Xingting Guo | Stem Cell Research | Best Researcher Award

Assist. Prof. Dr. Xingting Guo | Stem Cell Research | Best Researcher Award

Assist. Prof. Dr. Xingting Guo , Peking University Third Hospital , China

Dr. Xingting Guo is a dedicated postdoctoral fellow at the National Institute of Biological Sciences (NIBS), Beijing, where she has been working since 2018. With a strong academic foundation in biochemistry and molecular biology, her research delves into stem cell biology, cellular differentiation, and tumorigenesis using Drosophila and mouse models. Her expertise lies in integrating genetics, biochemistry, single-cell sequencing, and bioinformatics to unravel mechanisms of cell fate specification and intestinal homeostasis. Dr. Guo has co-authored several high-impact publications and has presented her research at both national and international conferences. Her contributions have significantly advanced our understanding of enteroendocrine cells (EECs), tissue identity, and inter-organ communication. Passionate and detail-oriented, she is actively contributing to biomedical sciences with a vision to translate fundamental biology into therapeutic insights. Her work is paving the way for novel treatments for metabolic diseases and cancers.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Innovative Research Focus: Dr. Guo has made pioneering contributions in stem cell biology, particularly in understanding cell fate specification, enteroendocrine diversity, and tumor suppression using Drosophila and murine models.

  2. Multidisciplinary Skillset: She integrates genetics, high-throughput sequencing, bioinformatics, organoid culture, and in vivo models, showcasing deep technical expertise.

  3. High-Impact Publications: Co-first author in multiple peer-reviewed journals, including Cell Reports, Nature Communications, and FEBS Journal.

  4. Leadership in Research: From graduate researcher to postdoctoral fellow, she has led multiple independent projects, contributing novel findings to developmental and regenerative biology.

  5. International Recognition: Regular presenter at top-tier conferences globally, including the European Drosophila Research Conference and Annual Drosophila Research Conference (USA).

  6. Research Funding: Successfully secured National Natural Science Foundation of China funding, reflecting scientific merit and recognition.

🔍 Areas for Improvement:

  1. Broader Collaboration: Expanding collaborations outside her current institute or internationally may enhance the translational reach and impact of her research.

  2. Mentorship Roles: While her research is strong, formal mentorship roles (e.g., supervising Ph.D. students) or teaching contributions could further demonstrate leadership.

  3. Clinical Translation: Though her mouse model work touches on therapeutic discovery, publishing more translational or clinical-facing studies could boost her impact in applied biomedical research.

🎓 Education:

Dr. Xingting Guo earned her Ph.D. in Biochemistry and Molecular Biology from the College of Life Sciences at Beijing Normal University (2012–2018), where she began her in-depth research on stem cell biology and tissue differentiation in Drosophila. Prior to this, she completed her Bachelor’s degree in Biological Engineering at Nanjing Agricultural University (2008–2012), where she was honored with multiple scholarships for academic excellence. Throughout her education, she developed a robust foundation in molecular biology, genetics, and developmental biology, equipping her with the skills to tackle complex biological questions. Her academic journey has been characterized by continuous academic excellence, curiosity-driven research, and a commitment to uncovering the molecular mechanisms of health and disease. Her education laid the groundwork for her successful transition to cutting-edge postdoctoral research in developmental biology and regenerative medicine.

💼 Experience:

Dr. Guo began her research career at NIBS Beijing as a graduate student in 2012, transitioning into a postdoctoral fellow in 2018 under the mentorship of Dr. Rongwen Xi. Her research primarily uses Drosophila intestinal systems and murine models to explore the regulation of cellular identity, differentiation, and plasticity. She has led multiple projects on tumor suppression, transcriptional regulation, and enteroendocrine diversity using advanced techniques like genetic manipulation, single-cell RNA sequencing, and organoid cultures. Additionally, she contributes to translational research by identifying drug targets for diabetes-related therapy by reprogramming intestinal cells into insulin-producing β-cells. Her interdisciplinary approach and long-standing expertise in stem cell biology highlight her versatility and innovation in research. Her consistent progression from graduate student to independent researcher reflects her strong scientific rigor and leadership in high-impact studies.

