Raphael Borie | Gene Regulation Epigenetics | Best Researcher Award

Prof. Dr. Raphael Borie | Gene Regulation Epigenetics | Best Researcher Award

Prof. Dr. Raphael Borie, APHP, France

Dr. Raphaël Borie, born on August 15, 1977, in Paris, France, is a leading expert in pulmonology and genetic respiratory diseases. Currently a University Professor Hospital Practitioner at Bichat Hospital (Paris Cité University), he has consistently contributed to the advancement of respiratory medicine, particularly in the field of interstitial lung diseases (ILDs). His clinical insight, combined with a strong research portfolio, has positioned him as a prominent figure within the OrphaLung network. A dedicated family man with two children, Dr. Borie is widely respected for his integrity, leadership, and commitment to collaborative medicine. His career reflects a unique blend of academic excellence and impactful translational research, bridging the gap between genomics and clinical care in ILD. He is a registered member of the French Medical Council (Ordre des Médecins No. 75/71138), and his research has influenced European clinical guidelines and improved the understanding of rare genetic pulmonary conditions.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Robust Academic Background:
    Dr. Borie holds a PhD in Genetics, Master’s in Physiology, and HDR (habilitation to supervise doctoral research), which underlines his scientific credibility and ability to lead independent research.

  2. Clinical-Research Integration:
    As a University Professor and Hospital Practitioner, he merges frontline patient care with cutting-edge genetic and respiratory disease research.

  3. High Publication Impact:
    With 283 PubMed-indexed articles and an H-index of 60, Dr. Borie’s work demonstrates strong citation influence, indicating widespread recognition and utility in the scientific community.

  4. International Leadership:
    Active in multinational collaborations (e.g., OrphaLung, ERS), he has co-authored major position statements and clinical trials, influencing European respiratory care guidelines.

  5. Innovation in Rare Diseases:
    A recognized expert in familial interstitial lung disease and telomere disorders, his work has led to earlier diagnosis and targeted therapies—critical in fields where few experts exist.

  6. Recognition and Funding:
    He has secured prestigious mobility grants (ERS, Respirology Teachers College)—a marker of trust in his scientific mission and innovation.

🔍 Areas for Improvement:

  • Wider Public Health Translation: While Dr. Borie’s genomic research is exceptional, expanding into real-world health policy implementation could enhance systemic impact.

  • Patient Engagement & Advocacy: Developing patient-oriented tools or registries (e.g., digital apps or platforms for familial lung diseases) may broaden his outreach beyond academia and clinics.

  • Broader Visibility: Although highly cited in professional circles, participation in international keynote talks, editorial leadership, or mainstream health media could elevate his public and professional visibility.

🎓 Education:

Dr. Borie has pursued an extensive and rigorous academic path focused on respiratory and genetic medicine. He obtained his medical degree with specialization in Allergology and Immunopathology in 2006. A year earlier, in 2005, he earned a Master’s degree in Biology and Physiology of Circulation and Respiration. Demonstrating deep interest in genetics, he completed a PhD in Genetics in 2017, contributing significantly to our understanding of genetic underpinnings in pulmonary fibrosis. In 2019, Dr. Borie achieved the prestigious Habilitation à Diriger des Recherches (HDR) from the University of Paris 7, enabling him to supervise doctoral research. His academic background illustrates a powerful integration of clinical expertise and molecular research—providing him with the tools to lead innovative research projects at the intersection of genomics and pulmonology.

🩺 Experience:

Dr. Raphaël Borie has over 15 years of experience in respiratory medicine. From July 2011 to August 2020, he served as a Hospital Practitioner in the Pneumology Department at Bichat Hospital under Professors Aubier and Crestani. Since September 2020, he has been a University Professor Hospital Practitioner in the same department, affiliated with Paris Cité University. He has contributed to patient care, education of medical students and residents, and cutting-edge research. As part of the OrphaLung network, he plays a critical role in advancing diagnostic tools and treatment approaches for rare lung diseases. He is recognized for his collaborative leadership and interdisciplinary contributions across genetics, immunology, and pulmonology. His international collaborations and authorship of over 280 PubMed-indexed publications demonstrate his ongoing commitment to improving patient outcomes through translational research.

