Rezaul Karim | Cancer Cell Biology | Best Researcher Award

Mr. Rezaul Karim | Cancer Cell Biology | Best Researcher Award

Mr. Rezaul Karim , Department of Mathematics, Mawlana Bashani science and Technology University , Bangladesh

Rezaul Karim is an Assistant Professor in the Department of Mathematics at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh. He holds an MS and BSc in Mathematics from the same institution. Rezaul’s academic career is marked by his passion for research and teaching in the field of applied mathematics, particularly focusing on mathematical modeling, nonlinear oscillation, and numerical analysis. With numerous publications in reputable journals and a series of collaborative projects, he has contributed significantly to the academic community. He has also served as a guest lecturer at various institutions, demonstrating his dedication to advancing mathematical education. His work has earned him recognition in the field, making him a promising candidate for awards and research grants.

Publication Profile:

Orcid

Strengths for the Award:

  1. Academic and Research Excellence: Rezaul Karim has an impressive academic and professional background, with a career in teaching at the university level. As an Assistant Professor at Mawlana Bhashani Science and Technology University, he has made notable contributions to the field of mathematics, particularly in nonlinear differential systems, mathematical modeling, and numerical analysis. His research has been published in reputable international journals, reflecting the impact and quality of his work.

  2. Diverse Research Interests: Rezaul Karim’s research interests span a broad range of topics, including nonlinear oscillations, mathematical modeling, population dynamics, and numerical analysis. He has worked extensively on approximation solutions to nonlinear differential equations and has contributed to the field through numerous publications, showing a robust and diverse research output.

  3. Extensive Publication Record: With over 19 publications in peer-reviewed journals, Rezaul Karim has consistently demonstrated his ability to contribute to the academic community. His work addresses critical problems in applied mathematics and theoretical modeling, particularly in relation to population projections and nonlinear systems. He has also co-authored papers with prominent researchers in the field, adding to his credibility and influence in the mathematical research community.

  4. Mentorship and Collaboration: Karim’s role as a faculty member and his collaboration with other researchers demonstrate his commitment to mentorship and collaboration. He has worked with various colleagues, showing his ability to contribute to multidisciplinary projects and guide emerging researchers in the field.

  5. Awards and Recognitions: He has received recognition for his achievements, including foundation training for university teachers and scholarships during his academic journey. His contributions to inter-university quiz competitions and success in various faculty-based scholarships further highlight his passion and competence.

Areas for Improvement:

  1. Expanding Research Impact: While Rezaul Karim has a strong publication record, his research could benefit from being more widely recognized in interdisciplinary fields. Increasing the visibility of his work in broader scientific communities or in applied industries could enhance his profile as a researcher.

  2. Engagement in International Conferences and Symposiums: Although Karim has published widely, further engagement in international conferences, symposiums, and research workshops could allow him to exchange ideas and stay updated with the latest trends in his research areas. This would also help in broadening his professional network.

  3. Collaborations in Industry-Based Research: A possible avenue for improvement would be to engage in industry-based research that applies mathematical models and numerical analysis to real-world problems, such as in engineering, healthcare, or technology. This could help increase the practical impact of his work.

  4. Developing Interdisciplinary Projects: While Karim’s work is deeply rooted in mathematics, expanding into interdisciplinary research projects, such as integrating mathematical modeling with other domains like biology, economics, or environmental science, could enrich his research profile and broaden its scope.

Education:

Rezaul Karim pursued his educational journey at Mawlana Bhashani Science and Technology University. He completed his MS in Mathematics in 2015, earning a CGPA of 3.78 out of 4.0. Prior to this, he obtained a BSc (Hons) in Mathematics in 2014, with a CGPA of 3.65 out of 4.0. His strong academic background was built upon solid foundational education, which began in high school, where he achieved excellent results in science subjects. His commitment to excellence in mathematics has been evident throughout his academic career, culminating in several research-based projects that have contributed to the advancement of applied mathematics in real-world contexts.

