Waldemar Debinski | Cancer Cell Biology | Best Researcher Award

Prof. Dr. Waldemar Debinski | Cancer Cell Biology | Best Researcher Award

Wake Forest School of Medicine | United States

Dr. Waldemar Debinski, M.D., Ph.D., is a distinguished neuroscientist and cancer researcher recognized for his pioneering work in brain tumor biology and targeted molecular therapies. His research focuses on understanding the molecular mechanisms that drive the development and progression of malignant brain tumors, with a particular emphasis on gliomas. Dr. Debinski has significantly contributed to the development of novel targeted therapeutics, including receptor-directed cytotoxins and biologics designed to selectively eliminate tumor cells while sparing healthy tissues. His investigations bridge molecular oncology, translational science, and clinical application, aiming to improve therapeutic outcomes for patients with brain cancers. Throughout his career, he has integrated insights from physiology, molecular biology, and pharmacology to develop translational approaches that move from laboratory discovery to clinical implementation. His extensive research has advanced the understanding of tumor-specific receptors and intracellular signaling pathways, contributing to innovative strategies in cancer immunotherapy and precision medicine. Dr. Debinski’s work exemplifies the integration of basic and clinical research toward the development of next-generation treatments for central nervous system malignancies, positioning him as a leading figure in neuro-oncology and translational cancer research.

Profile: Scopus

Featured Publications:

Wocial, B., Januszewicz, W., Siedlecki, J., Feltynowski, T., & Debinski, W. (1982). Alterations in plasma dopamine-β-hydroxylase and catecholamine concentrations during surgical removal of pheochromocytoma. Endocrinologie, 79, 131–139.

Debinski, W., & Wocial, B. (1982). Various aspects of sodium metabolism in hypertension [in Polish]. Polski Tygodnik Lekarski, 37, 1339–1342.

Ignatowska-Świtalska, H., Debinski, W., & Chojnowski, K. (1983). The role of certain hormonal factors in arterial hypertension [in Polish]. Materia Medica Polona, 15, 74–86.

Wasawska, T., Feltynowski, T., Majewska, Z., Januszewicz, W., Sobolewska-Karwowska, A., Wocial, B., & Debinski, W. (1984). Pheochromocytoma: Description of two cases with an unusual clinical picture [in Polish]. Polski Tygodnik Lekarski, 39, 261–263.

Czarkowski, M., & Debinski, W. (1984). Sodium and primary arterial hypertension [in Polish] (Review). Kardiologia Polska, 27, 967–976.

Wocial, B., Debinski, W., Jablonska-Skwicinska, E., Feltynowski, T., Chodakowska, J., Kozakowska, E., & Januszewicz, W. (1984). Sodium content of erythrocytes in patients with arterial hypertension [in Polish]. Polski Archiwum Medycyny Wewnetrznej, 72, 167–174.

Garcia, R., Debinski, W., Gutkowska, J., Kuchel, O., Thibault, G., Genest, J., & Cantin, M. (1985). Gluco- and mineralocorticoids may regulate the natriuretic effect and the synthesis and release of atrial natriuretic factor by the rat atria in vivo. Biochemical and Biophysical Research Communications, 131, 806–814.

Debinski, W., Kuchel, O., Garcia, R., Buu, N. T., Racz, K., Cantin, M., & Genest, J. (1986). Atrial natriuretic factor inhibits sympathetic activity in one-kidney, one-clip hypertension in the rat. Proceedings of the Society for Experimental Biology and Medicine, 181, 173–177.

Debinski, W., Kuchel, O., Buu, N. T., Garcia, R., Cantin, M., & Genest, J. (1986). Involvement of the adrenal glands in the action of the atrial natriuretic factor. Proceedings of the Society for Experimental Biology and Medicine, 181, 318–324.

Debinski, W., Gutkowska, J., Kuchel, O., Racz, K., Buu, N. T., Cantin, M., & Genest, J. (1986). ANF-like peptide(s) in the peripheral autonomic nervous system. Biochemical and Biophysical Research Communications, 134, 279–284.

Amirhosein Kefayat | Cancer Cells | Best Researcher Award

Dr. Amirhosein Kefayat | Cancer Cells | Best Researcher Award

Edinburgh of University | United Kingdom

Dr. Amirhosein Kefayat is a clinical research fellow at the Institute of Genetics and Cancer, University of Edinburgh, with over fourteen years of dedicated experience in translational and clinical cancer research. Since his early days in medical school, he has pursued a strong passion for advancing oncology through both laboratory and clinical investigations, contributing to more than 60 peer-reviewed publications that have collectively garnered over 2,300 citations, with a Google Scholar H-index of 28. His research spans biomaterials, nanomedicine, wound healing, immunoinformatics, and cancer vaccine design, with several of his papers ranking among the top 1% most-cited in their respective years of publication. Notably, his work on innovative wound dressings, cancer-testis antigen vaccines, and gold nanoclusters for radiosensitization has made significant impacts within the fields of biomaterials and cancer therapeutics. Alongside his research, he is currently advancing his academic qualifications through a Postgraduate Certificate of Academic Practice at the University of Edinburgh and Associate Principal Investigator Training with NIHR. Recognized among the top 0.5% of cancer researchers worldwide, his career reflects a consistent commitment to bridging basic science and clinical application to improve patient care.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Amini Baghbadorani, M., & Navid, S. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Scientific Reports, 10(1), 3063.

Eskandarinia, A., Kefayat, A., Gharakhloo, M., Agheb, M., Khodabakhshi, D., & Rafienia, M. (2020). A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. International Journal of Biological Macromolecules, 149, 467–476.

Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628.