🏆 Awards and Honors:

Dr. Borie’s research excellence has been recognized through several prestigious awards and scholarships. In 2017, he received the European Respiratory Society (ERS) Mobility Grant for his work on Identification of Preclinical Markers of Pulmonary Fibrosis, supporting international collaboration and advanced training. The same year, he was also honored with the Respirology Teachers College Mobility Grant, reinforcing his pioneering research on early detection of fibrotic lung disease. His selection for these awards highlights both scientific innovation and dedication to knowledge exchange. His leadership in multi-center studies and involvement in ERS guideline statements further reflect his status as a thought leader in interstitial lung disease. These honors are a testament to his influence in shaping the future of pulmonary genetics and translational respiratory medicine.

🔬 Research Focus:

Dr. Raphaël Borie’s research centers on familial and genetic interstitial lung diseases, particularly the molecular mechanisms behind pulmonary fibrosis, telomere biology, surfactant-related gene variants, and early detection strategies. He works extensively on identifying genetic risk variants (e.g., MUC5B, DSP) and their implications in idiopathic pulmonary fibrosis. Through his participation in the OrphaLung network, he supports genomic screening for hereditary lung disorders and contributes to developing European guidelines. His work bridges genomic medicine and clinical pulmonology, aiming for earlier diagnosis and personalized treatment approaches. He has led and co-authored critical studies on RTEL1 mutations, telomerase complex defects, and familial ILD phenotypes, helping clinicians globally understand the heterogeneity and systemic implications of genetic lung disorders. His collaborative international research ensures his findings are applied in practice to optimize long-term patient care.

📚Publications Top Notes:

  • 🧬 High risk of lung cancer in surfactant-related gene variant carriersEur Respir J, 2024

  • 📄 European Respiratory Society Statement on Familial Pulmonary FibrosisEur Respir J, 2022

  • 🧪 Colocalization of Gene Expression and DNA Methylation with Genetic Risk VariantsAm J Respir Crit Care Med, 2022

  • 🧬 RTEL1 mutations and their phenotypic variabilityEur Respir J, 2019

  • 💊 Safety and efficacy of pirfenidone in telomerase mutation carriersEur Respir J, 2018

  • 🌐 Diagnosis and follow-up of familial ILD: International surveyBMC Pulmonary Med, 2025

  • 🧬 New 2023 ACR/EULAR APS criteria performance in young patientsLetter, 2025

  • 🫁 A non-resolving cough: a case of familial pulmonary fibrosisBreathe, 2025

  • 🧬 PFMG2025: Genomic medicine in French healthcare systemReview, 2025

  • 💊 Efficacy of CFTR modulators in ABCA3-deficiency ILDOpen Access, 2025

  • 🧠 Neurological manifestations in VEXAS syndromeJournal of Neurology, 2025

  • 💉 Real-life use of PEXIVAS reduced-dose regimen in vasculitisAnn Rheum Dis, 2025

  • 🧫 Recurrent respiratory papillomatosis with lung involvementEur Respir J, 2025

  • 🔍 RA-ILD: genetics to clinical overviewReview, 2025

  • 👶 Childhood ILD survivors in adulthood: European studyEur Respir J, 2025

🧾 Conclusion:

Dr. Raphaël Borie exemplifies the ideal candidate for the Best Researcher Award. His excellence spans across clinical expertise, academic distinction, and international research leadership, especially in genetic and familial interstitial lung diseases—a field with enormous unmet need. His consistent scholarly output, impactful collaborations, and patient-focused studies highlight a unique blend of depth and innovation. While further expansion into public health frameworks and patient engagement tools would be valuable, his profile already reflects a world-class researcher with transformative contributions to pulmonary medicine.

Yang Gao | Cell Differentiation Processes | Best Researcher Award

Prof. Dr. Yang Gao | Cell Differentiation Processes | Best Researcher Award

Prof. Dr. Yang Gao , The Sixth Affiliated Hospital of Harbin Medical University , China

Professor Yang Gao is the Chief Physician and Director of the Critical Care Medicine Department at The Sixth Affiliated Hospital of Harbin Medical University, China. He is a respected academic and clinical expert in critical care, serving also as a Doctoral Supervisor. With over two decades of frontline medical experience, Professor Gao has led nine major research projects and published 33 SCI-indexed papers, amassing a citation index of 313 and an overall impact factor of 94.493. He holds prominent roles in national and provincial academic societies, contributing to innovations in sepsis, AKI, and renal replacement therapy (RRT). His dedication to clinical advancement is matched by his commitment to medical education and research. Recognized for his pioneering work in critical care medicine, he has received patents and published multiple medical textbooks. His leadership, extensive research contributions, and continued impact on critical care practices make him a strong candidate for the Best Researcher Award.

