Sherin Devaskar | Gene Regulation Epigenetics | Best Researcher Award

Prof. Sherin Devaskar | Gene Regulation Epigenetics | Best Researcher Award

Prof. Sherin Devaskar | UCLA | United States

Dr. Sherin U. Devaskar is a Distinguished Professor of Pediatrics at UCLA and the Executive Director of the Children’s Discovery and Innovation Institute. Renowned for her work in neonatology and developmental biology, Dr. Devaskar has committed her scientific career to unraveling how intrauterine environments influence neonatal and long-term offspring outcomes. Her research spans cellular, molecular, genetic, epigenetic, and physiological mechanisms, specifically focusing on placental biology and metabolic programming. As a leader in her field, she combines clinical excellence with groundbreaking research, translating findings into improvements in pediatric care. She has been recognized nationally for her academic contributions, holding memberships in elite institutions like the National Academy of Medicine. Dr. Devaskar’s research has had a significant impact on public health, particularly in understanding how early life exposures affect lifelong health trajectories. Her translational work bridges laboratory insights with population-based outcomes, making her a respected authority in developmental and environmental health research.

Publication Profiles: 

Scopus
Google Scholar

Education:

Dr. Sherin Devaskar began her medical training at Madras Medical College, India, where she earned her M.B.B.S./M.D. in Medicine. She pursued an Internship in Pediatrics (PL1) at the Institute of Child Health, Madras, completing. Seeking advanced clinical training, she moved to the United States and completed a Residency in Pediatrics (PL1 & PL2) at Wayne State Affiliated Hospitals, Detroit, MI. This strong foundation in both Indian and American medical systems gave her a global perspective in pediatrics. Over time, she augmented her clinical training with postdoctoral research and academic development, evolving into a globally recognized expert in neonatal and pediatric medicine. Her education laid the groundwork for a lifelong pursuit of excellence in child health and developmental research, fostering interdisciplinary collaboration across medicine, epidemiology, nutrition, and molecular biology.

Experience:

Dr. Devaskar has more than four decades of experience in pediatric medicine, specializing in neonatology and developmental biology. She currently holds the title of Distinguished Professor of Pediatrics at UCLA and serves as the Executive Director of both the Children’s Discovery and Innovation Institute and the Neonatal Research Center. Throughout her career, she has bridged clinical practice with scientific inquiry, directing major NIH-funded projects and mentoring the next generation of physician-scientists. Her work spans bench-to-bedside research on maternal-fetal health, metabolic programming, and placental function. She has held leadership roles in various pediatric research networks and has served on advisory boards for national health agencies. Her professional experience is distinguished not just by volume but also by the interdisciplinary and translational nature of her work. Dr. Devaskar is also a committed educator, having trained countless medical students, residents, and fellows who now contribute meaningfully to pediatric research and care worldwide.

Awards and Honors:

Dr. Sherin Devaskar’s pioneering contributions to pediatric medicine and research have earned her numerous prestigious awards. Most notably, she received the American Pediatric Society John Howland Award, the highest honor in academic pediatrics, recognizing her lifetime achievements in research, education, and leadership. She was honored with the Outstanding Scientific Accomplishments Award by the ATMA Association. Her election to the National Academy of Medicine further highlights her stature among the leading medical scientists in the world. These accolades reflect her sustained commitment to advancing pediatric health through rigorous science, innovation, and mentorship. In addition to these national honors, she is regularly invited to speak at international conferences, review NIH grants, and contribute to influential scientific panels. Her recognition underscores a career dedicated not only to scientific discovery but also to improving the lives of children globally through compassionate, evidence-based care.

Research Focus:

Dr. Devaskar’s research centers on the impact of intrauterine and early-life exposures on fetal and neonatal development, with an emphasis on placental biology, metabolic imprinting, and epigenetic regulation. Her multidisciplinary approach integrates molecular biology, environmental health, physiology, and neonatology, making her a leader in unraveling how prenatal environments shape long-term health outcomes. She has investigated the effects of air pollutants, nutritional mismatches, and oxidative stress on pregnancy outcomes and infant development. Her studies incorporate animal models, human cohorts, and placental tissue analyses to uncover biomarkers and molecular pathways that could be targeted for interventions. Notably, she explores placental resilience, especially under extreme stressors like COVID-19 or urban pollution. Dr. Devaskar’s work has direct translational relevance, offering insight into preventative strategies and therapeutic solutions for adverse pregnancy outcomes, pre-eclampsia, and neonatal hypoglycemia. Her research is frequently published in top-tier journals and is influential in shaping maternal-child health policies.

Publications Top Notes: 

  1. Diet, polycyclic aromatic hydrocarbons, and oxidative stress biomarkers in pregnancy: A Los Angeles pregnancy cohort

  2. Pediatric subspecialty workforce: what is needed to secure its vitality and survival?

  3. Does Amsterdam criteria applied to largely unsubmitted term placentas with favorable fetal outcomes show significant maternal clinicopathologic correlation?

  4. Exploring the long-term impacts of neonatal hypoglycemia to determine a safe threshold for glucose concentrations

  5. Hepatic and Pancreatic Cellular Response to Early Life Nutritional Mismatch

  6. Ambient exposure to fine particulate matter with oxidative potential affects oxidative stress biomarkers in pregnancy

  7. Placental Privilege: Evidence of organ resilience in severe COVID-19 in pregnancy

  8. Omega-3 reverses the metabolic and epigenetically regulated placental phenotype acquired from preconceptional and peri-conceptional exposure to air pollutants

  9. Urinary polycyclic aromatic hydrocarbon metabolites and their association with oxidative stress among pregnant women in Los Angeles

  10. Circulating extracellular vesicular microRNA signatures in early gestation show an association with subsequent clinical features of pre-eclampsia

Conclusion:

In conclusion, Dr. Sherin U. Devaskar is an outstanding candidate for the Best Researcher Award, with a remarkable blend of research excellence, leadership, and clinical relevance. Her contributions to understanding fetal and placental programming, particularly in the context of environmental exposures and metabolic health, have advanced the field in both depth and scope. Her dedication to interdisciplinary methods and translational science positions her as a thought leader in pediatric and perinatal research. Although greater global engagement and public science dissemination could enhance the reach of her work, these are growth areas rather than gaps. The breadth of her expertise, combined with her history of academic leadership and award-winning research, make her not only deserving of this recognition but also a role model for future generations of physician-scientists. Recognizing Dr. Devaskar with this award would honor a career built on scientific rigor, innovation, and a lifelong commitment to improving child and maternal health worldwide.

Shuxin Han | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Shuxin Han | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Shuxin Han | Xinjiang University | China

Dr. Shuxin Han is a distinguished molecular biologist and professor at Xinjiang University, widely recognized for his pioneering work in hepatobiliary and metabolic biology. With a research career spanning over two decades, Dr. Han has made major contributions to understanding how Kruppel-like factors, especially KLF15, regulate endobiotic and xenobiotic metabolism, impacting drug detoxification and metabolic disease mechanisms. He earned his Ph.D. from Kent State University and has held prestigious positions at Harvard Medical School and Case Western Reserve University. His groundbreaking studies have been published in high-impact journals like Nature Metabolism and Nature Communications, with several articles naming him as first or corresponding author. In addition to research, Dr. Han serves as a reviewer for top-tier journals in pharmacology, hepatology, and clinical science. He is also an academic leader, currently shaping the next generation of scientific talent and metabolic disease research in China.