Khodabakhshi, D., Eskandarinia, A., Kefayat, A., Rafienia, M., Navid, S., & Karbasi, S. (2019). In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy. Colloids and Surfaces B: Biointerfaces, 178, 177–184.

Eskandarinia, A., Kefayat, A., Rafienia, M., Agheb, M., Navid, S., & Ebrahimpour, K. (2019). Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies. Carbohydrate Polymers, 216, 25–35.

Evgeny Deforzh | Cancer | Best Researcher Award

Dr. Evgeny Deforzh | Cancer | Best Researcher Award

Brigham and Women’s Hospital, Harvard University | United States

Dr. Evgeny Deforzh is a molecular biologist whose work focuses on the regulation of RNA, microRNAs, chromatin dynamics, and their roles in cancer and neurological disease. After earning his B.S. and M.S. in Biology from Saint Petersburg State University and a Ph.D. in Molecular Biology from Paris‑Saclay University, he completed postdoctoral research as a Research Fellow and subsequently served as Instructor in Neurology at Brigham & Women’s Hospital. His peer‑reviewed contributions include insights into how WEE1 regulators switch roles in cell cycle control, protection of cyclin mRNAs from translational repression, the impact of glioblastoma‑derived extracellular vesicles on astrocyte transformation, and the nuclear modulation of splicing by oncogenic microRNAs. More recently, his work has elucidated promoter/enhancer RNA regulation of super‑enhancers, and miRNA pathways as therapeutic targets in gliomas and meningiomas. To date, Dr. Deforzh has published ~15–20 independent original research articles (first‑, co‑first, or senior‑author) with many additional co‐authored papers. His publications have been cited in the literature ~800‑1,200 times, giving him an approximate h‑index of 12–15. His research has advanced understanding of RNA regulatory networks in cancer and offers potential translational pathways for diagnostics and therapy.

Profiles: Google Scholar | Scopus

Featured Publications:

Zeng, A., Wei, Z., Rabinovsky, R., Jun, H. J., El Fatimy, R., Deforzh, E., & Arora, R. (2020). Glioblastoma-derived extracellular vesicles facilitate transformation of astrocytes via reprogramming oncogenic metabolism. iScience, 23(8), 101420.

Deforzh, E., Uhlmann, E. J., Das, E., Galitsyna, A., Arora, R., Saravanan, H., … (2022). Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Molecular Cell, 82(10), 1894–1908.e5.

El Fatimy, R., Zhang, Y., Deforzh, E., Ramadas, M., Saravanan, H., Wei, Z., … (2022). A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Molecular Cancer, 21(1), 17.

Poller, W., Sahoo, S., Hajjar, R., Landmesser, U., & Krichevsky, A. M. (2023). Exploration of the noncoding genome for human-specific therapeutic targets—Recent insights at molecular and cellular level. Cells, 12(22), 2660.

Deforzh, E., Vargas, T. R., Kropp, J., Vandamme, M., Pinna, G., & Polesskaya, A. (2016). IMP-3 protects the mRNAs of cyclins D1 and D3 from GW182/AGO2-dependent translational repression. International Journal of Oncology, 49(6), 2578–2588.

Kratassiouk, G., Pritchard, L. L., Cuvellier, S., Vislovukh, A., Meng, Q., … (2016). The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell Cycle, 15(5), 667–677.

Sunila Pradeep | Ovarian Cancer | Women Researcher Award

Dr. Sunila Pradeep | Ovarian Cancer | Women Researcher Award

Dr. Sunila Pradeep | The Medical College of Wisconsin | United States

Dr. Sunila Pradeep, Ph.D., is an accomplished Associate Professor at the Medical College of Wisconsin, with over two decades of academic and research experience in immunology, oncology, and translational medicine. Originating from India, Dr. Pradeep began her journey in microbiology before delving deep into cancer research. Her multidisciplinary work bridges basic science with clinical relevance, particularly in ovarian and uterine cancers. Having trained in globally recognized institutions like the Weizmann Institute (Israel) and MD Anderson Cancer Center (USA), she has cultivated a robust research portfolio. Her impact in biomedical sciences is well-established. Dr. Pradeep’s ongoing work on extracellular vesicles, tumor microenvironment, and therapy resistance showcases her commitment to solving real-world clinical problems. A recipient of numerous national and international honors, she is a role model for aspiring women in science, blending scientific rigor with compassionate mentorship.

Publication Profile: 

Scopus

Education:

Dr. Sunila Pradeep’s academic path began in India, where she completed her B.Sc. and M.Sc. in Microbiology at Bharathiar University, Coimbatore, Tamil Nadu. Her passion for biomedical sciences led her to pursue a Ph.D. in Immunology at the University of Calicut, Kerala, under the mentorship of Dr. Girija Kuttan, where she began her exploration into natural compounds with anti-cancer properties. Her graduate studies laid a strong foundation in experimental biology and immunomodulation. Eager to expand her research horizons globally, she pursued postdoctoral training at the Weizmann Institute of Science in Israel, and later at the prestigious MD Anderson Cancer Center, Texas, USA, where she transitioned into translational cancer research. This diverse academic journey spanning three countries has given Dr. Pradeep a unique global perspective, rigorous research training, and an innovative approach to solving complex oncological challenges.

Professional Experience:

Dr. Sunila Pradeep has more than 18 years of research experience in oncology and immunology. Her professional career began with a Postdoctoral Fellowship at the Weizmann Institute, where she explored molecular signaling in cancer progression. She then advanced to a key fellowship role at the MD Anderson Cancer Center, focusing on therapeutic resistance in ovarian cancer. Since joining the Medical College of Wisconsin as an Associate Professor, she has established herself as a leading researcher in ovarian tumor microenvironments, metastasis mechanisms, and extracellular vesicle biology. Her role extends beyond research—she is also a dedicated mentor to graduate students and postdocs, and contributes to several multidisciplinary cancer initiatives. Dr. Pradeep’s scientific rigor, grant success, and translational insights have made her a sought-after collaborator. Her efforts to bridge laboratory research with clinical application reflect her commitment to improving outcomes for women suffering from gynecologic cancers.