Publication Profile:

Scopus

✅ Strengths for the Award:

  1. Extensive Clinical & Research Expertise: With over two decades in frontline critical care, Professor Gao combines clinical acumen with deep research insight, particularly in sepsis-associated acute kidney injury (AKI) and continuous renal replacement therapy (RRT).

  2. High-Impact Research Output: He has authored 33 SCI-indexed publications with a cumulative impact factor of 94.493 and over 313 citations, reflecting global recognition and academic influence.

  3. Research Leadership: Professor Gao has successfully led 9 major research projects, funded at national and provincial levels, demonstrating his capability in resource management, innovation, and scientific leadership.

  4. Academic Contributions: His dual role as a doctoral supervisor and textbook author, along with a granted utility model patent, showcases a broad contribution to both research and education.

  5. Professional Recognition: Active in numerous national societies and editorial boards, he maintains a strong presence in shaping critical care medicine in China.

🔍 Areas for Improvement:

  • International Collaboration: While his national involvement is robust, fostering more international research partnerships would further expand the global relevance of his work.

  • Industry Engagement: Engagement with biotechnology or medical device industries could enhance translational applications of his findings in clinical settings.

🎓 Education:

Professor Yang Gao obtained his medical degree and advanced postgraduate training from institutions affiliated with Harbin Medical University, one of China’s leading medical schools. His rigorous academic journey included specialized training in critical care medicine, advanced life support technologies, and clinical research methodology. During his doctoral studies, he focused on critical illness mechanisms, with an emphasis on sepsis-associated acute kidney injury (AKI). He has consistently updated his expertise through postdoctoral fellowships and high-level academic forums. Further professional development was supported by the Heilongjiang Province Postdoctoral Start-up Fund, enhancing his academic and research foundation. Professor Gao’s medical education has equipped him with both theoretical knowledge and practical competence to lead complex multidisciplinary care units and mentor future medical scientists. His dual role as a clinical expert and academic leader reflects a strong commitment to translational medicine and healthcare innovation in China.

🏥 Experience:

With over 20 years of hands-on clinical experience, Professor Yang Gao has emerged as a leader in critical care medicine in China. Since 2003, he has been managing critically ill patients, mastering life-saving interventions such as non-invasive/invasive ventilation, blood purification, and continuous renal replacement therapy (CRRT). He is the Director of the Critical Care Medicine Department at The Sixth Affiliated Hospital of Harbin Medical University and holds teaching and supervisory roles for doctoral students. His experience spans both frontline medical services and academic research, with a portfolio that includes 33 SCI publications, textbook authorship, and national-level project leadership. In addition to clinical work, he contributes to national guidelines and policy-making through roles in multiple medical societies and editorial boards. Recognized for both his clinical excellence and scientific insight, Professor Gao has been instrumental in improving patient care outcomes and advancing the understanding of critical care physiology.

🔬 Research Focus:

Professor Yang Gao’s research is concentrated on the pathophysiology and treatment of sepsis-associated acute kidney injury (AKI) and the optimal application of continuous renal replacement therapy (CRRT). He has led and collaborated on key national and provincial projects, investigating biomarkers, timing of intervention, and therapeutic mechanisms in critically ill patients. His innovative work includes molecular-level studies on sepsis progression and clinical trials to determine best practices in critical care. He is also exploring analgesia and sedation protocols in ICU settings, as part of national key research programs. His published SCI research, with an impressive cumulative impact factor nearing 95, reflects his dedication to translating science into improved patient care. Through systemic analysis and advanced diagnostic models, Professor Gao is developing new frameworks for early identification of organ dysfunction, particularly kidney injury, in intensive care settings. His research continues to influence treatment protocols and critical care education across China.

📚 Publications Top Notes:

  1. 🧪 Magnetic properties and protective activity on burn disease by regulating mutated fibroblasts – J. Solid State Chem (2021)

  2. 🧫 Role of IL-10 and TNF-α in Sepsis-Induced AKI – Front. Immunol

  3. 🩺 Timing of CRRT in Septic Shock Patients with AKI – Crit Care Med

  4. 🔍 Identification of Biomarkers for Sepsis Progression in ICU – J Intensive Care