Publication Profile: 

Scopus

Education:

Dr. Shuxin Han began his academic journey in Animal Sciences, earning a bachelor’s degree from Anhui Agricultural University (1994–1998). He advanced to a research assistant role at Peking University (1999–2000), where he deepened his scientific foundation. He then moved to the U.S. to pursue a Master’s in Biology at Temple University (2000–2003), followed by a Ph.D. in Molecular Biology from Kent State University (2004–2009), focusing on metabolic biology and gene regulation. This progression from general animal sciences to highly specialized molecular biology reflects a systematic and deep commitment to biomedical research. His strong academic preparation laid the foundation for a research career investigating how transcriptional regulators impact health and disease. Dr. Han’s training spans world-class institutions across both China and the United States, equipping him with diverse scientific perspectives and techniques.

Experience:

Dr. Shuxin Han has accumulated rich research and academic experience over nearly 30 years. His early career included a pivotal research assistant role at Peking University, followed by advanced training in biology and molecular biology at Temple and Kent State Universities. He completed prestigious postdoctoral training at Harvard Medical School (2009–2012) and Case Western Reserve University (2012–2015), where he later became a Senior Research Associate (2015–2019). He returned to China in 2019 as a Researcher at the University of Science and Technology of China First Affiliated Hospital, simultaneously engaging in academic duties at the university until 2023. Currently, he serves as a Professor and Academic Leader at Xinjiang University. Throughout his career, Dr. Han has built strong international collaborations, led research groups, and guided innovative projects in metabolic biology, demonstrating his leadership, research excellence, and academic mentorship capabilities.

Research Focus:

Dr. Shuxin Han’s research centers on the molecular regulation of metabolism, particularly focusing on the hepatobiliary and gastrointestinal systems. His work has elucidated the critical role of the Kruppel-like factor (KLF) family, especially KLF15, in controlling endobiotic and xenobiotic metabolism (EXM). These pathways govern how the body metabolizes both internal compounds and external substances like drugs. Dr. Han’s studies have shown that KLF15 acts as a master regulator, influencing drug resistance, liver injury, and metabolic homeostasis. His discoveries offer new insight into personalized medicine and treatment for metabolic disorders and drug-related toxicities. With numerous first-author and corresponding-author publications in journals such as Nature Metabolism, Nature Communications, and Drug Metabolism and Disposition, his work has significantly impacted both fundamental science and clinical applications. He is also active in peer-reviewing for top-tier journals and is recognized for his leadership in translational research.

Publications Top Notes:

  1. Unveiling KLF15 as the Key Regulator of Cyclosporine A Metabolism and Adverse EffectsDrug Metabolism and Disposition, 2025

  2. Distribution and Functional Significance of KLF15 in Mouse CerebellumMolecular Brain, 2025

  3. Personalized Statin Therapy: Targeting Metabolic ProcessesHeliyon, 2025

  4. Current Status and New Directions for Hepatocellular Carcinoma DiagnosisLiver Research, 2024

  5. KLF15-Cyp3a11 Axis Regulates Rifampicin-Induced Liver InjuryDrug Metabolism and Disposition, 2024

  6. Advancing Drug Delivery and Bioengineering in Liver ResearchBioengineering and Translational Medicine, 2024

  7. Advances in IL-7 Research on Tumor TherapyPharmaceuticals, 2024 (Co-author)

  8. Pathogenic Mechanisms in Alcoholic Liver DiseaseJournal of Translational Medicine, 2023

  9. Beta-Hydroxybutyrate Effects on iPSC-Derived Cardiac MyocytesBiomolecules, 2022

  10. Interactions Between Intestinal Flora and Bile AcidsInternational Journal of Molecular Sciences, 2022 (Corresponding author)

Conclusion:

In conclusion, Dr. Shuxin Han is a highly deserving candidate for the Best Researcher Award. His pioneering work on KLF15 and metabolic regulation has reshaped fundamental understanding in the field of hepatobiliary biology and pharmacology. His academic background, research productivity, international experience, and editorial service all reflect a well-rounded and impactful scientist. While there is room to increase clinical translation and international engagement, the depth, originality, and consistency of his research make him a strong contender for this recognition. Honoring Dr. Han with this award would acknowledge a career dedicated to scientific advancement with substantial implications for human health and drug therapy.

Haiping Zhang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Haiping Zhang | Signal Transduction Mechanisms | Best Researcher Award

Prof. Haiping Zhang, anhui agricultural university, China

Prof. Haiping Zhang is a distinguished plant molecular biologist at the College of Agronomy, Anhui Agricultural University, China. He is affiliated with the Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, under the Ministry of Agriculture and Rural Affairs. With a strong focus on improving wheat productivity and resilience, Prof. Zhang has made significant contributions to understanding gene regulation mechanisms in seed dormancy, germination, and yield traits. His recent work investigates transcription factors and their impact on hormone biosynthesis, especially gibberellin and ethylene signaling. Widely published in high-impact journals, his research stands at the intersection of molecular genetics and applied agronomy, aiming to develop cultivars with improved yield stability and adaptability. Prof. Zhang is recognized for his leadership in collaborative research and his commitment to training young scientists in advanced genetic and biotechnological tools for sustainable wheat improvement.

Publication Profile: 

Scopus

Strengths for the Award:

  1. 🔬 High-Impact Research in Wheat Genetics
    Prof. Zhang’s research addresses essential topics in crop science, particularly seed dormancy and gibberellin regulation, which are critical for yield stability and pre-harvest sprouting resistance in wheat. His studies contribute directly to improving food security and crop resilience.

  2. 📚 Recent Publications in Reputed Journals
    In 2024–2025, he has published in prestigious, peer-reviewed journals such as:

    • International Journal of Biological Macromolecules

    • Environmental and Experimental Botany

    • BMC Plant Biology
      These are respected outlets for plant biology and biotechnology research.

  3. 🎯 Focused and Coherent Research Theme
    His work follows a consistent and meaningful trajectory, exploring transcription factors (e.g., TaERF-2A, TaNAC018-7D) and their regulation of GA biosynthesis genes, directly tied to agronomically important traits.

  4. 🧩 Integrative Methodology
    Prof. Zhang uses an integrative approach, combining molecular biology, genomics (e.g., GWAS), and functional gene analysis to achieve both mechanistic insights and breeding applications.

  5. 🇨🇳 National Importance and Institutional Role
    As a professor at a leading Chinese agricultural university and a core contributor to a Ministry of Agriculture Key Laboratory, his research has both scientific and policy-level relevance in China.

⚙️ Areas for Improvement:

  1. 🌍 Broader International Collaboration
    While his work is impactful, future projects could benefit from expanding global collaborations—particularly with wheat research groups in North America, Europe, and South Asia—to raise visibility and enable joint innovation.

  2. 📣 Visibility and Science Communication
    Prof. Zhang could enhance his global research profile by:

    • Presenting at international conferences

    • Engaging in more open science or outreach platforms

    • Publishing review articles or perspective pieces

  3. 📊 Citations and Impact Tracking
    As the current papers have 0 citations (likely due to recency), tracking future impact (via citation metrics or media attention) will further support long-term recognition.

🎓 Education:

Prof. Haiping Zhang earned his undergraduate degree in Agronomy from Anhui Agricultural University, laying a solid foundation in crop sciences and plant physiology. He pursued his Master’s in Crop Genetics and Breeding, where he developed a keen interest in molecular plant biology. Driven by curiosity in genetic regulation, he obtained a Ph.D. in Plant Molecular Genetics, focusing on hormone signaling and gene expression in cereal crops. His doctoral research emphasized gene-function analysis related to stress tolerance and developmental pathways. To deepen his expertise, Prof. Zhang has also participated in national and international training programs, including advanced workshops in genome editing, transcriptomics, and plant phenotyping. His academic journey reflects a deep commitment to interdisciplinary learning, combining classical breeding principles with cutting-edge molecular tools. This strong educational background has equipped him with the knowledge and skills to tackle complex challenges in wheat improvement and to lead high-impact research projects across China and beyond.