🏆 Awards and Honors:

Dr. Xingting Guo has been recognized for her academic excellence and scientific contributions through numerous honors. During her Ph.D., she was awarded the First Class Academic Scholarship for two consecutive years (2014–2016). As an undergraduate, she earned the prestigious Cyrus Tang Scholarship four times, along with the First Class Scholarship at Nanjing Agricultural University. In recent years, she has taken on the role of a peer reviewer for Bio-protocols, highlighting her engagement with the scientific community. Dr. Guo’s research excellence has led her to represent her work at top-tier conferences, including the Annual Drosophila Research Conference (USA) and the European Drosophila Research Conference (Switzerland). Her contributions were also supported by a grant from the National Natural Science Foundation of China (Grant No. 3210050518), demonstrating her ability to secure competitive funding. These accolades mark her as a rising star in molecular and developmental biology.

🔬 Research Focus:

Dr. Guo’s research focuses on the molecular regulation of stem cell differentiation, cellular identity maintenance, and neuroendocrine cell plasticity using Drosophila and mouse models. She investigates how transcription factors such as ttk69 influence enteroendocrine (EEC) specification, tissue homeostasis, and tumor suppression. Using cutting-edge tools like CRISPR, single-cell transcriptomics, and in vivo lineage tracing, she deciphers how intestinal stem cells differentiate into diverse terminal cell types. Her recent work explores how intestinal EECs regulate systemic physiology via neuropeptides in response to environmental cues like starvation and mating. In parallel, she studies cell-fate reprogramming in mammals to identify potential therapeutic strategies for diabetes by inducing insulin-producing cells in the gut. By bridging basic biology with translational goals, her work contributes to regenerative medicine, oncology, and metabolic disease research.

📚 Publications Top Notes:

  • 🧠 Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor, Nature Communications, 2024

  • 🔍 The Specification and Function of Enteroendocrine Cells in Drosophila and Mammals: A Comparative Review, FEBS Journal, 2021

  • 🧬 A Switch in Tissue Stem Cell Identity Causes Neuroendocrine Tumors in Drosophila Gut, Cell Reports, 2020

  • 🧫 The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells, Cell Reports, 2019

  • 🧬 Division of Labor: Roles of Groucho and CtBP in Notch-Mediated Lateral Inhibition, Stem Cell Reports, 2019

  • 📘 Signaling Pathways Regulating Stem Cells, Book Chapter, Springer, 2015

  • 🛑 Ttk69 acts as a master repressor of enteroendocrine cell specification, Development, 2015

  • 🧪 EGFR and Notch signaling regulate gastric stem cells, Cell Research, 2014

  • 🧠 Sox9 Ortholog Regulates Intestinal Homeostasis and Regeneration in Drosophila, Cell Reports, 2020

🧾 Conclusion:

Dr. Xingting Guo is a highly qualified and deserving candidate for the Best Researcher Award. Her exceptional track record in stem cell biology, cellular reprogramming, and disease modeling makes her a rising star in the life sciences. With a unique combination of technical excellence, scientific innovation, and publication strength, she has already made a significant impact on our understanding of intestinal cell biology and endocrine regulation. Addressing a few career development aspects—like expanding collaborative networks and clinical translation—will make her an even more formidable leader in the field. Given her achievements, potential, and contributions, she is strongly recommended for this prestigious honor.

Yufeng Liu | photosynthesis | Best Researcher Award

Prof. Yufeng Liu | photosynthesis | Best Researcher Award

Prof. Yufeng Liu , Shenyang Agricultural University , China

Professor Yufeng Liu is a distinguished academic at the Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, China. With a rich background in horticulture and vegetable science, he has dedicated his career to advancing agricultural innovation and sustainability. His research focuses on the molecular mechanisms of photosynthesis and stress responses in plants, particularly tomatoes. Professor Liu has made significant contributions to greenhouse technology and energy-efficient cultivation methods. He is recognized for his commitment to education and research, inspiring a new generation of horticulturists. As a member of various professional societies, he actively collaborates on national projects, driving impactful advancements in the field.

Publication Profile

Scopus

Strengths for the Award

Professor Yufeng Liu is a highly accomplished researcher in the field of horticultural science, particularly known for his work on photosynthesis and stress responses in plants. His strong academic background, highlighted by a PhD in Vegetable Science and significant positions at Shenyang Agricultural University, showcases his commitment to advancing agricultural practices. With 30 publications in indexed journals and 16 patents, he has made substantial contributions to both theoretical and applied research. His innovative technologies in greenhouse cultivation and understanding of stress mechanisms in tomatoes have implications for enhancing crop resilience, making him a valuable asset to the scientific community. His recent recognition through the Changjiang Scholar Award further validates his impact and leadership in horticultural engineering.