  5. 🧠 Neurological Outcomes in ICU Patients Receiving Sedation – Brain Res

  6. 🦠 MicroRNA Profiling in Sepsis-Induced Kidney Damage – Mol Med Rep

  7. 🧬 Effects of Early CRRT on Inflammatory Mediators – Cytokine

  8. 🧴 Pharmacokinetics of Antibiotics in CRRT Patients – Ther Drug Monit

  9. 🧍‍♂️ Prognostic Value of Serum NGAL in AKI Patients – Am J Nephrol

  10. 💉 Comparison of Hemoperfusion and Hemodialysis in Toxin Clearance – Blood Purif

🧾 Conclusion:

Professor Yang Gao stands out as a pioneering figure in critical care research, blending clinical innovation with scholarly rigor. His sustained contributions to understanding and treating sepsis and AKI, along with his strong academic leadership, make him eminently suitable for the Best Researcher Award. Recognizing his work will not only honor his achievements but also encourage continued excellence and international collaboration in life-saving medical science.

Fabian Fries | Gene Regulation Epigenetics | Young Scientist Award

Dr. Fabian Fries | Gene Regulation Epigenetics | Young Scientist Award

Dr. Fabian Fries , Universitätsklinikum des Saarlandes , Germany

Dr. Fabian N. Fries is a German ophthalmologist and senior consultant at Saarland University Medical Center. Born on July 18, 1990, in Germany, he has cultivated a career marked by clinical excellence, research productivity, and international experience. Following his medical studies at Saarland University, he gained practical experience across the U.S., Brazil, and Germany. Dr. Fries has authored over 15 peer-reviewed publications and earned an H-index of 16, reflecting his impactful contributions in ophthalmology. A polyglot and DAAD scholar, he is also actively engaged in professional societies like the German Ophthalmological Society. His research interests include corneal diseases, ocular surface disorders, and regenerative therapies involving limbal stem cells. Apart from his medical pursuits, he’s a competitive athlete, excelling in tennis and athletics. Dr. Fries combines clinical competence, research acumen, and a collaborative mindset, positioning him as an outstanding candidate for early-career research recognition.

Publication Profile:

Orcid

✅ Strengths:

  1. 📈 Strong Research Metrics

    • H-index: 16, i10-index: 22, and 742 citations—solid indicators of impactful and consistent academic output.

    • Authored 15 peer-reviewed publications in high-impact journals like The Ocular Surface, Experimental Eye Research, and International Journal of Molecular Sciences.

  2. 🧬 Innovative Research Focus

    • His work bridges molecular biology and clinical ophthalmology, especially in limbal stem cell deficiency, PAX6 gene regulation, miRNA expression, and corneal diseases.

    • Focus on translational science with direct implications for therapy and regenerative medicine.

  3. 🌍 International Exposure

    • Completed clinical internships in USA, Brazil, and Germany, showcasing adaptability, cultural competence, and international collaboration.

  4. 💼 Professional Leadership

    • Currently a Senior Consultant at Saarland University Medical Center.

    • Certified teaching assistant, actively mentoring young medical professionals.

  5. 🏅 Recognized Excellence & Extracurriculars

    • Multiple scholarships: DAAD, e-fellows.net, and Saarland University.

    • Athlete-scholar with national-level performance in tennis and athletics, highlighting discipline, commitment, and well-rounded personality.

  6. 🧠 Tech-Savvy & Multilingual

    • Proficient in SPSS, Java, SAP ERP, and fluent in 6 languages, positioning him uniquely for cross-disciplinary, global projects.

📉 Areas for Improvement:

  1. 🌐 Global Research Fellowships or Visiting Scientist Roles

    • While he has international clinical experience, postdoctoral research fellowships abroad (e.g., US, UK, or Japan) could further enrich his research perspective and expand collaborations.

  2. 📣 Greater Visibility as a Lead Investigator

    • Most of his studies are in collaboration with senior figures. More first-author or corresponding-author publications, and leading independent research grants, would bolster his profile.

  3. 🎤 Science Communication/Public Engagement

    • Active roles in public engagement, conferences, or science communication platforms would amplify his influence and visibility outside academic circles.

🎓 Education:

Dr. Fries completed his Abitur in Saarland, Germany in 2009 and subsequently pursued medicine at Saarland University, completing his state medical examination in 2016. His medical education was enriched by several international internships: Children’s of Alabama (USA), Instituto de Neurologia de Curitiba (Brazil), and various institutions in Germany. These experiences provided him with a strong foundation in global healthcare environments and interdisciplinary approaches to medical problems. His training emphasized ophthalmology, medical technology, and corneal research. In addition to his clinical education, he developed proficiency in research methodologies, statistical software (SPSS), and even programming in Java—an uncommon strength among clinicians. His multilingualism (German, English, French, Spanish, Portuguese, Latin) further reflects a well-rounded academic and professional profile. He has also received scholarships from the DAAD, Saarland University, and e-fellows.net. This robust educational background is a solid base for his continued clinical and academic excellence in ophthalmology.