🧪 Experience:

Prof. Haiping Zhang currently serves as a senior professor and principal investigator at the College of Agronomy, Anhui Agricultural University. With over 20 years of experience in plant science, he has led numerous research projects funded by the Chinese Ministry of Agriculture and the National Natural Science Foundation. He is a core member of the Key Laboratory of Wheat Biology and Genetic Improvement, where he mentors graduate students and postdocs in functional genomics and molecular breeding. Prof. Zhang’s expertise spans transcription factor analysis, gene editing (e.g., CRISPR/Cas), and genome-wide association studies (GWAS). He actively collaborates with national wheat breeding centers and has served on editorial boards of agricultural science journals. He is frequently invited as a reviewer and speaker at plant biotechnology conferences. His professional experience reflects a rare blend of teaching, research, and applied innovation in one of the world’s most critical food crops—wheat.

🔬 Research Focus:

Prof. Haiping Zhang’s research centers on molecular regulation of seed dormancy, germination, and yield traits in wheat, with a strong emphasis on plant hormone biosynthesis and transcription factor networks. His work integrates ethylene- and gibberellin-responsive gene pathways to elucidate the mechanisms by which specific genes such as TaGA2ox2-3B and TaGA7ox-A1 influence critical agronomic traits. Prof. Zhang applies advanced tools such as RNA-seq, CRISPR gene editing, and GWAS to dissect regulatory pathways at the genomic level. He also focuses on identifying key genetic variants associated with desirable traits across diverse wheat populations. His aim is to provide molecular targets for wheat breeders seeking to enhance seed viability, resistance to pre-harvest sprouting, and yield stability under varying environmental conditions. By linking basic gene function with applied breeding, his research contributes to China’s national food security strategy and offers global relevance in sustainable crop improvement.

📚 Publication Top Notes:

  1. 📘 The ethylene responsive factor TaERF-2A activates gibberellin 2-oxidase gene TaGA2ox2-3B expression to enhance seed dormancy in wheatInternational Journal of Biological Macromolecules, 2025

  2. 🌱 A wheat NAC transcription factor, TaNAC018-7D, regulates seed dormancy and germination by binding to the GA biosynthesis gene TaGA7ox-A1Environmental and Experimental Botany, 2025

  3. 🌾 Single- and multi-locus genome-wide association study reveals genomic regions of thirteen yield-related traits in common wheatBMC Plant Biology, 2024

🔚 Conclusion:

Prof. Haiping Zhang is a highly suitable candidate for the Best Researcher Award. His research is timely, targeted, and methodologically sound—addressing key genetic levers for wheat yield and dormancy control. His publications reflect scientific maturity and innovation, and his institutional role enhances his national significance. With expanded outreach and collaborations, his influence could grow further, both in China and internationally.

Raphael Borie | Gene Regulation Epigenetics | Best Researcher Award

Prof. Dr. Raphael Borie | Gene Regulation Epigenetics | Best Researcher Award

Prof. Dr. Raphael Borie, APHP, France

Dr. Raphaël Borie, born on August 15, 1977, in Paris, France, is a leading expert in pulmonology and genetic respiratory diseases. Currently a University Professor Hospital Practitioner at Bichat Hospital (Paris Cité University), he has consistently contributed to the advancement of respiratory medicine, particularly in the field of interstitial lung diseases (ILDs). His clinical insight, combined with a strong research portfolio, has positioned him as a prominent figure within the OrphaLung network. A dedicated family man with two children, Dr. Borie is widely respected for his integrity, leadership, and commitment to collaborative medicine. His career reflects a unique blend of academic excellence and impactful translational research, bridging the gap between genomics and clinical care in ILD. He is a registered member of the French Medical Council (Ordre des Médecins No. 75/71138), and his research has influenced European clinical guidelines and improved the understanding of rare genetic pulmonary conditions.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Robust Academic Background:
    Dr. Borie holds a PhD in Genetics, Master’s in Physiology, and HDR (habilitation to supervise doctoral research), which underlines his scientific credibility and ability to lead independent research.

  2. Clinical-Research Integration:
    As a University Professor and Hospital Practitioner, he merges frontline patient care with cutting-edge genetic and respiratory disease research.

  3. High Publication Impact:
    With 283 PubMed-indexed articles and an H-index of 60, Dr. Borie’s work demonstrates strong citation influence, indicating widespread recognition and utility in the scientific community.

  4. International Leadership:
    Active in multinational collaborations (e.g., OrphaLung, ERS), he has co-authored major position statements and clinical trials, influencing European respiratory care guidelines.

  5. Innovation in Rare Diseases:
    A recognized expert in familial interstitial lung disease and telomere disorders, his work has led to earlier diagnosis and targeted therapies—critical in fields where few experts exist.

  6. Recognition and Funding:
    He has secured prestigious mobility grants (ERS, Respirology Teachers College)—a marker of trust in his scientific mission and innovation.

🔍 Areas for Improvement:

  • Wider Public Health Translation: While Dr. Borie’s genomic research is exceptional, expanding into real-world health policy implementation could enhance systemic impact.

  • Patient Engagement & Advocacy: Developing patient-oriented tools or registries (e.g., digital apps or platforms for familial lung diseases) may broaden his outreach beyond academia and clinics.

  • Broader Visibility: Although highly cited in professional circles, participation in international keynote talks, editorial leadership, or mainstream health media could elevate his public and professional visibility.

🎓 Education:

Dr. Borie has pursued an extensive and rigorous academic path focused on respiratory and genetic medicine. He obtained his medical degree with specialization in Allergology and Immunopathology in 2006. A year earlier, in 2005, he earned a Master’s degree in Biology and Physiology of Circulation and Respiration. Demonstrating deep interest in genetics, he completed a PhD in Genetics in 2017, contributing significantly to our understanding of genetic underpinnings in pulmonary fibrosis. In 2019, Dr. Borie achieved the prestigious Habilitation à Diriger des Recherches (HDR) from the University of Paris 7, enabling him to supervise doctoral research. His academic background illustrates a powerful integration of clinical expertise and molecular research—providing him with the tools to lead innovative research projects at the intersection of genomics and pulmonology.

🩺 Experience:

Dr. Raphaël Borie has over 15 years of experience in respiratory medicine. From July 2011 to August 2020, he served as a Hospital Practitioner in the Pneumology Department at Bichat Hospital under Professors Aubier and Crestani. Since September 2020, he has been a University Professor Hospital Practitioner in the same department, affiliated with Paris Cité University. He has contributed to patient care, education of medical students and residents, and cutting-edge research. As part of the OrphaLung network, he plays a critical role in advancing diagnostic tools and treatment approaches for rare lung diseases. He is recognized for his collaborative leadership and interdisciplinary contributions across genetics, immunology, and pulmonology. His international collaborations and authorship of over 280 PubMed-indexed publications demonstrate his ongoing commitment to improving patient outcomes through translational research.

🏆 Awards and Honors:

Dr. Borie’s research excellence has been recognized through several prestigious awards and scholarships. In 2017, he received the European Respiratory Society (ERS) Mobility Grant for his work on Identification of Preclinical Markers of Pulmonary Fibrosis, supporting international collaboration and advanced training. The same year, he was also honored with the Respirology Teachers College Mobility Grant, reinforcing his pioneering research on early detection of fibrotic lung disease. His selection for these awards highlights both scientific innovation and dedication to knowledge exchange. His leadership in multi-center studies and involvement in ERS guideline statements further reflect his status as a thought leader in interstitial lung disease. These honors are a testament to his influence in shaping the future of pulmonary genetics and translational respiratory medicine.