Areas for Improvement

While Professor Liu has demonstrated exceptional research capabilities, expanding his outreach to engage with industry stakeholders could enhance the practical application of his findings. Increased collaboration with international researchers may also lead to broader perspectives and innovations in his research. Further, developing more interdisciplinary projects could strengthen his work’s relevance in global agricultural challenges.

Education 

Professor Yufeng Liu obtained his Bachelor’s degree in Horticulture from Shandong Agricultural University in 2009. He pursued his PhD in Vegetable Science at Shenyang Agricultural University, completing it in 2009. His academic journey continued as he transitioned into various teaching roles at the same institution. In March 2012, he became a Lecturer, followed by promotion to Associate Professor in November 2017. By November 2021, he achieved the position of Professor. His educational achievements are complemented by participation in prestigious programs, including the Changjiang Scholar Award Program for Young Scholars in August 2023 and his role as a National bulk vegetable technical system post scientist since August 2022.

Experience 

Professor Yufeng Liu has extensive teaching and research experience spanning over a decade at Shenyang Agricultural University. His roles have evolved from Lecturer to Professor, allowing him to influence academic curricula and guide numerous graduate students. With a focus on innovative agricultural practices, he has led 16 completed and ongoing research projects, resulting in 30 published articles in indexed journals and 16 patents related to greenhouse technology and plant cultivation techniques. His expertise lies in photosynthesis, stress mechanisms, and calcium regulation in plants, contributing to advancements in stress-resistant vegetable cultivation. Additionally, his editorial role as a Guest Editor for the journal 《Horticulture》 showcases his leadership in the scientific community, and his active memberships in the Chinese Horticultural Society and Chinese Society of Agricultural Engineering reflect his commitment to professional collaboration and knowledge dissemination.

Awards and Honors 

Professor Yufeng Liu’s achievements have garnered him several prestigious awards and recognitions. He was honored with the Changjiang Scholar Award in August 2023, acknowledging his contributions to horticultural science as a young scholar. As a National bulk vegetable technical system post scientist since August 2022, he has played a critical role in developing advanced agricultural techniques. His promotions within Shenyang Agricultural University—from Lecturer to Professor—highlight his impact on academia and research. Furthermore, his contributions to the field have resulted in 16 patents and multiple publications in high-impact journals. Liu’s dedication to enhancing agricultural practices and fostering innovation is evident through his active involvement in professional societies, where he collaborates on various industry projects, strengthening his reputation as a leader in horticultural engineering.

Research Focus 

Professor Yufeng Liu’s research primarily explores the intricate processes of photosynthesis, plant stress responses, and calcium dynamics in horticultural crops. His significant contributions include clarifying molecular mechanisms of photosynthetic disorders in tomatoes under low night temperatures, which aids in developing stress-resistant varieties. Liu has investigated photoprotection mechanisms, contributing to the understanding of how tomatoes cope with adverse environmental conditions. He also focuses on innovative technologies for the efficient cultivation of facility vegetables, emphasizing energy-saving techniques in greenhouse operations. His work has resulted in breakthroughs in the prevention and control of soil-related obstacles in vegetable production. Through 16 ongoing and completed projects, Liu continues to innovate and enhance cultivation strategies, aligning his research with global agricultural sustainability goals.

Publication Top Notes

  1. Genome-wide identification and expression analysis of the UPF0016 family in tomato under drought stress 🌱
  2. Galactinol Regulates JA Biosynthesis to Enhance Tomato Cold Tolerance ❄️
  3. Light quality regulates plant biomass and fruit quality through a photoreceptor-dependent HY5-LHC/CYCB module in tomato 🌞
  4. Microorganisms regulate soil phosphorus fractions in response to low nocturnal temperature 🌍
  5. Progress on the UPF0016 family in plants 🌿
  6. Analysis of YUC and TAA/TAR Gene Families in Tomato 📊
  7. Effects of Low Temperature on Pedicel Abscission and Auxin Synthesis Key Genes of Tomato ❄️
  8. Genome-wide investigation of the phospholipase C gene family in Solanum lycopersicum and abiotic stress analysis 🌱
  9. Detection of Cucumber Powdery Mildew Based on Spectral and Image Information 🥒
  10. Effects of CO2 Enrichment on Carbon Assimilation, Yield and Quality of Oriental Melon Cultivated in a Solar Greenhouse 🌞🍈

