production, setting him apart as an expert in his field.

Experience:

Dr. Jie Feng has a rich academic and research experience in the fields of food science and biotechnology. He has worked as a lead researcher at the Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, where he led groundbreaking projects on the production of high molecular weight polysaccharides from Ganoderma lucidum. In addition to his work in submerged fermentation, Dr. Feng has also contributed to the advancement of biotechnological methods for improving the nutritional and bioactive properties of medicinal mushrooms. His work has been recognized internationally for its impact on functional food development and the medical industry. As a collaborator, Dr. Feng has worked with institutions like the University of Shanghai for Science and Technology and the Institute of General and Physical Chemistry, Belgrade, Serbia. His experience extends to both laboratory research and applied industrial processes, making him a versatile scientist and leader in his field.

Research Focus:

Dr. Jie Feng’s primary research focus is on the biotechnological production of high molecular weight polysaccharides from medicinal fungi, particularly Ganoderma lucidum. His work emphasizes submerged fermentation, a method that allows for precise control over the growth conditions of fungi, enabling the production of structurally defined bioactive polysaccharides. These polysaccharides are of great interest for their potential applications in pharmaceuticals, nutraceuticals, and functional foods. Dr. Feng’s research also investigates the optimization of fermentation parameters such as pH, nutrient supply, and oxygen levels to improve yield and consistency, addressing challenges faced in traditional cultivation methods. His work in the molecular structure and bioactivity of polysaccharides has implications for improving immune response and gut health, along with broader medicinal benefits. Additionally, Dr. Feng’s research aims to enhance the sustainability and scalability of polysaccharide production for industrial applications, making his research pivotal in the fields of functional foods and biotechnology.

Publications Top Notes:

  1. “Innovative Submerged Directed Fermentation: Producing High Molecular Weight Polysaccharides from Ganoderma lucidum” 🍄🔬
  2. “Regulation of Enzymes and Genes for Polysaccharide Synthesis in Ganoderma lucidum” 🧬🍄
  3. “Optimization of Submerged Fermentation for Ganoderma lucidum Polysaccharides” ⏱️🍄
  4. “Improving Immunostimulatory Effects of Ganoderma lucidum Polysaccharides” 💪🍄
  5. “Co-culture Fermentation of Ganoderma lucidum and Beneficial Microorganisms” 🤝🍄
  6. “Enhancing Quality and Yield of Functional Foods from Ganoderma lucidum” 🥗💊
  7. “Fermentation Process Development for Industrial-Scale Production of Polysaccharides” 🏭🔬

Conclusion:

The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum represents a significant step forward in the bioengineering of functional ingredients. It provides a reliable, scalable method for producing bioactive compounds with consistent quality, directly addressing challenges in the production of GLPs. The integration of various expertise from the fields of microbiology, food chemistry, and biotechnology enhances the credibility and applicability of the research. While there are areas for improvement, especially in terms of long-term scalability, economic analysis, and further structural elucidation, the work has great potential to influence both industrial practices and the broader scientific community.

 

 

 

 

Donglin Ma | Microbial interaction | Best Researcher Award

Dr. Donglin Ma | Microbial interaction | Best Researcher Award

Dr. Donglin Ma , Guangdong ocean university , China

Dr. Donglin Ma is a distinguished lecturer and researcher at the College of Food Science and Technology, Guangdong Ocean University. With a focus on fermented food microorganisms and subtropical agro-processing, he has made significant contributions to the food bioengineering field. He earned his Bachelor’s degree in Food Science and Engineering from Shenyang Chemical University, followed by a Master’s degree from Shaanxi University of Science and Technology. He completed his Ph.D. in Food Science and Engineering from Jiangnan University. Dr. Ma has led numerous research projects funded by prestigious bodies like the National Natural Science Foundation of China and participated in several key scientific endeavors, including the 863 Program. He has published over 15 academic papers, including 11 indexed in SCI journals, contributing valuable insights into food microbiology, fermentation, and bioengineering.

Publication Profile: 

Scopus

Strengths for the Award:

Dr. Donglin Ma is an exceptional candidate for the Best Researcher Award based on his extensive contributions to the field of food bioengineering, particularly in fermented food microorganisms and subtropical agro-processing. He has a strong research portfolio with over 15 peer-reviewed publications, including 11 indexed in SCI journals, demonstrating his leadership in microbial fermentation and food quality enhancement. His interdisciplinary approach to the fermentation process, as seen in his studies on Huangjiu, fermented wheat, and microbial communities, has had a significant impact on both academic research and the food industry. His ability to secure prestigious research funding, including from the National Natural Science Foundation of China, and his mentorship of master’s students further highlight his expertise and influence in the field. Dr. Ma’s dedication to advancing food science, particularly in fermentation technologies and their applications, positions him as a strong contender for this award.