🔬 Research Focus:

Dr. Raphaël Borie’s research centers on familial and genetic interstitial lung diseases, particularly the molecular mechanisms behind pulmonary fibrosis, telomere biology, surfactant-related gene variants, and early detection strategies. He works extensively on identifying genetic risk variants (e.g., MUC5B, DSP) and their implications in idiopathic pulmonary fibrosis. Through his participation in the OrphaLung network, he supports genomic screening for hereditary lung disorders and contributes to developing European guidelines. His work bridges genomic medicine and clinical pulmonology, aiming for earlier diagnosis and personalized treatment approaches. He has led and co-authored critical studies on RTEL1 mutations, telomerase complex defects, and familial ILD phenotypes, helping clinicians globally understand the heterogeneity and systemic implications of genetic lung disorders. His collaborative international research ensures his findings are applied in practice to optimize long-term patient care.

📚Publications Top Notes:

  • 🧬 High risk of lung cancer in surfactant-related gene variant carriersEur Respir J, 2024

  • 📄 European Respiratory Society Statement on Familial Pulmonary FibrosisEur Respir J, 2022

  • 🧪 Colocalization of Gene Expression and DNA Methylation with Genetic Risk VariantsAm J Respir Crit Care Med, 2022

  • 🧬 RTEL1 mutations and their phenotypic variabilityEur Respir J, 2019

  • 💊 Safety and efficacy of pirfenidone in telomerase mutation carriersEur Respir J, 2018

  • 🌐 Diagnosis and follow-up of familial ILD: International surveyBMC Pulmonary Med, 2025

  • 🧬 New 2023 ACR/EULAR APS criteria performance in young patientsLetter, 2025

  • 🫁 A non-resolving cough: a case of familial pulmonary fibrosisBreathe, 2025

  • 🧬 PFMG2025: Genomic medicine in French healthcare systemReview, 2025

  • 💊 Efficacy of CFTR modulators in ABCA3-deficiency ILDOpen Access, 2025

  • 🧠 Neurological manifestations in VEXAS syndromeJournal of Neurology, 2025

  • 💉 Real-life use of PEXIVAS reduced-dose regimen in vasculitisAnn Rheum Dis, 2025

  • 🧫 Recurrent respiratory papillomatosis with lung involvementEur Respir J, 2025

  • 🔍 RA-ILD: genetics to clinical overviewReview, 2025

  • 👶 Childhood ILD survivors in adulthood: European studyEur Respir J, 2025

🧾 Conclusion:

Dr. Raphaël Borie exemplifies the ideal candidate for the Best Researcher Award. His excellence spans across clinical expertise, academic distinction, and international research leadership, especially in genetic and familial interstitial lung diseases—a field with enormous unmet need. His consistent scholarly output, impactful collaborations, and patient-focused studies highlight a unique blend of depth and innovation. While further expansion into public health frameworks and patient engagement tools would be valuable, his profile already reflects a world-class researcher with transformative contributions to pulmonary medicine.

Basavaraj Vastrad | Gene Regulation Epigenetics | Best Researcher Award

Dr. Basavaraj Vastrad | Gene Regulation Epigenetics | Best Researcher Award

Dr. Basavaraj Vastrad, KLE College of Pharamac, Gadag, karanataka 582101, India

Dr. Basavaraj Vastrad is a distinguished Indian scientist specializing in pharmaceutical biotechnology and bioinformatics. With over 15 years of research experience, his work bridges cutting-edge genomics, next-generation sequencing (NGS), and computational biology to uncover genetic underpinnings of complex diseases like Alzheimer’s, diabetes, schizophrenia, and various cancers. He holds a Ph.D. in Biochemistry from Kuvempu University and a Master’s in Pharmaceutical Biotechnology from JSS College of Pharmacy. A prolific researcher, Dr. Vastrad has contributed to over 25 impactful publications in reputed international journals. His collaborative efforts with interdisciplinary teams have yielded novel insights and molecular targets for diseases with high clinical burden. Recognized for his methodical approach and academic excellence, Dr. Vastrad has emerged as a thought leader in bioinformatics-driven drug discovery and disease modeling. With a deep commitment to translational research, he continues to shape the scientific understanding of human health and disease.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Contributions
    Dr. Vastrad has published over 25 high-quality research articles, many in international, peer-reviewed, indexed journals. His work spans crucial fields including bioinformatics, genomics, neurodegenerative diseases, cardiovascular disorders, and reproductive health.

  2. Focus on Translational Research
    His research directly addresses major global health concerns—Alzheimer’s, Huntington’s, diabetes, PCOS, schizophrenia, and cardiovascular diseases—using next-generation sequencing (NGS) and computational biology. This demonstrates not only scientific depth but also clinical relevance.

  3. Strong Bioinformatics Expertise
    Dr. Vastrad applies state-of-the-art bioinformatics tools and techniques to identify novel biomarkers, therapeutic targets, and disease-related pathways, offering substantial contributions to personalized medicine and drug discovery.

  4. Solid Foundation in Biochemistry and Biotechnology
    With a Ph.D. in Biochemistry and a Master’s in Pharmaceutical Biotechnology, he brings a robust interdisciplinary background that supports a holistic approach to research problems.

  5. Experience in Microbial Biotechnology and SSF
    His earlier work on solid-state fermentation (SSF) for antibiotic production from agro-industrial waste reflects his ability to integrate sustainability with industrial biotechnology.

  6. Collaborative and Multidisciplinary Approach
    His collaborations with researchers across domains (pharmacology, genetics, medicine, and bioinformatics) showcase a team-oriented and integrative research mindset.

⚠️ Areas for Improvement:

  1. International Recognition and Grants
    While his publication record is excellent, securing global research grants, international collaborations, and patents would further enhance his global research standing.

  2. Innovation Translation
    Translating his bioinformatics discoveries into patents, prototypes, or clinical tools would significantly amplify the societal impact of his work.

  3. Leadership in Research Communities
    Serving on editorial boards, leading consortia, or contributing to scientific policy and outreach would help extend his influence in the scientific community.

🎓 Education:

Dr. Basavaraj Vastrad’s academic journey began with a Bachelor’s in Pharmacy from K.L.E’s College of Pharmacy, Hubli under RGUHS, Bangalore, completed in 2003. He pursued his Master of Pharmacy in Pharmaceutical Biotechnology from J.S.S. College of Pharmacy, Ootacamund (affiliated to The Tamil Nadu Dr. M.G.R. Medical University), which he completed in 2006. Driven by his passion for biomedical research, he earned his Ph.D. in Biochemistry from Kuvempu University, Shimoga, in 2013. His academic training is rooted in pharmaceutical sciences, molecular biology, and biotechnological applications, providing him a strong foundation in both experimental and computational research methodologies. Dr. Vastrad’s educational background reflects a harmonious blend of practical pharmaceutical knowledge and bioinformatics expertise—skills he now applies to genomics, drug discovery, and disease pathway elucidation. Each academic milestone laid the groundwork for his prolific research career focused on solving health-related challenges through innovative approaches.

👨‍🔬 Experience:

Dr. Basavaraj Vastrad has an extensive research and teaching experience spanning over a decade, primarily focusing on pharmaceutical biotechnology, solid-state fermentation, and bioinformatics. Early in his career, he specialized in microbial techniques, including antimicrobial assays and sterility testing. He later advanced to complex genomic data analysis using NGS and bioinformatics tools to decode molecular mechanisms behind various human diseases. His contributions have been instrumental in identifying biomarkers and therapeutic targets for disorders such as Alzheimer’s, schizophrenia, cardiovascular diseases, and metabolic syndromes. Collaborating with clinical and academic institutions, he has co-authored several high-impact research papers. He has also mentored junior researchers and contributed to numerous interdisciplinary studies. Dr. Vastrad’s experience in solid-state fermentation has led to optimized antibiotic production using agro-industrial waste, showcasing his ability to translate basic science into practical applications. His work stands out for its scientific rigor, innovative approaches, and potential for real-world clinical impact.