Experience:

Rezaul Karim has been serving as an Assistant Professor in the Department of Mathematics at Mawlana Bhashani Science and Technology University since February 2020. Prior to this role, he held positions as a guest lecturer at Jamalpur Bangamata Sheikh Fazilatunessa Mujib Science and Technology University from January to July 2023 and as a lecturer in the CSE Department at the College of Business Science and Technology (CBST), Mymensingh, from 2018 to 2020. Rezaul has also taught at various university coaching centers, where he mentored students for university admission exams. His professional experience extends beyond teaching, having engaged in multiple research collaborations and projects. He brings a wealth of knowledge and expertise in mathematics, with a focus on problem-solving and theoretical analysis in nonlinear differential systems and mathematical modeling.

Awards and Honors:

Rezaul Karim has received multiple awards and honors for his academic achievements. Notably, he secured the 5th position in scholarships within the science faculty during his third and fourth semesters. He has also been recognized as a runner-up in the inter-university quiz competition. His teaching prowess was further enhanced by attending Foundation Training for University Teachers (GTI), which solidified his role as an effective educator. These awards demonstrate his dedication to both his studies and teaching career. Karim’s scholarly contributions have earned him recognition in the field of mathematics, especially in research and the publication of several influential papers in esteemed journals. These honors and accolades reflect his commitment to academic excellence and teaching.

Research Focus:

Rezaul Karim’s research focus lies in mathematical modeling, nonlinear oscillation, and numerical analysis. He explores approximate solutions for nonlinear differential equations, particularly in systems with varying parameters. His research interests also extend to investigating the stability and behavior of population models and differential systems. Rezaul has published numerous articles that contribute to the mathematical modeling of real-world phenomena, such as population growth projections using Malthusian and logistic models. His work in nonlinear oscillations is significant, as he focuses on damped and forced oscillatory motions in complex systems. In addition, his research involves analyzing the accuracy of numerical methods for solving differential equations. His work seeks to bridge the gap between theoretical mathematics and practical applications, particularly in environmental and biological modeling. This ongoing commitment to research further exemplifies his drive to advance the field of applied mathematics.

Publications Top Notes:

  1. “Approximate solution of nonlinear differential system with time variation” 📝 (Journal of Bangladesh Academy of Sciences, 2021)
  2. “Accuracy Analysis on Solution of Initial Value Problems of Ordinary Differential Equations” 📝 (Int. Ann. Sci., 2021)
  3. “Approximate Solution of Damped Forced and Damped Oscillatory Motion” 📝 (Progress in Nonlinear Dynamics and Chaos, 2021)
  4. “Stability of Two and Three Species Population Models” 📝 (Advances in Mathematical Sciences, 2020)
  5. “A Comparative Exploration on Different Numerical Methods for Solving Ordinary Differential Equations” 📝 (J. Mechanics of Continua, 2020)
  6. “Future Population Projection of Bangladesh using Malthusian and Other Models” 📝 (Int J Stat Appl Math, 2020)
  7. “KB Method for Obtaining Approximate Solution of Slowly Varying Amplitude and Phase” 📝 (Int J Stat Appl Math, 2020)
  8. “De-Speckling of SAR Images with Fuzzy Filters” 📝 (Journal of Computer and Communications, 2022)
  9. “Soliton Solutions to Nonlinear Wave Equations” 📝 (J. Umm Al-Qura University for Applied Sciences, 2024)
  10. “Prediction of Family Planning and Health Effects on Bangladesh Using Age Structure Model” 📝 (J. Mechanics of Continua, 2024)

Conclusion:

Rezaul Karim is a highly deserving candidate for the Best Researcher Award due to his exceptional academic contributions, diverse research interests, and significant publication record. His work in mathematical modeling, nonlinear differential systems, and numerical methods has made a substantial impact on both theoretical and applied mathematics. Karim’s dedication to research, coupled with his teaching and mentoring role, positions him as an influential figure in the field.