💼 Professional Experience:

Dr. Fries is currently a Senior Consultant in Ophthalmology at Saarland University Medical Center (since 2021), where he also completed his residency (2016–2021). He brings over a decade of experience in clinical practice, teaching, and research. His clinical roles have spanned multiple specialties and continents, including stints at Children’s of Alabama, the Instituto de Neurologia de Curitiba, and top institutions in Germany. He has participated in pioneering electronic health record integration projects and led efforts in corneal transplant innovations. His experience also includes medical internships in both hospitals and private practices, providing a broad spectrum of exposure from surgical practice to patient-centered outpatient care. Additionally, he is a certified teaching assistant at Saarland University and has been actively involved in the supervision of junior residents and students. His commitment to high-standard care and continuous education is evident in his leadership roles and collaborative projects.

🏆 Awards and Honors:

Dr. Fries has received several academic and research accolades that highlight his potential as a leading young scientist. He was awarded scholarships from the prestigious DAAD (German Academic Exchange Service), Saarland University, and e-fellows.net, reflecting academic excellence and leadership. His athletic achievements include participation in the German University Tennis Championships (2015, 2016), where he won multiple regional titles and achieved a 5th place ranking in the German Team Athletics Championships (2014). In research, his contributions are recognized through a strong H-index of 16, 742 citations, and an i10-index of 22, underlining consistent and impactful scientific productivity. He is a member of key academic societies, including the German Ophthalmological Society, Professional Association of Ophthalmologists, and others since 2016. His well-rounded excellence in science, teaching, international exposure, and sports makes him an exceptional candidate for the Research for Young Scientist Award.

🔬 Research Focus:

Dr. Fabian Fries focuses his research on ocular surface diseases, particularly limbal stem cell deficiency, corneal dystrophies, and regenerative approaches in ophthalmology. His work dives deep into molecular mechanisms, such as PAX6 signaling, microRNA pathways, and retinoic acid signaling, all pivotal in corneal health and disease. Using advanced cell culture models and patient tissue analysis, his research offers insights into pathophysiological processes affecting corneal epithelial integrity. Additionally, he explores the impact of genetic mutations and inflammatory mediators on disease progression. Dr. Fries has contributed significantly to translational research, bringing lab discoveries into clinical settings, notably in corneal transplantation and novel therapeutic strategies. He also examines digital integration in ophthalmology via projects like FIDUS EHR implementation. His interdisciplinary, collaborative, and bench-to-bedside approach places him at the forefront of young clinician-scientists driving innovation in ophthalmology.

📚 Publications Top Notes:

  1. 🧬 Effect of MiRNA 204-5P Mimics and LPS on Retinoic Acid Signaling in Limbal Epithelial Cells

  2. 🔬 Decreased PAX6 and DSG1 in Corneal Epithelium of EBMD, SND, and Pterygium Patients

  3. 🧫 FABP5 and DSG1 Downregulation after PAX6 Knockdown in Limbal Cells

  4. 💻 Employee Survey Post-FIDUS EHR Introduction at Saarland Eye Hospital

  5. 👁 Endothelial Cell Density and Corneal Thickness Post-Keratoplasty for Acanthamoeba Keratitis

  6. 🩸 Intravenous Fibrinolysis for Nonarteritic Central Retinal Artery Occlusion – Feasibility Study

  7. ⚠️ Pronounced Band Keratopathy in Refsum’s Syndrome – Case Report

  8. 🔎 Unilateral Macular Pigment Epitheliitis in a 38-Year-Old – Diagnostic Insights

  9. 🧬 MicroRNA and Gene Expression Changes in Limbal Deficiency Modulated by PAX6 Mutation

  10. 🧠 Acute Visual Loss from Basilar Artery Aneurysm-induced Subarachnoid Hemorrhage

🏁 Conclusion:

Dr. Fabian N. Fries stands out as a highly qualified, ambitious, and impactful early-career scientist whose research bridges the gap between basic science and clinical innovation in ophthalmology. His contributions to ocular surface research, particularly in the context of limbal stem cells and gene regulation, are of significant academic and therapeutic value. He brings a unique mix of clinical excellence, internationalism, technological proficiency, and scientific curiosity.

Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan | Gene Regulation Epigenetics | Best Researcher Award

Prof. Zhirong Tan  , Xiangya Hospital, Central South University , China

Professor Zhirong Tan is a leading Chinese expert in pharmacogenomics and clinical pharmacology. Currently a professor at Xiangya Hospital, Central South University, he also serves as the Director of the Pharmacogenetics and Pharmacokinetics Research Laboratory and Deputy Director of the Drug Analysis Center. He has been instrumental in over 300 clinical trials, pushing forward the frontiers of precision medicine, especially in colorectal cancer and Alzheimer’s disease. With over 20 SCI papers, multiple patents, and co-authorship of four books, he’s widely recognized for his work in pharmacokinetics and biomarker discovery. A national GCP and GMP inspector, Prof. Tan actively contributes to pharmaceutical regulation and innovation in China. His academic and industry partnerships reflect a robust foundation in translational research and real-world drug development.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Contributions
    Prof. Zhirong Tan has made outstanding contributions to clinical pharmacology, pharmacogenetics, and metabolomics over two decades. His research has provided critical insights into drug metabolism, biomarker discovery, and precision medicine, especially in colorectal cancer and Alzheimer’s disease.

  2. Prolific Publication Record
    With over 22 SCI-indexed publications (first or corresponding author) and 6 CSCD papers, Prof. Tan’s research has achieved over 3550 citations and an H-index of 33 on Web of Science—evidence of the high impact and recognition of his work.

  3. Strong National & Industry Collaborations
    He has participated in or led 300+ clinical trials and secured 5 “Million+” industry-funded projects, reflecting strong ties with both academia and industry. His leadership in national-level projects, such as the “Major New Drug Development” program, showcases his influence in China’s healthcare innovation.

  4. Intellectual Property and Innovation
    With 3 granted patents and 3 under review, Prof. Tan’s ability to translate research into practical applications is evident. His individualized esomeprazole dosing regimen highlights innovation at the clinical level.

  5. Regulatory & Policy Contributions
    As a national GCP/GMP inspector, he plays a pivotal role in drug trial ethics and compliance in China. He also holds leadership roles in pharmacogenomics committees, further demonstrating his commitment to public health advancement.

  6. Academic Mentorship and Editorial Work
    In addition to research, Prof. Tan contributes as a journal reviewer, co-author of four textbooks, and mentor to the next generation of scientists, reinforcing his role as a thought leader in the field.

🔍 Areas for Improvement:

  1. International Visibility
    While Prof. Tan’s national presence is remarkable, further international collaborations, invited keynotes at global conferences, or leading roles in global consortia could enhance his visibility and expand the influence of his work.

  2. Broader Publication Range
    Publishing more frequently in top-tier international journals (e.g., Nature, The Lancet, NEJM) would increase the global academic reach of his findings.

  3. Open Science & Data Sharing
    As the field moves toward transparency, incorporating open-access publications and shared data repositories could boost both reproducibility and citations.

🎓 Education:

Professor Zhirong Tan obtained his Ph.D. from Central South University, a premier Chinese institution, where he laid the groundwork for his expertise in clinical pharmacology and pharmacogenomics. He later pursued postdoctoral research at the School of Pharmacy, University of Maryland, Baltimore, one of the top pharmaceutical research institutions in the United States. This international experience enabled him to gain a global perspective in drug metabolism, biomarker identification, and translational pharmacology. His academic training focused on cutting-edge methodologies such as metabolomics, pharmacokinetics, and precision medicine. Through continuous education and research, he has built a reputation as a highly skilled pharmacologist whose work bridges basic research and clinical applications.

💼 Experience:

With a research career spanning over two decades since 1998, Professor Zhirong Tan has led and participated in numerous national-level and provincial-level projects, including China’s National Science and Technology Major Projects. He currently holds multiple leadership positions at Xiangya Hospital, Central South University. Over the years, he has completed major research grants from NSFC, the Hunan Province, and the Ministry of Science and Technology. As a GCP and GMP inspector, Prof. Tan has overseen more than 300 clinical trials, ensuring drug development meets regulatory and ethical standards. His experience also extends to industry collaboration, with successful execution of 5 “Million+” funded projects and influential roles in pharma-academic alliances. A frequent peer reviewer and contributor to international journals, his work influences both the scientific community and regulatory frameworks.