🔬 Research Focus:

Dr. Basavaraj Vastrad’s research is primarily centered around the application of bioinformatics and next-generation sequencing (NGS) to investigate the genetic and molecular basis of complex diseases. His projects have successfully decoded the signaling pathways, biomarkers, and therapeutic targets associated with conditions like Alzheimer’s disease, Huntington’s disease, PCOS, heart failure, endometriosis, schizophrenia, and various cancers. Another aspect of his research explores solid-state fermentation for the optimization of antibiotic production, using agro-industrial waste as a substrate. Dr. Vastrad applies computational tools to perform gene expression profiling, pathway enrichment, molecular docking, and biomarker identification. He also collaborates extensively with clinicians and scientists in integrating bioinformatics findings into potential translational therapies. His focus on data-driven diagnostics and personalized medicine represents a blend of computational science with tangible health outcomes. His goal is to harness bioinformatics for predictive diagnostics, therapeutic development, and a deeper understanding of pathophysiological mechanisms.

📚 Publications Top Notes:

  1. 🔍 Bioinformatics analysis of NGS data to diagnose crucial and novel genes in gestational diabetes mellitus

  2. 🧠 Identification of key genes in Huntington’s disease using NGS and bioinformatics

  3. 🧬 Analysis of Alzheimer’s disease pathways using NGS and computational approaches

  4. 🧘‍♂️ Key gene identification in schizophrenia using NGS-based bioinformatics

  5. 👩‍⚕️ Polycystic ovary syndrome: bioinformatics-based gene pathway identification

  6. ❤️ Myocardial infarction: NGS-driven bioinformatics marker analysis

  7. 👩 Endometriosis biomarkers identified using bioinformatics and NGS

  8. 🌬 Gene expression in idiopathic pulmonary fibrosis via bioinformatics and NGS

  9. 🔬 Molecular markers in pancreatic ductal adenocarcinoma using bioinformatics

  10. 💓 Heart failure: discovery of genes and pathways through NGS data

🧾 Conclusion:

Dr. Basavaraj Vastrad is highly deserving of the Best Researcher Award. His consistent contributions to bioinformatics and pharmaceutical biotechnology, innovative approaches to disease genomics, and impactful publications demonstrate scientific excellence, depth, and relevance. He not only pushes the boundaries of current biomedical knowledge but also aligns his work with pressing healthcare needs.

Fabian Fries | Gene Regulation Epigenetics | Young Scientist Award

Dr. Fabian Fries | Gene Regulation Epigenetics | Young Scientist Award

Dr. Fabian Fries , Universitätsklinikum des Saarlandes , Germany

Dr. Fabian N. Fries is a German ophthalmologist and senior consultant at Saarland University Medical Center. Born on July 18, 1990, in Germany, he has cultivated a career marked by clinical excellence, research productivity, and international experience. Following his medical studies at Saarland University, he gained practical experience across the U.S., Brazil, and Germany. Dr. Fries has authored over 15 peer-reviewed publications and earned an H-index of 16, reflecting his impactful contributions in ophthalmology. A polyglot and DAAD scholar, he is also actively engaged in professional societies like the German Ophthalmological Society. His research interests include corneal diseases, ocular surface disorders, and regenerative therapies involving limbal stem cells. Apart from his medical pursuits, he’s a competitive athlete, excelling in tennis and athletics. Dr. Fries combines clinical competence, research acumen, and a collaborative mindset, positioning him as an outstanding candidate for early-career research recognition.

Publication Profile:

Orcid

✅ Strengths:

  1. 📈 Strong Research Metrics

    • H-index: 16, i10-index: 22, and 742 citations—solid indicators of impactful and consistent academic output.

    • Authored 15 peer-reviewed publications in high-impact journals like The Ocular Surface, Experimental Eye Research, and International Journal of Molecular Sciences.

  2. 🧬 Innovative Research Focus

    • His work bridges molecular biology and clinical ophthalmology, especially in limbal stem cell deficiency, PAX6 gene regulation, miRNA expression, and corneal diseases.

    • Focus on translational science with direct implications for therapy and regenerative medicine.

  3. 🌍 International Exposure

    • Completed clinical internships in USA, Brazil, and Germany, showcasing adaptability, cultural competence, and international collaboration.

  4. 💼 Professional Leadership

    • Currently a Senior Consultant at Saarland University Medical Center.

    • Certified teaching assistant, actively mentoring young medical professionals.

  5. 🏅 Recognized Excellence & Extracurriculars

    • Multiple scholarships: DAAD, e-fellows.net, and Saarland University.

    • Athlete-scholar with national-level performance in tennis and athletics, highlighting discipline, commitment, and well-rounded personality.

  6. 🧠 Tech-Savvy & Multilingual

    • Proficient in SPSS, Java, SAP ERP, and fluent in 6 languages, positioning him uniquely for cross-disciplinary, global projects.

📉 Areas for Improvement:

  1. 🌐 Global Research Fellowships or Visiting Scientist Roles

    • While he has international clinical experience, postdoctoral research fellowships abroad (e.g., US, UK, or Japan) could further enrich his research perspective and expand collaborations.

  2. 📣 Greater Visibility as a Lead Investigator

    • Most of his studies are in collaboration with senior figures. More first-author or corresponding-author publications, and leading independent research grants, would bolster his profile.

  3. 🎤 Science Communication/Public Engagement

    • Active roles in public engagement, conferences, or science communication platforms would amplify his influence and visibility outside academic circles.

🎓 Education:

Dr. Fries completed his Abitur in Saarland, Germany in 2009 and subsequently pursued medicine at Saarland University, completing his state medical examination in 2016. His medical education was enriched by several international internships: Children’s of Alabama (USA), Instituto de Neurologia de Curitiba (Brazil), and various institutions in Germany. These experiences provided him with a strong foundation in global healthcare environments and interdisciplinary approaches to medical problems. His training emphasized ophthalmology, medical technology, and corneal research. In addition to his clinical education, he developed proficiency in research methodologies, statistical software (SPSS), and even programming in Java—an uncommon strength among clinicians. His multilingualism (German, English, French, Spanish, Portuguese, Latin) further reflects a well-rounded academic and professional profile. He has also received scholarships from the DAAD, Saarland University, and e-fellows.net. This robust educational background is a solid base for his continued clinical and academic excellence in ophthalmology.

💼 Professional Experience:

Dr. Fries is currently a Senior Consultant in Ophthalmology at Saarland University Medical Center (since 2021), where he also completed his residency (2016–2021). He brings over a decade of experience in clinical practice, teaching, and research. His clinical roles have spanned multiple specialties and continents, including stints at Children’s of Alabama, the Instituto de Neurologia de Curitiba, and top institutions in Germany. He has participated in pioneering electronic health record integration projects and led efforts in corneal transplant innovations. His experience also includes medical internships in both hospitals and private practices, providing a broad spectrum of exposure from surgical practice to patient-centered outpatient care. Additionally, he is a certified teaching assistant at Saarland University and has been actively involved in the supervision of junior residents and students. His commitment to high-standard care and continuous education is evident in his leadership roles and collaborative projects.

🏆 Awards and Honors:

Dr. Fries has received several academic and research accolades that highlight his potential as a leading young scientist. He was awarded scholarships from the prestigious DAAD (German Academic Exchange Service), Saarland University, and e-fellows.net, reflecting academic excellence and leadership. His athletic achievements include participation in the German University Tennis Championships (2015, 2016), where he won multiple regional titles and achieved a 5th place ranking in the German Team Athletics Championships (2014). In research, his contributions are recognized through a strong H-index of 16, 742 citations, and an i10-index of 22, underlining consistent and impactful scientific productivity. He is a member of key academic societies, including the German Ophthalmological Society, Professional Association of Ophthalmologists, and others since 2016. His well-rounded excellence in science, teaching, international exposure, and sports makes him an exceptional candidate for the Research for Young Scientist Award.