Areas for Improvement:

While Dr. Ma has demonstrated remarkable research and publication output, further expansion of his work to encompass global trends and international collaborations could enhance his influence and reach. Increasing his participation in high-impact international conferences and forging collaborative research networks could help further elevate his profile in the global scientific community. Additionally, a broader dissemination of his research findings through open-access platforms or popular science outlets might increase the visibility of his work, making it more accessible to both the academic and non-academic public. These steps could help position Dr. Ma as a more prominent global leader in his field.

Education:

Dr. Donglin Ma began his academic journey at Shenyang Chemical University, where he earned his Bachelor’s degree in Food Science and Engineering in 2016. Following this, he pursued a Master’s degree in Food Engineering from Shaanxi University of Science and Technology, completing it in 2018. He further advanced his education by obtaining a Ph.D. in Food Science and Engineering from Jiangnan University in 2022. His education has provided a strong foundation in food science, fermentation engineering, and bioengineering, equipping him with the knowledge and skills necessary for his research in food microbiology and agro-processing. His doctoral research and subsequent work have laid the groundwork for his innovative contributions to microbial fermentation, food quality improvement, and functional food development. Dr. Ma’s academic achievements reflect a deep commitment to the advancement of food science through interdisciplinary research and practical applications.

Experience:

Dr. Donglin Ma has accumulated substantial experience as both a researcher and educator in the field of food science. He has been a lecturer and researcher at Guangdong Ocean University since completing his Ph.D., where he is involved in teaching undergraduate courses in Fermentation Engineering, Bioassay Technology, and Functional Foods. Over the past five years, he has led multiple high-profile research projects, including one funded by the National Natural Science Foundation of China and several others related to the microbial communities and metabolic profiles in fermented foods. His work spans areas such as microbial community succession in biofortified wheat, the production of functional foods, and the enzymatic characterization of novel bioactive compounds. Dr. Ma has published over 15 peer-reviewed articles, contributing valuable knowledge to the fields of food microbiology and bioengineering. As a master’s supervisor, he has mentored students in advancing food science research.

Awards and Honors:

Dr. Donglin Ma has been recognized for his outstanding contributions to food science and bioengineering. He has been the recipient of several prestigious grants and awards, including funding from the National Natural Science Foundation of China and Guangdong Ocean University. These awards have enabled him to lead groundbreaking research in fermented food microorganisms, subtropical agro-processing, and fermentation technology. His work on improving the quality of Chinese alcoholic beverages, such as Huangjiu, and his contributions to the understanding of microbial community dynamics in fermentation processes, have earned him recognition in the scientific community. His research achievements have been published in top-tier journals, further cementing his reputation as a leading researcher in the field. Dr. Ma’s expertise and innovative approaches in food microbiology and bioengineering have made him a key figure in his field, and he continues to make impactful contributions to science and education.

Research Focus:

Dr. Donglin Ma’s research focuses on fermented food microorganisms and subtropical agro-processing, with an emphasis on microbial communities, fermentation engineering, and bioactive compounds. His work investigates how microbial succession in fermentation influences food quality and how to enhance these processes to produce functional foods. He has contributed significantly to the study of microbial interactions in traditional Chinese fermented foods, such as Huangjiu, and has explored ways to improve their quality through the optimization of fermentation conditions. His research also delves into the development of biofortified wheat, functional strains for brewing, and the enzymatic characteristics of novel microorganisms. A key area of his work is the development of microbial tools to improve the nutritional and sensory qualities of fermented products, benefiting both the food industry and consumers. Dr. Ma’s interdisciplinary approach combines microbiology, food science, and bioengineering, focusing on sustainable and health-promoting food innovations.

Publications Top Notes:

  1. L-arabinose isomerase from Lactobacillus fermentum C6: Enzymatic characteristics and its recombinant Bacillus subtilis whole cells achieving a significantly increased production of D-tagatose 🌱🧬
  2. Unraveling the correlations between microbial communities and metabolic profiles of strong-flavor Jinhui Daqu with different storage periods 🍶🔬
  3. Environmental factors drive microbial community succession in biofortified wheat Qu and its improvement on the quality of Chinese huangjiu 🌾🍶
  4. Structural and enzymatic characterization of a novel metallo-serine keratinase KerJY-23 🧪💡
  5. Developing an innovative raw wheat Qu inoculated with Saccharopolyspora and its application in Huangjiu 🍞🍶
  6. Stabilization of jiuyao quality for huangjiu brewing by fortifying functional strains based on core microbial community analysis 🍶🔍
  7. Complete genome sequence, metabolic model construction, and huangjiu application of Saccharopolyspora rosea A22 🌾🧬
  8. Assimilable nitrogen reduces the higher alcohols content of huangjiu 🍶⚗️

Conclusion:

Dr. Donglin Ma stands out as an excellent candidate for the Best Researcher Award due to his impactful research in food microbiology, fermentation engineering, and agro-processing. His innovative contributions to improving food quality, microbial applications in fermentation, and his strong academic record demonstrate his capability as a leading researcher. With ongoing research projects and his continuous mentorship of students, he is well-positioned to make lasting contributions to the advancement of food science. His combination of research productivity, teaching, and mentorship makes him highly deserving of recognition for his dedication and excellence in food bioengineering