Awards and Honors:

Dr. Pradeep’s distinguished career has been marked by several prestigious awards. She received the Fr. Gabriel Award from the Amala Institute of Medical Sciences, Kerala, recognizing her excellence in immunology research. During her tenure at MD Anderson Cancer Center, she was honored with the Trainee Excellence Award, reflecting her high-impact work in cancer biology. Her promising contributions to ovarian cancer research earned her the Scholar-in-Training Award from the Marsha Rivkin Center Foundation for Ovarian Cancer Research—a significant achievement for emerging leaders in gynecologic oncology. These accolades underscore her strong scientific foundation, innovation, and leadership in translational oncology. Beyond individual awards, her prolific publication record and active engagement in scientific communities amplify her impact. Dr. Pradeep’s recognition across three continents emphasizes her global footprint and her consistent commitment to advancing women’s health through science.

Research Focus:

Dr. Sunila Pradeep’s research revolves around understanding tumor biology, metastasis, angiogenesis, immunomodulation, and drug resistance in gynecologic cancers, particularly ovarian and uterine cancers. She investigates the role of extracellular vesicles, tumor-derived signals, and the tumor microenvironment in driving cancer progression and therapy evasion. Her lab explores novel biomarkers and targets for overcoming VEGF resistance, improving chemotherapy response, and modulating the immune system to suppress tumor growth. Her translational work includes identifying new combination therapies (e.g., selinexor with eribulin) and examining gut microbiota’s role in estrogen signaling—connecting metabolic and hormonal networks with cancer biology. She is also involved in cutting-edge research on RNA-binding proteins, such as FXR1, and their roles in mRNA translation in cancer. With cross-disciplinary collaborations and NIH-supported studies, her focus bridges fundamental discovery with real-world clinical applications. Her ultimate goal: to make therapies more precise, personalized, and effective for women with cancer.

Publications Top Notes: 

  1. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine

  2. Protective effect of Piper longum fruit ethanolic extract on radiation-induced damages in mice

  3. Expression of VEGF and VEGF receptors in tumor angiogenesis and malignancies

  4. Protective effect of Thuja occidentalis against radiation-induced toxicity in mice

  5. Piper longum inhibits VEGF and proinflammatory cytokines and tumor-induced angiogenesis

  6. Antimetastatic activity of Thuja occidentalis in a mouse model

  7. Inhibition of carcinogenesis by homeopathic drugs

  8. Effect of homeopathic medicines on transplanted tumors in mice

  9. Dynamized preparations in cell culture

  10. Phosphomimetic mutants of PEDF with enhanced antiangiogenic activity as anticancer agents

Conclusion:

Overall, Dr. Sunila Pradeep is highly qualified and a strong candidate for a Best Researcher Award in ovarian cancer research. Her prolific publication record, substantial citation impact, and focus on innovative cancer biology and treatment research provide a solid foundation for recognition. By highlighting her leadership contributions, translational impact, and broader scientific engagement, she can further strengthen her nomination. Her work clearly advances the field of ovarian cancer and serves as a model for impactful biomedical research, making her a deserving contender for such a prestigious award.

 

Farhad Ghorbani | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Farhad Ghorbani | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Farhad Ghorbani | Shiraz University of Medical Sciences ,Shiraz,Iran | Iran

Dr. Farhad Ghorbani is an esteemed Assistant Professor of Oral and Maxillofacial Surgery at Shiraz University of Medical Sciences, Iran. With over two decades of clinical and academic experience, he has significantly contributed to the fields of oral pathology, trauma, and surgical interventions. A graduate of Kerman University of Medical Sciences, Dr. Ghorbani later specialized further at Shiraz University. His dedication to advancing clinical knowledge is reflected in over a dozen high-impact peer-reviewed publications, focusing on craniofacial abnormalities, surgical outcomes, and rare oral diseases. He is an active researcher with a Scopus Author ID and ORCID, consistently contributing to scientific journals like BMC Oral Health, Scientific Reports, and Maxillofacial Plastic and Reconstructive Surgery. His multidisciplinary collaborations have led to enhanced diagnostic techniques and patient outcomes. Dr. Ghorbani is recognized for both his innovative research and his commitment to medical education.

Publication Profile: 

Orcid

Google Scholar

Education:

Dr. Ghorbani began his medical journey at Kerman University of Medical Sciences, earning his professional doctorate in dentistry (1992–1998). Following years of clinical practice, he advanced his academic and surgical expertise by joining Shiraz University of Medical Sciences in 2013, where he underwent specialized training in Oral and Maxillofacial Surgery and served as an Assistant Professor during his educational tenure (2013–2018). His academic training focused on maxillofacial pathology, surgical techniques, and interdisciplinary diagnostics. The combination of strong foundational medical education and advanced surgical specialization has equipped him with both the theoretical depth and clinical acumen to lead impactful research. His training underlines a commitment to academic excellence and lifelong learning, which is further reflected in his scholarly contributions. Dr. Ghorbani’s educational background bridges foundational dental sciences with advanced surgical innovation.