🔬 Research Focus:

Dr. Fabian Fries focuses his research on ocular surface diseases, particularly limbal stem cell deficiency, corneal dystrophies, and regenerative approaches in ophthalmology. His work dives deep into molecular mechanisms, such as PAX6 signaling, microRNA pathways, and retinoic acid signaling, all pivotal in corneal health and disease. Using advanced cell culture models and patient tissue analysis, his research offers insights into pathophysiological processes affecting corneal epithelial integrity. Additionally, he explores the impact of genetic mutations and inflammatory mediators on disease progression. Dr. Fries has contributed significantly to translational research, bringing lab discoveries into clinical settings, notably in corneal transplantation and novel therapeutic strategies. He also examines digital integration in ophthalmology via projects like FIDUS EHR implementation. His interdisciplinary, collaborative, and bench-to-bedside approach places him at the forefront of young clinician-scientists driving innovation in ophthalmology.

📚 Publications Top Notes:

  1. 🧬 Effect of MiRNA 204-5P Mimics and LPS on Retinoic Acid Signaling in Limbal Epithelial Cells

  2. 🔬 Decreased PAX6 and DSG1 in Corneal Epithelium of EBMD, SND, and Pterygium Patients

  3. 🧫 FABP5 and DSG1 Downregulation after PAX6 Knockdown in Limbal Cells

  4. 💻 Employee Survey Post-FIDUS EHR Introduction at Saarland Eye Hospital

  5. 👁 Endothelial Cell Density and Corneal Thickness Post-Keratoplasty for Acanthamoeba Keratitis

  6. 🩸 Intravenous Fibrinolysis for Nonarteritic Central Retinal Artery Occlusion – Feasibility Study

  7. ⚠️ Pronounced Band Keratopathy in Refsum’s Syndrome – Case Report

  8. 🔎 Unilateral Macular Pigment Epitheliitis in a 38-Year-Old – Diagnostic Insights

  9. 🧬 MicroRNA and Gene Expression Changes in Limbal Deficiency Modulated by PAX6 Mutation

  10. 🧠 Acute Visual Loss from Basilar Artery Aneurysm-induced Subarachnoid Hemorrhage

🏁 Conclusion:

Dr. Fabian N. Fries stands out as a highly qualified, ambitious, and impactful early-career scientist whose research bridges the gap between basic science and clinical innovation in ophthalmology. His contributions to ocular surface research, particularly in the context of limbal stem cells and gene regulation, are of significant academic and therapeutic value. He brings a unique mix of clinical excellence, internationalism, technological proficiency, and scientific curiosity.

Dmytro Maltsev | Gene Regulation Epigenetics | Best Review Paper Award

Mr. Dmytro Maltsev | Gene Regulation Epigenetics | Best Review Paper Award

Mr. Dmytro Maltsev , O’Bogomolets National Medical University , Ukraine

Dr. Dmytro Maltsev is a Ukrainian neuroimmunologist, physician-scientist, and clinical researcher with a PhD in medicine. He serves as the head of the Laboratory of Immunology and Molecular Biology at the Research Institute of Experimental and Clinical Medicine, O’Bogomolets National Medical University, Kyiv. His extensive body of work spans neuroimmunology, autoimmune encephalitis, herpesvirus infections, and immune deficiencies. He is the author of 29 books and over 340 scientific papers, with 50 indexed in Scopus. His work has earned several prestigious awards, including recognition from the National Academy of Sciences of Ukraine and international congresses. He actively collaborates with institutions like the Mayo Clinic (USA) and the Institute of Neurosurgery (Ukraine). Dr. Maltsev is a member of multiple professional societies, including the European Academy of Neurology. His groundbreaking GBINS protocol for autistic spectrum disorder highlights his contributions to precision medicine and multidisciplinary approaches in neuropsychiatric care.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Pioneering Work:
    Dr. Maltsev’s systematic review on herpesviral encephalitis presents a groundbreaking clinic-radiological classification, offering a unifying framework that enhances clinical diagnostics and therapeutic planning.

  2. Depth and Breadth of Expertise:
    The review showcases deep neuroimmunological insight, drawing from over 340 publications, including 50 in SCOPUS, and extensive experience in both clinical and laboratory settings.

  3. Interdisciplinary Integration:
    He combines advanced techniques—PCR, ELISA, western blot, flow cytometry—with clinical observations, resulting in practical classifications and diagnostic pathways.

  4. Relevance and Timeliness:
    The review addresses a critical gap in understanding viral encephalitides, which are often misdiagnosed or under-reported, contributing to early interventions and improved patient outcomes.

  5. International Collaboration:
    Collaborative ties with the Mayo Clinic (USA) and leading Ukrainian research institutions add credibility and global relevance to his work.

  6. Proven Impact:
    Recognized for prior scientific excellence through national and international awards, including recognition from the National Academy of Sciences of Ukraine and the World Congress of Immunopathology.

🧭 Areas for Improvement:

  1. Editorial Involvement:
    Currently, Dr. Maltsev does not hold editorial roles, which could enhance his influence in shaping the field’s publication standards and peer-review frameworks.

  2. Digital Science Communication:
    Expanding public engagement via open-access formats, social media science explainers, or video summaries would amplify the reach of his reviews beyond academia.

  3. Visual Data Representation:
    While the review is methodically comprehensive, adding infographics, visual summaries, or interactive diagnostic flowcharts could enhance reader accessibility, particularly for multidisciplinary teams.

🎓 Education:

Dr. Dmytro Maltsev pursued his medical education and PhD at O’Bogomolets National Medical University in Kyiv, Ukraine. Early in his academic career, he displayed an interest in immunopathology and clinical biology. His PhD focused on the clinical and immunological aspects of herpesvirus infections and their role in neuroinflammatory diseases. His educational path included specialization in molecular biology techniques such as PCR, ELISA, immunofluorescence, and flow cytometry. His training also incorporated translational research and clinical diagnostics, equipping him with a multidisciplinary approach essential for modern neuroimmunology. With further professional development in clinical immunology and collaboration with international research groups, including the Mayo Clinic, Dr. Maltsev has refined his knowledge in personalized medicine. He actively mentors postgraduate students, and his research findings are frequently integrated into educational materials, including textbooks and monographs used in university-level instruction throughout Ukraine and abroad.

💼 Professional Experience:

Dr. Dmytro Maltsev has over 20 years of professional experience in neuroimmunology and molecular medicine. As the head of the Laboratory of Immunology and Molecular Biology at O’Bogomolets National Medical University, he leads research on immune system dysfunction, neurodevelopmental disorders, and viral neuropathology. His professional journey includes clinical consultancy, authorship of 29 medical books, and over 340 published studies. He has completed 8 major research projects and collaborated on 4 industry-funded studies. Dr. Maltsev also holds 16 patents and actively participates in international scientific communities. His work spans diagnostics, therapy innovation, and personalized medicine, including the creation of GBINS, a treatment framework for children with autism spectrum disorders. Recognized for pioneering work on minor immunodeficiencies and viral encephalitis classifications, he has received multiple national and international awards. Dr. Maltsev collaborates globally with neurologists and immunologists, contributing to consensus guidelines, systematic reviews, and cross-continental case studies.