Conclusion

Professor Yufeng Liu’s impressive body of work, academic achievements, and ongoing commitment to research make him a strong candidate for the Best Researcher Award. His contributions not only advance scientific understanding but also offer practical solutions to pressing agricultural issues. By fostering industry connections and broadening his collaborative efforts, he can further amplify the impact of his research on global horticulture. Recognizing him with this award would acknowledge his valuable contributions and inspire further innovation in the field.

 

 

Ravneet Kaur | Fish neurobiology | Cell Biology Research Award

Assist Prof Dr Ravneet Kaur | Fish neurobiology | Cell Biology Research Award

Assist Prof Dr Ravneet Kaur , Panjab University , India

Dr. Ravneet Kaur is an esteemed Assistant Professor in the Department of Zoology at Panjab University, Chandigarh. With a strong academic background and a focus on aquatic biology, her research encompasses fish and fisheries, wetland ecology, and biomaterials derived from fish scales. Dr. Kaur is recognized globally, being listed among the top 2% of scientists by Stanford University in 2024. Her commitment to teaching and research has significantly contributed to the scientific community, particularly in the areas of neurobiology and environmental monitoring.

Publication Profile 

Orcid

Strengths for the Award

  1. Extensive Research Background:
    • Dr. Kaur has a strong foundation in cell biology, specifically related to fish and fisheries, and has made significant contributions through her research on fish scale biomaterials and zebrafish models. Her work on the brain-gut axis and retinal degeneration showcases her expertise in neurobiology.
  2. Publication Record:
    • With numerous publications in reputed journals, including studies on heavy metal evaluation using fish otoliths, her contributions to environmental monitoring and biocomposite materials are noteworthy. Her recent recognition as one of the top 2% of scientists globally by Stanford University adds to her credibility.
  3. Innovative Research:
    • Her focus on developing fish scale-based biomaterials for tissue engineering and studying neurobehavioral impacts in zebrafish indicates a forward-thinking approach. This aligns well with current trends in regenerative medicine and environmental biology.
  4. Research Guidance:
    • Dr. Kaur has successfully guided several PhD and MSc students, reflecting her commitment to nurturing the next generation of scientists. The diversity of topics she supervises illustrates her broad knowledge base and mentoring skills.
  5. Awards and Recognitions:
    • Her numerous accolades, including best poster and presentation awards at various conferences, highlight her ability to communicate complex scientific ideas effectively.

Areas for Improvement

  1. Broader Collaboration:
    • While Dr. Kaur has demonstrated excellence in her individual research, expanding collaborative efforts with interdisciplinary teams could enhance the scope and impact of her work, particularly in applied fields like environmental sustainability and biotechnology.
  2. Funding and Grant Acquisition:
    • Increased efforts in securing external funding and grants could bolster her research projects. Pursuing collaborations with industry stakeholders might also open up new avenues for research and development.
  3. Public Outreach:
    • Strengthening outreach initiatives to share her research with broader audiences could enhance public understanding of her work’s significance, particularly in environmental conservation and public health.

Education

Dr. Kaur obtained her B.Sc. (2000) and M.Sc. (2002) from Panjab University, earning a gold medal for her undergraduate performance. She completed her Ph.D. in 2006 under the UGC-JRF Scholarship, focusing on fish biomaterials. Additionally, she has pursued a certificate course in French (2004). Her educational journey has laid a solid foundation for her diverse research interests and academic accomplishments.

Experience

Dr. Kaur has over 18 years of teaching and research experience. She began her career as an Assistant Professor on a contract basis in various colleges before joining the Department of Zoology at Panjab University in 2010. Since 2014, she has held a permanent position, engaging in teaching undergraduate and postgraduate courses while supervising numerous Ph.D. and M.Sc. students. Her administrative roles, including warden and coordinator, demonstrate her leadership within the academic community.