Experience:

Since December 2018, Dr. Farhad Ghorbani has held the position of Assistant Professor of Oral and Maxillofacial Surgery at Shiraz University of Medical Sciences, Iran. His career blends clinical practice, research, and teaching. Over the years, he has led numerous studies exploring craniofacial morphology, surgical outcomes, dental trauma, and maxillofacial pathologies. He mentors postgraduate students and collaborates with interdisciplinary teams, enhancing diagnostic accuracy and surgical care. His work in both rural and urban settings has exposed him to a wide spectrum of maxillofacial cases, enriching his clinical insights. He actively contributes to improving surgical protocols and patient care standards. Dr. Ghorbani’s experience also includes academic publishing, peer reviews, and participation in scientific forums. He is recognized for his analytical approach and evidence-based practice. His long-standing affiliation with reputed institutions and research groups underscores his strong leadership in oral surgery and academic scholarship.

Research Focus:

Dr. Ghorbani’s primary research interests lie in oral pathology, craniofacial surgery, dentoalveolar trauma, and radiological diagnostics. His work often combines clinical case reports with retrospective analysis, offering insights into rare presentations such as parathyroid carcinoma-linked jaw tumors, and developmental anomalies like concha bullosa. A hallmark of his research is his ability to identify atypical symptoms and connect them with broader systemic conditions, ensuring early diagnosis and management. He has conducted fractal analysis studies to evaluate bone quality, and he explores patient-centered outcomes, such as satisfaction post-rhinoplasty and the psychological impacts of facial surgery. Additionally, his research evaluates the intersection of dental surgery with systemic health—evident in studies related to auditory changes post-orthognathic surgery or the implications of COVID-19 on dental care. Through evidence-based methods and innovative case analyses, Dr. Ghorbani has positioned himself as a thought leader in interdisciplinary oral and maxillofacial research.

Publications Top Notes:

  1. Brown tumors of both jaws as the initial manifestation of parathyroid carcinoma (BMC Oral Health, 2025)

  2. Distribution and laterality of concha bullosa across cranial skeletal types (Maxillofacial Plastic Surg, 2025)

  3. Calcifying Odontogenic Cyst in Posterior Maxilla: A Case Report (Journal of Dentistry Shiraz, 2025)

  4. Central giant cell granuloma mimicking fibro-osseous lesion and hemangioma (J Med Case Reports, 2024)

  5. Fractal CT analysis of mandibular condyles in class III malocclusion (Scientific Reports, 2023)

  6. Patient dissatisfaction following rhinoplasty: A 10-year Iranian study (Maxillofacial Plastic Surg, 2023)

  7. Correlation between impacted third molar and blood group (Int J of Dentistry, 2021)

  8. Effects of orthognathic surgery on auditory function (Maxillofacial Plastic Surg, 2021)

  9. Evaluation of alveolar fractures in trauma patients in Iran (BMC Oral Health, 2021)

  10. Anxiety in patients undergoing mandibular third molar extraction (J Oral Research & Review, 2020)

Conclusion:

In summary, Dr. Farhad Ghorbani embodies the qualities of a deeply committed, analytically skilled, and academically active oral and maxillofacial surgeon. His research is directly informed by his clinical experience, allowing him to bridge theory and practice effectively. His contributions have enriched the literature on oral pathology, surgical complications, facial aesthetics, and patient psychology following treatment interventions. While there are opportunities to expand the scope and scale of his work through more robust methodologies and international collaboration, his existing portfolio already reflects a high standard of academic and clinical integration. Given his track record, ongoing research productivity, and evident commitment to innovation and education, Dr. Ghorbani is a strong and deserving candidate for the Best Researcher Award. With continued growth in research leadership and expanded global outreach, he is poised to make an even greater impact in the years ahead.

Peter du Plessis | Cancer Cell Biology | Best Researcher Award

Mr. Peter du Plessis | Cancer Cell Biology | Best Researcher Award

Mr. Peter du Plessis , iThemba LABS , South Africa

Peter Clark du Plessis is an accomplished professional with a robust background in radiotherapy and oncology. His career spans over two decades, starting as a Radiation Therapist and Researcher at iThemba LABS since 2006. He is dedicated to both teaching and research, fostering critical thinking and academic growth among students. Apart from his academic contributions, Peter is passionate about mentoring and enjoys long walks and playing chess in his spare time. With a string of accolades, including Director’s Special Awards in 2012 and 2014, he consistently demonstrates excellence in his field. He is committed to inspiring the next generation of healthcare professionals through hands-on experience, leadership, and a deep passion for his profession.

Publication Profile:

Orcid

Strengths for the Award:

Peter Clark du Plessis exemplifies the qualities of a leading researcher in radiotherapy and oncology, making him highly suitable for the Best Researcher Award. His career spans over two decades, showcasing not only professional expertise but a commitment to advancing cancer treatment through research. Peter has a wealth of hands-on experience, holding key roles at iThemba LABS, where his research continues to shape the field of hypofractionated radiotherapy for breast and prostate cancers. His mentorship and dedication to teaching further highlight his influence on future healthcare professionals. Additionally, his accolades, including two Director’s Special Awards, demonstrate a history of excellence and recognition from peers in his field. Peter’s work also bridges research and practice, contributing significantly to improving radiotherapy techniques for cancer patients.

Areas for Improvement:

Although Peter’s achievements are commendable, his research could benefit from increased international collaborations to diversify research perspectives and data. Further partnerships with global research institutions could strengthen the practical impact of his findings, particularly in addressing diverse patient needs in different populations. Expanding his visibility in clinical trials and engaging with other healthcare sectors could further solidify his standing as a leader in oncology research.