🔬 Research Focus:

Dr. Maltsev’s research focuses on neuroimmunology, specifically immune-related neurological and psychiatric disorders. He investigates immunodeficiency syndromes, herpesvirus-induced encephalitis, autoimmune epilepsies, and autism spectrum disorders (ASD) associated with folate cycle genetic deficiencies. His work emphasizes personalized, multidisciplinary treatments through laboratory diagnostics like PCR, ELISA, immunoblotting, immunofluorescence, and flow cytometry. A core achievement is the GBINS protocol, offering a targeted therapy model for children with ASD. He also researches immunoglobulin E deficiency and alpha/beta-defensin involvement in oral cancer complications. His aim is to bridge immune dysfunction with neurological pathologies, improving diagnostic accuracy and patient outcomes. By classifying new immune-related diseases and pioneering treatment options, Dr. Maltsev contributes significantly to immunotherapy and neurorehabilitation. He also explores how AI can enhance diagnosis and therapy across various disciplines. His dedication to translational research supports the development of individualized care protocols, with ongoing global collaborations in Europe, the USA, and beyond.

📚 Publication Top Notes:

  1. 🧠 Clinic-radiological classification of herpesviral encephalitis in humans (Systematic review)

  2. 🧬 Integrative concept of pathogenesis and GBINS personalized multidisciplinary approach to ASD in children

  3. 💉 Risk factors for grade III radiation-induced mucositis in oral/oropharyngeal cancer therapy

  4. 🧫 Microbial infections in children with ASD and genetic folate cycle deficiency

  5. 🧪 Primary minor immunodeficiencies as a cause of immune-dependent pathology (Systematic review)

  6. 🌍 Global presence and penetrance of CSF1-related disorder

  7. 💊 Treatment of reactivated EBV, HHV-6, HHV-7 in children with ASD and folate cycle disruption

  8. 🤖 Trends in the use of AI in diagnosis and treatment

  9. 🛡️ Alpha/beta-defensins’ influence on immunity in oral/oropharyngeal cancer

  10. 🌐 Global presence of CSF1R-Related disorder: A multinational case series

🏁 Conclusion:

Dr. Dmytro Maltsev is highly deserving of the Best Review Paper Award for his exemplary scholarly contribution titled:
“Clinic-radiological classification of herpesviral encephalitis in humans (Systematic Review)”, published in the Journal of NeuroVirology (2025).

His work offers clinical utility, theoretical innovation, and a robust, evidence-based approach to a complex neuroinfectious condition. With continued emphasis on global engagement and editorial leadership, Dr. Maltsev is poised to remain a key thought leader in neuroimmunology.

Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan  , Xiangya Hospital, Central South University , China

Professor Zhirong Tan is a leading Chinese expert in pharmacogenomics and clinical pharmacology. Currently a professor at Xiangya Hospital, Central South University, he also serves as the Director of the Pharmacogenetics and Pharmacokinetics Research Laboratory and Deputy Director of the Drug Analysis Center. He has been instrumental in over 300 clinical trials, pushing forward the frontiers of precision medicine, especially in colorectal cancer and Alzheimer’s disease. With over 20 SCI papers, multiple patents, and co-authorship of four books, he’s widely recognized for his work in pharmacokinetics and biomarker discovery. A national GCP and GMP inspector, Prof. Tan actively contributes to pharmaceutical regulation and innovation in China. His academic and industry partnerships reflect a robust foundation in translational research and real-world drug development.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Contributions
    Prof. Zhirong Tan has made outstanding contributions to clinical pharmacology, pharmacogenetics, and metabolomics over two decades. His research has provided critical insights into drug metabolism, biomarker discovery, and precision medicine, especially in colorectal cancer and Alzheimer’s disease.

  2. Prolific Publication Record
    With over 22 SCI-indexed publications (first or corresponding author) and 6 CSCD papers, Prof. Tan’s research has achieved over 3550 citations and an H-index of 33 on Web of Science—evidence of the high impact and recognition of his work.

  3. Strong National & Industry Collaborations
    He has participated in or led 300+ clinical trials and secured 5 “Million+” industry-funded projects, reflecting strong ties with both academia and industry. His leadership in national-level projects, such as the “Major New Drug Development” program, showcases his influence in China’s healthcare innovation.

  4. Intellectual Property and Innovation
    With 3 granted patents and 3 under review, Prof. Tan’s ability to translate research into practical applications is evident. His individualized esomeprazole dosing regimen highlights innovation at the clinical level.

  5. Regulatory & Policy Contributions
    As a national GCP/GMP inspector, he plays a pivotal role in drug trial ethics and compliance in China. He also holds leadership roles in pharmacogenomics committees, further demonstrating his commitment to public health advancement.

  6. Academic Mentorship and Editorial Work
    In addition to research, Prof. Tan contributes as a journal reviewer, co-author of four textbooks, and mentor to the next generation of scientists, reinforcing his role as a thought leader in the field.

🔍 Areas for Improvement:

  1. International Visibility
    While Prof. Tan’s national presence is remarkable, further international collaborations, invited keynotes at global conferences, or leading roles in global consortia could enhance his visibility and expand the influence of his work.

  2. Broader Publication Range
    Publishing more frequently in top-tier international journals (e.g., Nature, The Lancet, NEJM) would increase the global academic reach of his findings.

  3. Open Science & Data Sharing
    As the field moves toward transparency, incorporating open-access publications and shared data repositories could boost both reproducibility and citations.

🎓 Education:

Professor Zhirong Tan obtained his Ph.D. from Central South University, a premier Chinese institution, where he laid the groundwork for his expertise in clinical pharmacology and pharmacogenomics. He later pursued postdoctoral research at the School of Pharmacy, University of Maryland, Baltimore, one of the top pharmaceutical research institutions in the United States. This international experience enabled him to gain a global perspective in drug metabolism, biomarker identification, and translational pharmacology. His academic training focused on cutting-edge methodologies such as metabolomics, pharmacokinetics, and precision medicine. Through continuous education and research, he has built a reputation as a highly skilled pharmacologist whose work bridges basic research and clinical applications.

💼 Experience:

With a research career spanning over two decades since 1998, Professor Zhirong Tan has led and participated in numerous national-level and provincial-level projects, including China’s National Science and Technology Major Projects. He currently holds multiple leadership positions at Xiangya Hospital, Central South University. Over the years, he has completed major research grants from NSFC, the Hunan Province, and the Ministry of Science and Technology. As a GCP and GMP inspector, Prof. Tan has overseen more than 300 clinical trials, ensuring drug development meets regulatory and ethical standards. His experience also extends to industry collaboration, with successful execution of 5 “Million+” funded projects and influential roles in pharma-academic alliances. A frequent peer reviewer and contributor to international journals, his work influences both the scientific community and regulatory frameworks.

🔬 Research Focus:

Professor Tan’s primary research focus lies in clinical pharmacology, pharmacogenomics, and metabolomics, particularly for colorectal cancer and Alzheimer’s disease. His work aims to identify and validate biomarkers for disease diagnosis, drug efficacy, and toxicity prediction. A major contributor to China’s “Major New Drug Development” initiative, he has developed personalized esomeprazole dosing regimens by studying genetic polymorphisms, SNPs, and microRNA interactions. His research also explores the pathogenesis of Alzheimer’s disease using metabolomic profiling, offering insights into early detection and potential therapeutics. He applies advanced bioanalytical methods to understand inter-individual variability in drug metabolism and therapeutic response. His projects have real-world clinical implications, transforming how drugs are prescribed, regulated, and monitored. Through his pioneering work, Prof. Tan contributes significantly to the evolution of precision medicine in China.