🔬 Research Focus:

Professor Tan’s primary research focus lies in clinical pharmacology, pharmacogenomics, and metabolomics, particularly for colorectal cancer and Alzheimer’s disease. His work aims to identify and validate biomarkers for disease diagnosis, drug efficacy, and toxicity prediction. A major contributor to China’s “Major New Drug Development” initiative, he has developed personalized esomeprazole dosing regimens by studying genetic polymorphisms, SNPs, and microRNA interactions. His research also explores the pathogenesis of Alzheimer’s disease using metabolomic profiling, offering insights into early detection and potential therapeutics. He applies advanced bioanalytical methods to understand inter-individual variability in drug metabolism and therapeutic response. His projects have real-world clinical implications, transforming how drugs are prescribed, regulated, and monitored. Through his pioneering work, Prof. Tan contributes significantly to the evolution of precision medicine in China.

📚 Publication Top Notes:

  1. 📊 Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males

  2. ❤️ Gly389Arg polymorphism of β1‐adrenergic receptor and cardiovascular response to metoprolol

  3. 💊 CYP2C19 ultra-rapid metabolizer genotype affects voriconazole pharmacokinetics

  4. 🧬 HLA‐B35:01 allele as biomarker for Polygonum multiflorum–induced liver injury*

  5. 🌿 Repeated berberine administration inhibits cytochromes P450 in humans

  6. 💉 Effect of SLCO1B1 polymorphism on pharmacokinetics of nateglinide

  7. 🧪 Assessment of cytochrome P450 activity by five‐drug cocktail approach

  8. Plasma caffeine metabolite ratio linked to CYP1A2 polymorphisms

  9. 🔬 Inducibility of CYP1A2 by omeprazole associated with genetic polymorphism

  10. 🧫 Ile118Val polymorphism of CYP3A4 affects simvastatin lipid-lowering efficacy

📝 Conclusion:

Professor Zhirong Tan is a highly deserving candidate for the Best Researcher Award. His record of scientific excellence, clinical innovation, and regulatory leadership clearly positions him as a key contributor to modern pharmacology. His integrated approach—spanning basic science, clinical trials, and health policy—has had a measurable impact on patient care and drug development in China.

While there is room to further expand his global footprint, his accomplishments to date already demonstrate the caliber, commitment, and consistency expected of a world-class researcher.

Alexej Abyzov | Gene Regulation Epigenetics | Best Researcher Award

Dr. Alexej Abyzov | Gene Regulation Epigenetics | Best Researcher Award

Dr. Alexej Abyzov , Mayo Clinic , United States

Dr. Alexej Abyzov is an Associate Professor of Biomedical Informatics at the Mayo College of Medicine and a consultant at the Mayo Clinic’s Department of Quantitative Health Sciences. He is also an adjunct professor at Yale University and a graduate faculty member at the University of Minnesota. Dr. Abyzov’s research focuses on computational biology and bioinformatics, particularly in understanding genomic variability, somatic mosaicism, and the genetic basis of neurodevelopmental disorders. He has made substantial contributions to the study of human genome structure and its impact on health. Dr. Abyzov has led numerous research projects funded by NIH and has published extensively in high-impact journals. He is a respected speaker, having presented at international conferences and workshops. Beyond his research, Dr. Abyzov is involved in mentorship and community service, contributing to education and outreach efforts in science and technology.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Alexej Abyzov’s work exemplifies excellence in the field of Biomedical Informatics and Computational Biology. His remarkable research contributions span areas such as genetic variation, neurodevelopment, and the understanding of neuropsychiatric diseases. He has been an integral part of cutting-edge projects like investigating somatic mosaicism in schizophrenia and modeling autism in organoids. His ability to bridge the gap between computational techniques and biological applications is demonstrated in his extensive list of high-impact publications, many of which have been published in top-tier journals like Science and Nature. Furthermore, his leadership role in symposia and collaborations with renowned institutions such as Yale University and the University of Minnesota showcases his influence in the scientific community.

Areas for Improvement:

Although Dr. Abyzov has an impressive track record, expanding the outreach of his work into more interdisciplinary collaborations and ensuring greater engagement with clinical applications could enhance the direct societal impact of his findings. Additionally, increasing public-facing communication of his research could foster more public awareness and policy implications, given the importance of his work in understanding neurodevelopmental and psychiatric disorders

Education:

Dr. Alexej Abyzov holds a Ph.D. in Biomedical Informatics, which laid the foundation for his career in computational biology. He began his academic journey with a focus on bioinformatics, later earning a tenure-track faculty position in 2014 at Mayo College of Medicine. In 2020, he was promoted to Associate Professor in Biomedical Informatics. Dr. Abyzov is also an adjunct professor at Yale University’s Child Study Center, where he continues to collaborate on research projects involving neurodevelopmental disorders. Throughout his academic career, Dr. Abyzov has been involved in shaping educational curricula and mentoring students and researchers, providing opportunities for both hands-on research and professional development. He has served as a graduate faculty member at the University of Minnesota, emphasizing his broad academic influence. His educational background is complemented by ongoing work in the development of new bioinformatics tools and approaches for genomics research.