Huifeng Hao | Tumor pharmacology | Best Researcher Award

Dr. Huifeng Hao | Tumor pharmacology | Best Researcher Award

Dr. Huifeng Hao , Peking University Cancer Hospital , China

Dr. Huifeng Hao is an Assistant Investigator at Peking University Cancer Hospital, specializing in the integration of Chinese and Western medicine. He holds a Ph.D. from Peking University Health Science Center, where he explored Chinese-Western medical integration. His research journey began with a Bachelor’s in Clinical Medicine from Hebei Medical University. Dr. Hao has accumulated valuable postdoctoral experience at Peking Union Medical College (PUMC) in Vascular Pharmacology. His work has greatly contributed to the understanding of cancer progression, focusing on the interactions between cancer cells and vascular endothelial cells and the therapeutic effects of Traditional Chinese Medicine. With over a decade of expertise, Dr. Hao has published extensively in renowned journals, addressing critical topics in cancer research, endothelial cell function, and vascular health.

Publication Profile:

Orcid

Strengths for the Award:

  1. Extensive Educational and Research Background: Dr. Huifeng Hao has a comprehensive and solid academic foundation. With a Bachelor’s degree in Clinical Medicine from Hebei Medical University and a Ph.D. in the Integration of Chinese and Western Medicine from Peking University Health Science Center, his educational background is robust. Moreover, his postdoctoral research in Vascular Pharmacology at Peking Union Medical College significantly bolsters his expertise, particularly in vascular biology and its implications in cancer progression.

  2. Groundbreaking Research Areas: Dr. Hao’s research primarily focuses on the complex interactions between cancer cells and vascular endothelial cells, along with exploring how Traditional Chinese Medicine (TCM) can influence cancer progression. This intersection of modern pharmacology and traditional medicine offers a unique and innovative approach to cancer therapy. His studies on cancer metastasis, endothelial cell signaling, and the use of TCM as a potential therapeutic strategy for cancer represent cutting-edge work.

  3. Impressive Publication Record: Dr. Hao has co-authored numerous high-impact publications in leading journals, such as Phytomedicine, Frontiers in Pharmacology, Journal of Ethnopharmacology, and Journal of Cellular and Molecular Medicine. His work spans across critical cancer pathways, pharmacological interventions, and the exploration of novel therapeutic agents like Marsdenia Tenacissima and Berberine in combating metastasis and endothelial dysfunction.

    • His 2022 papers on the modified Bu-Fei decoction’s effects on lung metastasis and the role of CUEDC2 in promoting breast cancer progression are particularly notable for their novel findings and potential clinical applications.
  4. Collaborative and Multi-Disciplinary Research: Dr. Hao’s ability to collaborate with a wide array of experts and researchers in diverse fields demonstrates his interdisciplinary approach to solving complex scientific questions. This collaboration enhances the relevance and applicability of his work in various research areas, particularly in cancer biology, pharmacology, and integrative medicine.

  5. Pioneering Work on TCM in Cancer Therapy: Dr. Hao’s research on the role of Traditional Chinese Medicine (TCM) in cancer therapy is especially noteworthy. His studies examining how TCM influences tumor microenvironments and endothelial cell interactions provide critical insights into how integrative medicine might be leveraged to treat cancer in combination with conventional therapies. This pioneering research has the potential to redefine cancer treatments and offer patients holistic therapeutic options.

  6. Strong Impact on Cancer Research: His work on vascular pharmacology, tumor angiogenesis, and metastasis in lung cancer, particularly through the modulation of transforming growth factor beta receptors and nitric oxide signaling, has significant implications for the development of new cancer therapies. His publications are contributing valuable knowledge toward better understanding cancer progression and discovering more effective treatments.