Education (150 words):

Peter Clark du Plessis is currently pursuing a Doctorate in Radiography (DRRAD) at the Durban University of Technology, focusing on the hypofractionated radiotherapy for breast and prostate cancer (2022-2024). He holds a Master’s degree in Radiography from the Cape Peninsula University of Technology (2017-2018), with research on radiosensitivity variations in breast cancer cells. Peter earned his Bachelor of Technology in Radiography (cum laude) in 2010 and a National Diploma in Therapeutic Radiography in 1997, both from Cape Peninsula Technikon. Additionally, he began studying Computer Science at the University of the Western Cape but did not complete the degree. His academic journey highlights his passion for improving patient care and advancing cancer treatment techniques, including his research on proton beam therapies. Peter’s ongoing research aligns with his deep commitment to enhancing oncology practices through both theoretical and practical contributions.

Experience (150 words):

Peter has a comprehensive professional history, notably as a Radiation Therapist and Researcher at iThemba LABS since 2006. Here, he has been at the forefront of advancements in radiation therapy and oncology research. Prior to that, he held positions at the Provincial Hospital in Port Elizabeth as Chief Radiation Therapist (2006) and at King Abdul-Aziz Medical City as a Mould Room Technician and Radiation Therapist (2003-2005). His teaching experience is equally impressive, having served as a lecturer and moderator at Cape Peninsula University of Technology and North West University since 2019. He has contributed to health science research courses, specifically focusing on data analysis, publications, and radiation therapy practice. His multifaceted roles in both academic and clinical settings have honed his skills in education, research, and professional development. Peter’s work has had a significant impact on radiotherapy practices and student education, particularly in the field of cancer treatment.

Awards and Honors (150 words):

Peter Clark du Plessis has received multiple awards, demonstrating his dedication and excellence in the field of radiotherapy. Most notably, he was honored with two Director’s Special Awards at iThemba LABS in 2012 and 2014, recognizing his outstanding contributions to research and clinical advancements in radiation therapy. These accolades affirm his deep commitment to both research and the application of radiotherapy techniques, specifically in cancer treatment. His work in radiotherapy has helped bridge theoretical knowledge with real-world practice, particularly in advanced cancer therapies like proton beam treatments. Peter’s passion for the field and ability to integrate research with clinical practices has been acknowledged throughout his career, making him a key figure in advancing healthcare practices. His recognition reflects the impact of his research and teaching on future healthcare professionals in the radiation therapy domain.

Research Focus (150 words):

Peter Clark du Plessis focuses on exploring and advancing radiotherapy techniques, particularly in the context of hypofractionated radiotherapy for breast and prostate cancer. His research delves into the efficacy and molecular mechanisms of these treatments, especially using proton beam therapy. With a strong foundation in radiobiology, his work investigates the variation in radiosensitivity between different cancer and normal cell types, with a particular interest in breast cancer. Peter’s research aims to improve patient outcomes by refining radiotherapy protocols, making cancer treatment more effective and personalized. His contributions are significant in bridging the gap between laboratory research and clinical practices. Peter’s goal is to inspire new approaches in cancer care by combining in vitro studies with clinical observations. His ongoing work at iThemba LABS and various academic institutions positions him at the forefront of research into innovative radiotherapy solutions.

Publications (Titles with Emojis):

  • Exploring Hypofractionated Radiotherapy Efficacy in Prostate Cancer: In Vitro Insights 🧑‍🔬📚
  • In Vitro Perspective on Hypofractionated Radiotherapy in Breast Cancer 🧑‍🔬📚
  • Immunological Changes During Space Travel: A Ground-Based Evaluation of the Impact of Neutron Dose Rate on Plasma Cytokine Levels in Human Whole Blood Cultures 🌌💉
  • The Impact of Dose Rate on DNA Double-Strand Break Formation and Repair in Human Lymphocytes Exposed to Fast Neutron Irradiation 🧬⚛️

Conclusion:

Peter Clark du Plessis is a remarkable candidate for the Best Researcher Award due to his extensive experience, impressive body of research, and dedication to advancing radiotherapy practices. His work continues to impact the field of oncology positively, offering new insights into cancer treatment methodologies. With continued growth in research collaboration and global outreach, Peter is poised to further enhance his contributions to the field of radiotherapy.

 

 

 

Li Hou | Cancer Cell Biology | Best Researcher Award

Prof. Li Hou | Cancer Cell Biology | Best Researcher Award

Prof. Li Hou , Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China

Li Hou is a distinguished Chief Physician and Director of the Hematology and Oncology Department at Dongzhimen Hospital, affiliated with Beijing University of Chinese Medicine. With a career spanning over 30 years, she has made remarkable contributions in the integration of Traditional Chinese Medicine (TCM) and Western Medicine for treating tumors and blood diseases. A renowned researcher and educator, Hou Li has led over 40 research projects, authored 50+ papers, and published significant work on tumor and blood disease therapies. Her expertise has been recognized with the prestigious “Famous Doctor’s Excellent Demeanor Award” in 2018. Her passion for advancing healthcare through combined approaches has made her a leader in oncology and hematology in China and internationally. 🌟🎓💉

Publication Profile:

Orcid

Strengths for the Award:

Dr. Li Hou is highly deserving of the Best Researcher Award due to her exceptional contributions in integrating Traditional Chinese Medicine (TCM) and Western Medicine for the treatment of hematological diseases and cancers. Her career is distinguished by over 40 research programs and more than 50 published papers, demonstrating her expertise in oncology and hematology. She has authored notable articles in high-impact journals, showcasing her deep understanding of tumor biology and blood disorders. Her leadership in research, coupled with her clinical practice, has led to groundbreaking insights into the treatment of malignancies, including her work on identifying novel drug targets for cancers. Furthermore, her role in academia and professional service, as a key figure in several influential medical associations, highlights her outstanding impact in the medical field. 🌟🧑‍🔬📚

Areas for Improvement:

While Dr. Li Hou research achievements are commendable, expanding her research collaborations internationally could further enhance her impact. Engaging with global research communities may foster new perspectives and facilitate the exchange of ideas, particularly in the context of cutting-edge medical technologies. Additionally, expanding research into the long-term outcomes of integrated therapies in various populations could provide further evidence of the benefits of combining TCM with Western approaches. This would allow her work to gain even more recognition and clinical application worldwide. 🌍🔬

Education:

Li Hou completed her Bachelor’s in Chinese Medicine at Beijing University of Chinese Medicine in 1993. She then pursued her Master’s degree in Integrated Chinese and Western Medicine from the same institution, completing it in 1998. In 2004, she earned her Doctorate in Integrated Chinese and Western Medicine. Her academic journey has been rooted in the application of both traditional and modern methods to treat complex diseases like cancer and blood disorders, providing her with a strong foundation for her career in clinical practice, research, and education. 🎓📚🩺

Experience:

Li Hou clinical career began in 1993 as a resident at Dongzhimen Hospital. By 1999, she advanced to attending physician, and by 2008, she became an associate chief physician. In 2013, she was appointed as Chief Physician at Dongzhimen Hospital, where she has been working ever since. She holds significant leadership roles within the field, including Chairman of several prestigious oncology committees. Additionally, her role as an evaluation expert for the National Natural Science Foundation of China demonstrates her expertise in research. She has been instrumental in combining traditional Chinese medicine with modern treatments in the management of cancer and hematological conditions. 🏥💼👩‍⚕️

Research Focus:

Li Hou research focus revolves around the integration of Traditional Chinese Medicine (TCM) and Western medicine to treat hematological diseases and cancer. She has made significant strides in identifying novel therapeutic approaches, with an emphasis on improving cancer treatment outcomes. Her work includes studying the role of TCM in modulating drug responses and enhancing chemotherapy effectiveness. Through her extensive research, she has contributed to understanding the genetic and molecular mechanisms involved in blood cancer and tumor progression, aiming to optimize patient care and survival rates. Her studies have been published in leading medical journals. 🧬🔬💡

Publications Top Notes:

  • Identification of potential drug targets for four site-specific cancers by integrating human plasma proteome with genomeJournal of Pharmaceutical and Biomedical Analysis (2025)
  • Genetic analysis from multiple cohorts implies causality between 2200 druggable genes, telomere length, and leukemiaComputers in Biology and Medicine (2024)
  • Genetically predicted 486 blood metabolites in relation to risk of colorectal cancer: A Mendelian randomization studyCancer Medicine (2023)
  • Improvement of Early Death in Acute Promyelocytic Leukemia: A Population-Based AnalysisClinical Lymphoma Myeloma and Leukemia (2023)
  • Tanshinone IIa Induces Autophagy and Apoptosis via PI3K/Akt/mTOR Axis in Acute Promyelocytic Leukemia NB4 CellsEvidence-Based Complementary and Alternative Medicine (2021)
  • Effectiveness of Acupuncture Treatment on Chemotherapy-Induced Peripheral Neuropathy: A Pilot, Randomized, Assessor-Blinded, Controlled TrialPain Research and Management (2020) 📝📚🎯

Conclusion:

Dr. Li Hou contributions to medicine are profound and multifaceted, blending traditional and modern therapeutic approaches to offer innovative solutions for cancer and blood diseases. Her research has not only advanced scientific knowledge but also improved patient care. As a leader in both clinical practice and research, she exemplifies the qualities of a Best Researcher Award recipient. Through her continued dedication to her work, Dr. Hou Li will undoubtedly remain at the forefront of medical research, driving progress in both China and globally. 🏆💉🩺

 

 

 

 

Arunima Biswas | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Arunima Biswas | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Arunima Biswas , university of kalyani , India

Dr. Arunima Biswas is an Assistant Professor in the Department of Zoology at the University of Kalyani, India. With a Ph.D. in Biochemistry from the Indian Institute of Chemical Biology, Kolkata, she has focused her career on understanding the molecular mechanisms underlying diseases, particularly cancer and parasitic infections. She leads multiple funded research projects, aiming to develop targeted therapies for various cancers. Dr. Biswas has worked extensively on the cyclic nucleotide signaling pathways in unicellular eukaryotes like Leishmania and cancer. A passionate educator and researcher, she mentors Ph.D. students and collaborates with international scientists to advance medical research.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Arunima Biswas demonstrates significant contributions to cancer research and parasitology. She is highly skilled in understanding and manipulating cyclic nucleotide signaling pathways, which play a crucial role in cancer biology and parasitic diseases like Leishmania infections. With several ongoing research projects, including the repurposing of phosphodiesterase inhibitors for cancer therapy and the development of targeted drug delivery systems, Dr. Biswas has shown an innovative approach to solving complex medical challenges. Her leadership as Principal Investigator for high-impact projects, such as cancer screening and drug targeting, highlights her as a leading researcher in her field. Furthermore, her dedication to mentoring and producing highly qualified Ph.D. students is commendable.

Areas for Improvement:

While Dr. Biswas’ research is already impactful, expanding her work on the practical clinical application of her findings could further bridge the gap between research and patient care. Collaboration with clinical trials or hospitals could expedite the translation of her findings into therapeutic solutions. Additionally, expanding interdisciplinary collaborations could bring novel insights into her research.

Education:

Dr. Arunima Biswas earned her Ph.D. in Biochemistry from the Indian Institute of Chemical Biology, Kolkata, with a thesis on Host-parasite interaction: Modulation of signaling pathways in Macrophage and Leishmania (2010). Prior to this, she completed her Master of Science in Zoology from the University of Calcutta with First Class honors (2005). She also holds a Bachelor of Science in Zoology from Maulana Azad College, University of Calcutta (2003). Her academic journey has been marked by a strong foundation in biochemistry, signaling pathways, and parasitology, forming the basis of her current research interests.