📚 Publication Top Notes:

  1. 📊 Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males

  2. ❤️ Gly389Arg polymorphism of β1‐adrenergic receptor and cardiovascular response to metoprolol

  3. 💊 CYP2C19 ultra-rapid metabolizer genotype affects voriconazole pharmacokinetics

  4. 🧬 HLA‐B35:01 allele as biomarker for Polygonum multiflorum–induced liver injury*

  5. 🌿 Repeated berberine administration inhibits cytochromes P450 in humans

  6. 💉 Effect of SLCO1B1 polymorphism on pharmacokinetics of nateglinide

  7. 🧪 Assessment of cytochrome P450 activity by five‐drug cocktail approach

  8. Plasma caffeine metabolite ratio linked to CYP1A2 polymorphisms

  9. 🔬 Inducibility of CYP1A2 by omeprazole associated with genetic polymorphism

  10. 🧫 Ile118Val polymorphism of CYP3A4 affects simvastatin lipid-lowering efficacy

📝 Conclusion:

Professor Zhirong Tan is a highly deserving candidate for the Best Researcher Award. His record of scientific excellence, clinical innovation, and regulatory leadership clearly positions him as a key contributor to modern pharmacology. His integrated approach—spanning basic science, clinical trials, and health policy—has had a measurable impact on patient care and drug development in China.

While there is room to further expand his global footprint, his accomplishments to date already demonstrate the caliber, commitment, and consistency expected of a world-class researcher.

Alexej Abyzov | Gene Regulation Epigenetics | Best Researcher Award

Dr. Alexej Abyzov | Gene Regulation Epigenetics | Best Researcher Award

Dr. Alexej Abyzov , Mayo Clinic , United States

Dr. Alexej Abyzov is an Associate Professor of Biomedical Informatics at the Mayo College of Medicine and a consultant at the Mayo Clinic’s Department of Quantitative Health Sciences. He is also an adjunct professor at Yale University and a graduate faculty member at the University of Minnesota. Dr. Abyzov’s research focuses on computational biology and bioinformatics, particularly in understanding genomic variability, somatic mosaicism, and the genetic basis of neurodevelopmental disorders. He has made substantial contributions to the study of human genome structure and its impact on health. Dr. Abyzov has led numerous research projects funded by NIH and has published extensively in high-impact journals. He is a respected speaker, having presented at international conferences and workshops. Beyond his research, Dr. Abyzov is involved in mentorship and community service, contributing to education and outreach efforts in science and technology.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Alexej Abyzov’s work exemplifies excellence in the field of Biomedical Informatics and Computational Biology. His remarkable research contributions span areas such as genetic variation, neurodevelopment, and the understanding of neuropsychiatric diseases. He has been an integral part of cutting-edge projects like investigating somatic mosaicism in schizophrenia and modeling autism in organoids. His ability to bridge the gap between computational techniques and biological applications is demonstrated in his extensive list of high-impact publications, many of which have been published in top-tier journals like Science and Nature. Furthermore, his leadership role in symposia and collaborations with renowned institutions such as Yale University and the University of Minnesota showcases his influence in the scientific community.

Areas for Improvement:

Although Dr. Abyzov has an impressive track record, expanding the outreach of his work into more interdisciplinary collaborations and ensuring greater engagement with clinical applications could enhance the direct societal impact of his findings. Additionally, increasing public-facing communication of his research could foster more public awareness and policy implications, given the importance of his work in understanding neurodevelopmental and psychiatric disorders

Education:

Dr. Alexej Abyzov holds a Ph.D. in Biomedical Informatics, which laid the foundation for his career in computational biology. He began his academic journey with a focus on bioinformatics, later earning a tenure-track faculty position in 2014 at Mayo College of Medicine. In 2020, he was promoted to Associate Professor in Biomedical Informatics. Dr. Abyzov is also an adjunct professor at Yale University’s Child Study Center, where he continues to collaborate on research projects involving neurodevelopmental disorders. Throughout his academic career, Dr. Abyzov has been involved in shaping educational curricula and mentoring students and researchers, providing opportunities for both hands-on research and professional development. He has served as a graduate faculty member at the University of Minnesota, emphasizing his broad academic influence. His educational background is complemented by ongoing work in the development of new bioinformatics tools and approaches for genomics research.

Experience:

Dr. Alexej Abyzov’s career has been marked by continuous growth and contributions in the field of biomedical informatics. He is currently an Associate Professor at Mayo College of Medicine and a Consultant in the Department of Quantitative Health Sciences at Mayo Clinic. Since 2016, he has also served as an adjunct professor at Yale University and has been a part of the Graduate Faculty at the University of Minnesota. His experience includes supervising summer interns, Ph.D. students, and post-doctoral fellows. Dr. Abyzov’s work in bioinformatics has helped lead groundbreaking studies on somatic mosaicism, genetic mutations, and neurodevelopmental disorders. He has actively participated in a number of international collaborations, including co-chairing a symposium at the Molecular Psychiatry Association and providing consulting services for personalized medicine projects. Through his diverse teaching and research roles, Dr. Abyzov has significantly advanced the field of computational biology and genomics.

Awards and Honors:

Dr. Alexej Abyzov has received numerous accolades throughout his career, reflecting his significant contributions to the field of biomedical informatics. He was elected as a member of the New York Academy of Sciences in 2008, a prestigious recognition for his early career achievements. In 2007, he became a member of The Honor Society of Phi Kappa Phi, acknowledging his academic excellence. Dr. Abyzov was also inducted into the International Society for Computational Biology (ISCB) in 2005, further solidifying his position as a leader in the field of bioinformatics. These recognitions underscore his dedication to advancing scientific knowledge, especially in genomics and computational biology. Dr. Abyzov’s honors serve as a testament to his ability to drive meaningful research, collaborate with other leading scientists, and contribute to educational initiatives, all while maintaining a strong commitment to community outreach and mentorship.

Research Focus:

Dr. Alexej Abyzov’s research focuses on bioinformatics, computational biology, and human genomics, with an emphasis on understanding the role of genetic and somatic mutations in health and disease. His work has greatly advanced the understanding of somatic mosaicism, particularly in neurodevelopmental disorders like autism spectrum disorder and Tourette syndrome. He is also deeply involved in exploring the molecular mechanisms behind genetic mutations in the brain, investigating how these mutations may contribute to mental health disorders such as schizophrenia. Dr. Abyzov is known for developing innovative tools and methodologies for analyzing large-scale genomic data, including CNVpytor and CRISPR-Cas editing. His research also explores transgenerational transmission of mutations, revealing insights into how genetic variations are passed down through generations. By combining computational biology with experimental data, Dr. Abyzov’s work provides critical insights into the genetic basis of complex diseases, offering potential pathways for personalized medicine and targeted treatments.

Publications Top Notes:

  1. Interneuron loss and microglia activation in Tourette disorder 🔬🧠 (2025)

  2. Transgenerational transmission of post-zygotic mutations in human germline 🔬👶🧬 (2024)

  3. Somatic mosaicism in schizophrenia reveals prenatal mutational processes 🧠🧬 (2024)

  4. Genome-wide analysis of copy number with CNVpytor in igv.js 💻📊 (2024)

  5. Resolving the 22q11.2 deletion with CTLR-Seq 🧬🔍 (2024)

  6. Characterization of enhancer activity using MPRA and forebrain organoids 🧬🔬 (2024)

  7. Genomic resources of the Brain Somatic Mosaicism Network for neuropsychiatric diseases 🧠🧬 (2023)

  8. Modeling idiopathic autism in forebrain organoids reveals imbalances in excitatory neurons 👶🧠 (2023)

  9. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic 🧬⚙️ (2023)

  10. Efficient reconstruction of cell lineage trees for cancer and cell ancestry 🧬🧪 (2023)

Conclusion:

Dr. Alexej Abyzov is an ideal candidate for the Research for Best Researcher Award due to his profound contributions to the understanding of genetic and somatic variation, his leadership in major collaborative research efforts, and his ongoing influence in shaping the field of Biomedical Informatics. His ongoing work and future potential make him a standout figure for this prestigious recognition.