Areas for Improvement:

  1. Broader Research Scope in Clinical Settings: While Dr. Hao’s research has focused heavily on preclinical studies, including animal models and cellular assays, expanding his research into clinical trials or human-based studies would provide essential validation for his findings. Involving clinical datasets and patient-centered research could strengthen the real-world applicability of his work.

  2. Increase in Independent Research Funding: While Dr. Hao has contributed significantly to various collaborative projects, securing independent research grants would allow him more freedom to explore his unique research hypotheses in greater depth and broaden the scope of his investigations.

  3. Expansion of International Collaborations: While Dr. Hao’s collaborations are impressive, further expanding his international network could provide additional insights and allow him to take his research to the global forefront. Partnerships with leading international cancer research institutions could also amplify the impact of his work.

Education:

  • 2004.09-2009.06: Hebei Medical University (Bachelor Degree in Clinical Medicine)
  • 2009.09-2014.06: Peking University Health Science Center (Ph.D. in Integration of Chinese and Western Medicine)
  • 2014.09-2018.08: Peking Union Medical College (Postdoctoral Training in Vascular Pharmacology)

Dr. Hao’s academic journey spans over a decade of rigorous training, blending Western scientific research with Traditional Chinese Medicine. He received his bachelor’s degree in clinical medicine and later pursued his Ph.D. in an interdisciplinary program that focused on integrating these two approaches to medicine. His postdoctoral research in vascular pharmacology furthered his expertise in understanding the physiological and molecular mechanisms of cancer-related vascular changes.

Experience:

  • 2014.09-2018.08: Postdoctoral Researcher, Peking Union Medical College, Vascular Pharmacology
  • 2018.08-Present: Assistant Investigator, Peking University Cancer Hospital, Integration of Chinese and Western Medicine

Dr. Hao’s research career spans significant academic institutions in China. During his postdoctoral research at PUMC, he specialized in vascular pharmacology, focusing on the molecular pathways involved in tumor vasculature. At Peking University Cancer Hospital, Dr. Hao continues to investigate how traditional medicine can alter the interactions between cancer cells and endothelial cells, with a goal of developing novel therapeutic strategies for cancer treatment. His interdisciplinary approach has led to multiple breakthrough discoveries in cancer biology and integrative medicine.

Research Focus:

Dr. Hao’s primary research areas include:

  • Investigating the interactions between cancer cells and vascular endothelial cells, and how these affect cancer progression
  • Exploring the role of Traditional Chinese Medicine (TCM) in regulating cancer cell interactions within the tumor microenvironment, especially with endothelial cells

By bridging the gap between modern biomedical science and traditional medicine, Dr. Hao aims to develop therapies that utilize both modalities to inhibit tumor growth and metastasis. His work focuses on understanding how TCM can modulate endothelial cells and vascular pathways, potentially leading to new treatments for cancer that are more holistic and effective.

Publications Top Notes:

  1. Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4 🫁🦠
  2. CUEDC2 Drives β-Catenin Nuclear Translocation and Promotes Triple-Negative Breast Cancer Tumorigenesis 🧬💥
  3. Berberine Suppresses Lung Metastasis of Cancer via Inhibiting Endothelial Transforming Growth Factor Beta Receptor 1 🌱🏥
  4. Marsdenia tenacissima extract disturbs the interaction between tumor-associated macrophages and non-small cell lung cancer cells by targeting HDGF 🌿🧫
  5. The cyclic adenosine monophosphate elevating medicine, forskolin, reduces neointimal formation and atherogenesis in mice 🐭💉
  6. Nitric oxide, a communicator between tumor cells and endothelial cells, mediates the anti-tumor effects of Marsdenia Tenacissima Extract (MTE) 💡🔬
  7. Marsdenia tenacissima extract promotes gefitinib accumulation in tumor tissues of lung cancer xenograft mice via inhibiting ABCG2 activity 💊🔬
  8. Marsdenia tenacissima extract dilated small mesenteric arteries via stimulating endothelial nitric oxide synthase and inhibiting calcium influx 🧪🩸
  9. Protective Role of mPGES-1 (Microsomal Prostaglandin E Synthase-1)-Derived PGE(2) (Prostaglandin E-2) and the Endothelial EP4 (Prostaglandin E Receptor) in Vascular Responses to Injury 💥🩺
  10. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis, and Cardiac Remodeling After Myocardial Infarction ❤️🫀