Awards and Honors

Dr. Kaur has received multiple awards for her academic excellence and research contributions. Notable recognitions include the M/S. Zeiss Best SEM Micrograph Award, Best Participant in a training program by the Indian Council of Agricultural Research, and several presentation awards at national conferences. Her recent accolade includes being recognized among the top 2% of scientists globally by Stanford University in 2024.

Research Focus

Dr. Kaur’s research primarily focuses on fish biology, biomaterials from fish scales, zebrafish neuroscience, and environmental monitoring through fish otoliths. She has extensively studied the effects of environmental pollutants on aquatic life and the potential applications of fish-derived biomaterials in tissue engineering. Her work contributes to understanding aquatic ecosystems and developing innovative solutions in biotechnology.

Publications Top Notes

  1. Length-weight relationship and condition factors of three freshwater fish species – Bangana dero (Ham.), Cyprinus carpio L., and Sperata seenghala (Sykes) – from the Sutlej River, India 📄
  2. Otolith Microchemistry of Freshwater Indigenous Minor Carp (Bangana dero) as a Biomonitoring Tool to Trace Heavy Metals in River Sutlej, Ropar Wetland (Ramsar site), Punjab, India 📄
  3. Starch-based antibacterial food packaging with ZnO nanoparticle 📄
  4. Synthesis of a trinuclear zinc(II) cluster composed of [4.4.3.01,5]tridecane cages: a rapid detection and degradation probe for the chemical warfare agent simulant diethyl cyanophosphonate in protein-rich food products 📄
  5. Preparation and Characterization of EDC/NHS Crosslinked Collagen Scaffold from the Scales of Cyprinus carpio (Common Carp) 📄
  6. Role of spirulina in structural remodeling of synapse in telencephalon of chronic unpredictable stress model of zebrafish 📄
  7. Yoga as a Preventive Intervention for Cardiovascular Diseases and Associated Comorbidities: Open-Label Single Arm Study 📄
  8. Ultrastructural Studies of Photoreceptor Cell Degeneration with Organophosphate and its Regeneration in Cyprinus carpio communis 📄
  9. Dose and Time Response Study to Develop Retinal Degenerative Model of Zebrafish with Lead Acetate 📄
  10. Microstructure and biocompatibility of biphasic ceramic (HA/β-TCP) from scales of fresh water fish common carp (Cyprinus carpio) 📄

Conclusion

Dr. Ravneet Kaur’s exemplary research profile, characterized by innovative contributions to cell biology and environmental sciences, positions her as a strong candidate for the Research for Cell Biology Research Award. Her commitment to research, effective mentorship, and recognition in the scientific community underscore her potential to further advance the field. By addressing areas for improvement, particularly in collaboration and outreach, Dr. Kaur can significantly enhance her impact and leadership in cell biology research.

 

 

 

Yuan Ma | Cell Death Pathway | Best Researcher Award

Prof Yuan Ma | Cell Death Pathway | Best Researcher Award

Prof Yuan Ma , Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University , China

Yuan Ma is a prominent Professor in the Department of Respiratory and Critical Care Medicine at The First Affiliated Hospital of Nanjing Medical University, China. With a medical background and a focus on bronchial asthma, Dr. Ma has made significant contributions to understanding the mechanisms of airway inflammation and remodeling. Through extensive research, he aims to identify novel molecular targets for asthma therapies. His work has been recognized internationally, underscoring his dedication to advancing clinical applications in respiratory medicine.

Publication Profile

Scopus

Strengths for the Award

  1. Extensive Research Experience: Yuan Ma has a robust academic background as a Professor in Respiratory and Critical Care Medicine. His focus on airway inflammation and remodeling in asthma is critical, given the increasing prevalence of respiratory diseases.
  2. Publication Record: With 25 articles in domestic journals and 13 in international journals, his publication record demonstrates both local and global recognition of his work. Notable articles in high-impact journals underscore the significance and relevance of his research.
  3. Innovative Contributions: Ma’s identification of necroptosis-related targets in asthma and the discovery of potential therapeutic compounds indicate significant advancements in the understanding and treatment of asthma, contributing to both academic knowledge and clinical practice.
  4. Grant Funding: Successfully presiding over projects funded by the National Natural Science Foundation of China highlights his ability to secure funding for impactful research, a crucial aspect of a successful research career.
  5. Patents: The issuance of 13 patents illustrates his innovative capacity and the potential for practical applications of his research findings.