Experience:

Dr. Alexej Abyzov’s career has been marked by continuous growth and contributions in the field of biomedical informatics. He is currently an Associate Professor at Mayo College of Medicine and a Consultant in the Department of Quantitative Health Sciences at Mayo Clinic. Since 2016, he has also served as an adjunct professor at Yale University and has been a part of the Graduate Faculty at the University of Minnesota. His experience includes supervising summer interns, Ph.D. students, and post-doctoral fellows. Dr. Abyzov’s work in bioinformatics has helped lead groundbreaking studies on somatic mosaicism, genetic mutations, and neurodevelopmental disorders. He has actively participated in a number of international collaborations, including co-chairing a symposium at the Molecular Psychiatry Association and providing consulting services for personalized medicine projects. Through his diverse teaching and research roles, Dr. Abyzov has significantly advanced the field of computational biology and genomics.

Awards and Honors:

Dr. Alexej Abyzov has received numerous accolades throughout his career, reflecting his significant contributions to the field of biomedical informatics. He was elected as a member of the New York Academy of Sciences in 2008, a prestigious recognition for his early career achievements. In 2007, he became a member of The Honor Society of Phi Kappa Phi, acknowledging his academic excellence. Dr. Abyzov was also inducted into the International Society for Computational Biology (ISCB) in 2005, further solidifying his position as a leader in the field of bioinformatics. These recognitions underscore his dedication to advancing scientific knowledge, especially in genomics and computational biology. Dr. Abyzov’s honors serve as a testament to his ability to drive meaningful research, collaborate with other leading scientists, and contribute to educational initiatives, all while maintaining a strong commitment to community outreach and mentorship.

Research Focus:

Dr. Alexej Abyzov’s research focuses on bioinformatics, computational biology, and human genomics, with an emphasis on understanding the role of genetic and somatic mutations in health and disease. His work has greatly advanced the understanding of somatic mosaicism, particularly in neurodevelopmental disorders like autism spectrum disorder and Tourette syndrome. He is also deeply involved in exploring the molecular mechanisms behind genetic mutations in the brain, investigating how these mutations may contribute to mental health disorders such as schizophrenia. Dr. Abyzov is known for developing innovative tools and methodologies for analyzing large-scale genomic data, including CNVpytor and CRISPR-Cas editing. His research also explores transgenerational transmission of mutations, revealing insights into how genetic variations are passed down through generations. By combining computational biology with experimental data, Dr. Abyzov’s work provides critical insights into the genetic basis of complex diseases, offering potential pathways for personalized medicine and targeted treatments.

Publications Top Notes:

  1. Interneuron loss and microglia activation in Tourette disorder 🔬🧠 (2025)

  2. Transgenerational transmission of post-zygotic mutations in human germline 🔬👶🧬 (2024)

  3. Somatic mosaicism in schizophrenia reveals prenatal mutational processes 🧠🧬 (2024)

  4. Genome-wide analysis of copy number with CNVpytor in igv.js 💻📊 (2024)

  5. Resolving the 22q11.2 deletion with CTLR-Seq 🧬🔍 (2024)

  6. Characterization of enhancer activity using MPRA and forebrain organoids 🧬🔬 (2024)

  7. Genomic resources of the Brain Somatic Mosaicism Network for neuropsychiatric diseases 🧠🧬 (2023)

  8. Modeling idiopathic autism in forebrain organoids reveals imbalances in excitatory neurons 👶🧠 (2023)

  9. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic 🧬⚙️ (2023)

  10. Efficient reconstruction of cell lineage trees for cancer and cell ancestry 🧬🧪 (2023)

Conclusion:

Dr. Alexej Abyzov is an ideal candidate for the Research for Best Researcher Award due to his profound contributions to the understanding of genetic and somatic variation, his leadership in major collaborative research efforts, and his ongoing influence in shaping the field of Biomedical Informatics. His ongoing work and future potential make him a standout figure for this prestigious recognition.