Conclusion:

Dr. Huifeng Hao’s contributions to cancer research, particularly the intersection of TCM and Western medicine, make him an excellent candidate for the Best Researcher Award. His innovative studies, combined with his dedication to advancing cancer treatment, position him as a leading researcher in his field. His continued research promises to significantly impact both scientific understanding and clinical practices in cancer therapy.

Jacob Wekalao | Cancer Cell Biology | Best Researcher Award

Mr. Jacob Wekalao | Cancer Cell Biology | Best Researcher Award

Mr. Jacob Wekalao , USTC CHINA , China

Jacob Wekalao is a Physics professional and researcher with extensive experience in both academia and industry. He holds a Doctor of Philosophy from the University of Science and Technology and a Master of Science in Physics from Marwadi University, India. Jacob has worked as a physics teacher, leading the physics department at Kwale High School, Kenya, and is currently a software expert at Eujim Solutions, where he specializes in creating innovative business solutions. He is also a Research Assistant at Marwadi University, contributing to advanced research in physics and nanotechnology. His expertise spans across terahertz sensors, graphene-based biosensors, and surface plasmon resonance techniques. In addition to his academic endeavors, Jacob has authored several peer-reviewed publications, showcasing his contributions to forensic science, health, and biomedical applications. Jacob is passionate about research, mentoring, and leveraging technology to solve real-world problems.

Publication Profile:

Orcid

Strengths for the Award:

Jacob Wekalao is an exceptional researcher in the field of experimental physics, particularly in the areas of nanotechnology, terahertz sensors, and biosensing. His work integrates cutting-edge research with practical applications, demonstrating a high level of innovation and expertise. Jacob’s contributions to the development of graphene-based sensors for various applications, including healthcare, forensic science, and security, have positioned him as a thought leader in his field. His published works in prestigious journals and his active role in research projects, such as designing biosensors for early disease detection, highlight his proficiency in both theoretical and applied physics. Additionally, Jacob’s ability to collaborate internationally and present at major conferences reflects his commitment to advancing scientific knowledge and networking within the global research community.

Areas for Improvement:

While Jacob excels in his research and technological expertise, expanding his focus on interdisciplinary collaborations could further elevate his work. Engaging more with industry experts in areas like artificial intelligence or machine learning could also open doors for more transformative innovations, especially in optimizing sensor technologies. Further involvement in policy or public science initiatives could help bridge the gap between research and broader societal applications.

Education:

Jacob Wekalao has an impressive educational background that supports his expertise in physics and technology. He is currently pursuing a Doctor of Philosophy at the University of Science and Technology, China. His academic journey began with a Bachelor of Education in Science with a focus on Physics and Mathematics from the University of Embu, Kenya (2016-2020). This solid foundation propelled him to obtain a Master of Science in Physics from Marwadi University, Rajkot, Gujarat, India (2021-2023). During his time at Marwadi University, Jacob excelled academically, earning an Academic Gold Medal in November 2023 for his outstanding performance. His commitment to learning is also reflected in certifications from institutions like KAIST and the Israel Institute of Technology. Jacob’s education is characterized by a blend of theoretical knowledge and practical skills, which has enabled him to contribute significantly to the fields of experimental physics and applied technology.