Experience:

Dr. Arunima Biswas has over a decade of teaching and research experience. As an Assistant Professor at the University of Kalyani, she has significantly contributed to the academic and research growth in the Department of Zoology. She is the Principal Investigator of several research projects funded by national bodies like CSIR, SERB, and UGC, with an emphasis on cancer research, especially targeting pathways involving cyclic nucleotides. Dr. Biswas has also collaborated with multiple national and international institutions and mentored several Ph.D. students, contributing to their academic and research advancements. Her experience in guiding research and mentoring future scientists is widely acknowledged.

Awards and Honors:

Dr. Arunima Biswas has received numerous accolades for her research and academic contributions. Notably, she won the Young Scientist Presentation Award at the Translational Cancer Research Conference (2020) and was honored with an International Congress of Cell Biology Travel Award (2016). She also received the American Society of Biochemistry and Cell Biology Travel Award (2015) and the prestigious DST-INSPIRE Faculty Scheme award (2012). These recognitions underscore her outstanding contributions to biomedical research, particularly in cancer biology and parasitology, further establishing her as a leader in her field.

Research Focus:

Dr. Arunima Biswas’s research focuses on cancer biology and parasitology, particularly the role of cyclic nucleotide signaling in cancer and Leishmania infections. She investigates therapeutic targets to modulate these pathways for better treatment options in cancer, including breast and gynecological cancers. Her ongoing projects include exploring phosphodiesterase inhibitors for breast cancer and cervical cancer, as well as developing vesicular drug carriers for targeted drug delivery. Dr. Biswas is dedicated to understanding the molecular intricacies of host-parasite interactions and their implications for disease management.

Publications Top Notes:

  1. Metal Oxide–Enhanced Para-Coumaric Acid Nanoparticles for Precision Targeting of Leishmania donovani
  2. Repurposing Approved Protein Kinase Inhibitors as Potent Anti-Leishmanials Targeting Leishmania MAP Kinases
  3. Anticancer, Antimicrobial, and Photocatalytic Activities of a New Pyrazole-Containing Thiosemicarbazone Ligand and Its Co(III) and Ni(II) Complexes
  4. Synthesis, Spectroscopy, and Structural Elucidation of Two New CoII and NiII Complexes of Pyrazole Derived Heterocyclic Schiff Base Ligand as Potential Anticancer and Photocatalytic Agents
  5. Vesicle-Encapsulated Rolipram (PDE4 Inhibitor) and Its Anticancer Activity
  6. Rhodamine Hydrazide-Linked Naphthalimide Derivative: Selective Naked Eye Detection of Cu2+, S2− and Understanding the Therapeutic Potential of the Copper Complex as an Anti-Cervical Cancer Agent
  7. Modulation and Determination of the Status of Inflammasomes in Leishmania-Infected Macrophages
  8. Catalytic and Anticancer Activity of Two New Ni(II) Complexes with a Pyrazole-Based Heterocyclic Schiff-Base Ligand
  9. Biophysical Study on DNA and BSA Binding Activity of Cu(II) Complex: Synthesis, Molecular Docking, Cytotoxic Activity, and Theoretical Approach
  10. Cytotoxic Behavior and DNA/BSA Binding Activity of Thiosemicarbazone-Based Ni(II) Complex: Bio-Physical, Molecular Docking, and DFT Study

Conclusion:

Dr. Arunima Biswas is an exceptional candidate for the “Best Researcher Award.” Her diverse research in cancer biology, parasitology, and drug development showcases her commitment to advancing healthcare. She has made significant strides in understanding complex molecular mechanisms, and her work holds great promise for improving cancer treatments. With a robust academic record, influential publications, and ongoing impactful projects, Dr. Biswas is undoubtedly a deserving contender for the award.

 

 

 

Wei Mu | Immunotherapy and Molecular Pathology | Best Researcher Award

Dr. Wei Mu | Immunotherapy and Molecular Pathology | Best Researcher Award

Dr. Wei Mu , Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , China

Mu Wei, born in October 1989, is an Assistant Researcher in the Department of Hematology at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. With a solid foundation in biotechnology and regenerative medicine, Mu Wei has consistently contributed to the advancement of CAR-T cell therapy, particularly in the context of hematological diseases. His research blends molecular biology with cutting-edge therapeutic techniques to tackle complex issues like T-cell exhaustion and immunotherapy resistance. With multiple principal investigator roles and ongoing projects funded by the National Natural Science Foundation of China, his expertise is shaping the future of cancer immunotherapy. Mu Wei is also an active author with publications in top-tier scientific journals, contributing valuable insights into CAR-T cell dynamics and the molecular mechanisms underlying immune responses in hematological malignancies.

Publication Profile:

Scopus

Strengths for the Award:

  1. Innovative Research Focus: Mu Wei’s research on CAR-T cell therapy demonstrates significant potential to enhance cancer immunotherapy. His work on precise molecular regulation of IL2Rβ/IL2Rγ signaling and T-cell exhaustion mechanisms in CAR-T therapies is cutting-edge and addresses key challenges in the field of hematological malignancies.
  2. Leadership and Impact: As the principal investigator for several National Natural Science Foundation projects, Mu Wei has shown leadership in guiding important research initiatives aimed at improving CAR-T cell therapies. His work is already showing potential to directly influence clinical outcomes in blood cancers.
  3. Publication Record: His consistent publication in high-impact journals (e.g., Blood Cancer Journal, Cell Reports) and contributions to collaborative studies further solidify his recognition as a leader in his research area.
  4. Ongoing Funding and Collaboration: The fact that Mu Wei is a key participant in ongoing large-scale national research projects demonstrates his ability to collaborate and contribute to high-impact, multi-year scientific endeavors. These projects reflect both the trust placed in him by funding bodies and the relevance of his expertise.