Areas for Improvement

  1. Broader Collaborations: While Ma has made significant contributions, fostering collaborations with researchers from diverse fields could enhance interdisciplinary insights and expand the impact of his work.
  2. Professional Memberships: Engaging in professional organizations could provide networking opportunities and enhance visibility in the research community, further strengthening his position.
  3. Public Outreach: Increasing public engagement and dissemination of research findings could elevate awareness about asthma and his innovations, potentially leading to broader societal impact.

Education 

Dr. Yuan Ma obtained his medical degree from a prestigious institution, followed by specialized training in respiratory medicine. He completed his PhD with a focus on airway diseases, where he gained insights into the cellular and molecular mechanisms underlying asthma. Throughout his academic journey, Dr. Ma has cultivated a robust foundation in both clinical practice and research methodology, allowing him to bridge the gap between laboratory findings and patient care. His continuous pursuit of knowledge in respiratory health has led him to engage in various professional development opportunities, enhancing his expertise and contributing to his role as a leader in his field.

Experience 

Dr. Yuan Ma has extensive experience in both clinical and research settings, spanning over a decade. He has presided over significant research projects funded by the National Natural Science Foundation of China, exploring the pathogenesis of asthma and potential therapeutic interventions. His impressive track record includes 25 publications in national journals and 13 in international peer-reviewed journals, showcasing his commitment to advancing respiratory medicine. As a professor, he mentors medical students and residents, fostering the next generation of researchers and clinicians. His collaborative work with national and international peers has enriched his research, contributing to innovative approaches in asthma treatment. Additionally, his contributions to patent development demonstrate his drive to translate research findings into practical applications for better patient outcomes.

Research Focus 

Dr. Yuan Ma’s research primarily focuses on the mechanisms of airway inflammation and remodeling in bronchial asthma. He investigates necroptosis-related biomarkers and their regulatory mechanisms, aiming to identify novel therapeutic targets. His work encompasses exploring molecular compounds that can effectively modulate these targets, enhancing asthma diagnosis and treatment options. Dr. Ma’s innovative studies delve into the role of oxidative stress and MAPK signaling pathways in airway smooth muscle cell behavior. By examining the intricate interactions within the airway microenvironment, he seeks to uncover underlying processes that contribute to asthma exacerbations. His research has significant implications for developing targeted therapies, addressing the unmet needs of asthma patients, and ultimately improving clinical outcomes in respiratory medicine.

Publications Top Notes

  1. Screening, identification and targeted intervention of necroptotic biomarkers of asthma. 📄
  2. Caffeic acid phenethyl ester alleviates asthma by regulating the airway microenvironment via the ROS-responsive MAPK/Akt pathway. 🌱
  3. Morin Attenuates Ovalbumin-induced Airway Inflammation by Modulating Oxidative Stress-responsive MAPK Signaling. 🩺
  4. A case of male primary pulmonary choriocarcinoma. 🦠
  5. Implication of dendritic cells in lung diseases: immunological role of Toll-like receptor 4. 🔬
  6. Glomus tumors of the trachea: 2 case reports and a review of the literature. 📚
  7. Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. 🧬
  8. SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19 patients. 🦠
  9. Characteristics of H7N9 avian influenza pneumonia: a retrospective analysis of 17 cases. 📊
  10. Galangin attenuates airway remodeling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. 🌿
  11. Melatonin modulates airway smooth muscle cell phenotype by targeting the STAT3/Akt/GSK-3β pathway in experimental asthma. 🌙
  12. Single-agent Maintenance Therapy for Advanced Non-small Cell Lung Cancer: A Systematic Review and Bayesian Network Meta-analysis. 🧑‍⚕️
  13. Effect of diosmetin on airway remodeling in a murine model of chronic asthma. 🐭

Conclusion

Yuan Ma’s exceptional research contributions in understanding and treating asthma position him as a strong candidate for the Best Researcher Award. His extensive publication record, innovative findings, and successful grant applications reflect a commitment to advancing respiratory medicine. Addressing areas for improvement could further enhance his profile and influence in the field. Overall, Ma’s achievements warrant recognition, and he is well-suited for this prestigious award.