Experience:

Jacob Wekalao has diverse experience spanning education, research, and industry. From September 2019 to August 2021, he worked as a Physics teacher at Kwale High School, Kenya, where he led the physics department, developed curriculum materials, and managed science projects. This role enabled him to foster critical thinking and scientific inquiry among students. In addition to his teaching experience, Jacob is currently employed as a Software Expert at Eujim Solutions, Kenya (July 2023 – Present), where he provides tailored software solutions, improves business efficiency, and implements cutting-edge technologies. Furthermore, he works as a Research Assistant at Marwadi University, collaborating on various physics research projects focused on terahertz sensors and biosensors. His involvement in multiple projects and publications has established him as a valuable contributor to advancements in technology and scientific research. Jacob’s work showcases a seamless integration of theoretical physics and practical application in technology.

Awards and Honors:

Jacob Wekalao’s dedication to academic excellence and research has earned him notable awards and honors. He received the prestigious Academic Gold Medal from Marwadi University, Rajkot, India, in November 2023, recognizing his exceptional performance in the Master of Science in Physics program. Jacob’s achievements are further validated by his numerous peer-reviewed publications, which have contributed to the global scientific community. His research in the fields of biosensing, terahertz technology, and nanomaterials has earned him recognition at various international platforms. In addition to academic awards, Jacob’s work has been presented at leading conferences, such as the International Conference on Chemical Safety and Security for Health and Environment (ICCSSHE), held in India in December 2023. His strong academic performance, leadership in research, and contributions to technological advancements continue to set him apart as an outstanding professional in his field.

Research Focus:

Jacob Wekalao’s research focuses on experimental physics, particularly in the areas of terahertz technology, biosensing, and nanomaterials. His work has significant implications for applications in healthcare, security, and forensic science. Jacob has developed and optimized graphene-based terahertz surface plasmon resonance sensors for the detection of various biomolecules, including hemoglobin and illicit drugs. His research has extended to the design of graphene metasurfaces for efficient detection of diseases like malaria and COVID-19. Jacob’s research in biosensors has led to highly sensitive, cost-effective solutions that hold promise for point-of-care diagnostics and environmental monitoring. Additionally, his work on the use of metasurfaces for explosive detection has practical implications for security. Through his research, Jacob combines advanced theoretical physics with real-world applications, contributing to the fields of biomedical technology, environmental monitoring, and security. His interest in machine learning also aids in optimizing these sensor technologies for better precision and performance.

Publications Top Notes:

  1. “Graphene-based THz surface plasmon resonance biosensor for hemoglobin detection applicable in forensic science.” 📖🔬
  2. “Design of ring and cross-shaped graphene metasurface sensor for efficient detection of malaria and 2-bit encoding applications.” 🦠🔍
  3. “Waterborne bacteria detecting highly sensitive graphene metasurface-based cost-efficient and efficient refractive index sensors.” 💧🔬
  4. “Design of graphene metasurface sensor for efficient detection of COVID-19.” 🦠💡
  5. “Graphene biosensor design based on glass substrate for forensic detection of illicit drugs.” 💊🔍
  6. “Graphene and Gold Metasurface-Based Terahertz Surface Plasmon Resonance Sensor for Explosive Detection.” 💥🛡️
  7. “Terahertz Optical Ultrasensitive Glucose Detection Using Graphene and Silver Surface Plasmon Resonance Metasurfaces for Biomedical Applications.” 🩺🔬
  8. “High-Sensitivity Graphene-Gold Metasurface Optical Biosensor for Early Melanoma Detection Optimized with Machine Learning Using a One-Dimensional Convolutional Neural Network and Binary Encoding.” 🧬🔬

Conclusion:

Jacob Wekalao’s contributions to the fields of physics and technology demonstrate an impressive combination of academic excellence, hands-on expertise, and innovative solutions. His drive to advance scientific knowledge and apply it for real-world impact, especially in healthcare and security, makes him a deserving candidate for the Best Researcher Award. Jacob’s ongoing work on high-sensitivity biosensors and his ability to stay ahead of technological trends make him a standout researcher in his field.