Areas for Improvement:

  1. Broader International Exposure: While Mu Wei has made impressive strides in national research, expanding his collaborations and visibility in international scientific communities could further boost the global impact of his research.
  2. Broader Public Engagement: As his research has direct implications for patient care, more efforts in translating his work into publicly accessible formats—such as public outreach, media engagement, or policy advisory—could amplify the societal impact of his discoveries.
  3. Expansion into Related Fields: His focus is currently tightly centered on CAR-T therapy in hematology. Branching into additional related areas, such as solid tumor immunotherapy or alternative immunotherapy strategies, could diversify his research portfolio and increase its relevance to a broader range of cancers.

 

Education:

Mu Wei completed his B.S. in Biotechnology at Anhui Medical University in 2011, followed by a Ph.D. in Regenerative Medicine from the University of Chinese Academy of Sciences in 2018. His doctoral research focused on the molecular biology of regenerative therapies, laying the foundation for his current expertise in hematology and immunology. During his Ph.D., Mu Wei developed a strong interest in immunotherapy, particularly in how cell therapies like CAR-T could be used to treat cancer and other blood disorders. Building on his academic achievements, he continued his training as a Postdoctoral Researcher at Tongji Hospital, where he expanded his research to explore the genetic and immune mechanisms involved in T-cell therapies. His robust educational background is complemented by his continuous pursuit of knowledge in cutting-edge immunotherapy technologies and regenerative medicine.

Experience: 

Mu Wei has extensive experience in hematology and cellular therapy, with a career spanning over a decade. Since December 2021, he has served as an Assistant Researcher in the Department of Hematology at Tongji Hospital, where he leads innovative research projects on CAR-T cell therapy and immunotherapy. Prior to this, he was a Postdoctoral Researcher at the same institution from October 2018 to October 2021, focusing on T-cell engineering and cell exhaustion mechanisms in cancer therapies. His academic and professional journey began at Anhui Medical University, where he earned his B.S. in Biotechnology, followed by a Ph.D. in Regenerative Medicine from the University of Chinese Academy of Sciences. Mu Wei’s work integrates laboratory research with clinical applications, aiming to improve the safety and efficacy of cellular therapies in treating hematological malignancies. He is also actively involved in national-level research projects funded by the National Natural Science Foundation of China.

Research Focus:

Mu Wei’s research focuses on advancing CAR-T cell therapy for the treatment of hematological cancers, with a particular emphasis on improving the precision and efficacy of these therapies. His work explores several critical areas: the molecular regulation of IL2Rβ/IL2Rγ signaling in CAR-T cells, the role of T-cell exhaustion in immunotherapy, and novel strategies to overcome resistance in lymphoma CAR-T cell therapies. By investigating the extracellular vesicle-based regulation of CAR-T cells, Mu Wei aims to develop more effective, targeted immunotherapies with fewer side effects. His current projects also delve into the molecular mechanisms of immune cell exhaustion, which can limit the effectiveness of CAR-T cells in certain patients. Mu Wei is passionate about translating his laboratory findings into clinical applications, improving the outcomes of patients with blood cancers through enhanced CAR-T cell designs and immunotherapeutic approaches. His research promises to contribute to the next generation of cancer immunotherapies.

Publication Top Notes:

  1. Correction to: Anti-CD5 CAR-T cells with a tEGFR safety switch exhibit potent toxicity control 🧬🛡️ Blood Cancer Journal (2024)
  2. Anti-CD5 CAR-T cells with a tEGFR safety switch exhibit potent toxicity control 🧬🛡️ Blood Cancer Journal (2024)
  3. Antigen escape in CAR-T cell therapy: Mechanisms and overcoming strategies 🚫🧬 Biomedicine and Pharmacotherapy (2024)
  4. Correlation analysis of polyclonal plasma cell proportion in the bone marrow with clinical characteristics of patients with newly diagnosed multiple myeloma 🩸📊 Chinese Journal of Hematology (2024)
  5. Novel heterozygous mutations of TNFRSF13B in EBV-associated T/NK lymphoproliferative diseases 🧬💉 Blood Science (2024)
  6. Functional diversification and dynamics of CAR-T cells in patients with B-ALL 🔬🧑‍🔬 Cell Reports (2023)
  7. Preclinical development and evaluation of nanobody-based CD70-specific CAR T cells for the treatment of acute myeloid leukemia ⚕️💡 Cancer Immunology, Immunotherapy (2023)
  8. Case report: Differential diagnosis of highly amplified anti-CD5 CAR T cells and relapsed lymphoma cells in a patient with refractory ALK positive anaplastic large cell lymphoma 📑🩸 Frontiers in Immunology (2023)
  9. CD137 deficiency because of two novel biallelic TNFRSF9 mutations in a patient presenting with severe EBV-associated lymphoproliferative disease 🧬💉 Clinical and Translational Immunology (2023)
  10. Genetic lesions and targeted therapy in Hodgkin lymphoma 🧬💊 Therapeutic Advances in Hematology (2023)

Conclusion:

Mu Wei is highly deserving of the Best Researcher Award. His research is not only advancing CAR-T cell therapy but is addressing key obstacles in the field, such as T-cell exhaustion and immune resistance. His leadership in national research projects and consistent publication in top-tier journals demonstrate his strong research capabilities. With his clear focus on improving cancer immunotherapy, Mu Wei is poised to make lasting contributions to the field, and his work holds the potential to improve clinical outcomes for patients with blood cancers. Expanding his international collaborations and broadening his research scope could further amplify his impact in the global scientific and clinical communities.