 

 

 

Arunima Biswas | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Arunima Biswas | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Arunima Biswas , university of kalyani , India

Dr. Arunima Biswas is an Assistant Professor in the Department of Zoology at the University of Kalyani, India. With a Ph.D. in Biochemistry from the Indian Institute of Chemical Biology, Kolkata, she has focused her career on understanding the molecular mechanisms underlying diseases, particularly cancer and parasitic infections. She leads multiple funded research projects, aiming to develop targeted therapies for various cancers. Dr. Biswas has worked extensively on the cyclic nucleotide signaling pathways in unicellular eukaryotes like Leishmania and cancer. A passionate educator and researcher, she mentors Ph.D. students and collaborates with international scientists to advance medical research.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Arunima Biswas demonstrates significant contributions to cancer research and parasitology. She is highly skilled in understanding and manipulating cyclic nucleotide signaling pathways, which play a crucial role in cancer biology and parasitic diseases like Leishmania infections. With several ongoing research projects, including the repurposing of phosphodiesterase inhibitors for cancer therapy and the development of targeted drug delivery systems, Dr. Biswas has shown an innovative approach to solving complex medical challenges. Her leadership as Principal Investigator for high-impact projects, such as cancer screening and drug targeting, highlights her as a leading researcher in her field. Furthermore, her dedication to mentoring and producing highly qualified Ph.D. students is commendable.

Areas for Improvement:

While Dr. Biswas’ research is already impactful, expanding her work on the practical clinical application of her findings could further bridge the gap between research and patient care. Collaboration with clinical trials or hospitals could expedite the translation of her findings into therapeutic solutions. Additionally, expanding interdisciplinary collaborations could bring novel insights into her research.

Education:

Dr. Arunima Biswas earned her Ph.D. in Biochemistry from the Indian Institute of Chemical Biology, Kolkata, with a thesis on Host-parasite interaction: Modulation of signaling pathways in Macrophage and Leishmania (2010). Prior to this, she completed her Master of Science in Zoology from the University of Calcutta with First Class honors (2005). She also holds a Bachelor of Science in Zoology from Maulana Azad College, University of Calcutta (2003). Her academic journey has been marked by a strong foundation in biochemistry, signaling pathways, and parasitology, forming the basis of her current research interests.

Experience:

Dr. Arunima Biswas has over a decade of teaching and research experience. As an Assistant Professor at the University of Kalyani, she has significantly contributed to the academic and research growth in the Department of Zoology. She is the Principal Investigator of several research projects funded by national bodies like CSIR, SERB, and UGC, with an emphasis on cancer research, especially targeting pathways involving cyclic nucleotides. Dr. Biswas has also collaborated with multiple national and international institutions and mentored several Ph.D. students, contributing to their academic and research advancements. Her experience in guiding research and mentoring future scientists is widely acknowledged.

Awards and Honors:

Dr. Arunima Biswas has received numerous accolades for her research and academic contributions. Notably, she won the Young Scientist Presentation Award at the Translational Cancer Research Conference (2020) and was honored with an International Congress of Cell Biology Travel Award (2016). She also received the American Society of Biochemistry and Cell Biology Travel Award (2015) and the prestigious DST-INSPIRE Faculty Scheme award (2012). These recognitions underscore her outstanding contributions to biomedical research, particularly in cancer biology and parasitology, further establishing her as a leader in her field.

Research Focus:

Dr. Arunima Biswas’s research focuses on cancer biology and parasitology, particularly the role of cyclic nucleotide signaling in cancer and Leishmania infections. She investigates therapeutic targets to modulate these pathways for better treatment options in cancer, including breast and gynecological cancers. Her ongoing projects include exploring phosphodiesterase inhibitors for breast cancer and cervical cancer, as well as developing vesicular drug carriers for targeted drug delivery. Dr. Biswas is dedicated to understanding the molecular intricacies of host-parasite interactions and their implications for disease management.

Publications Top Notes:

  1. Metal Oxide–Enhanced Para-Coumaric Acid Nanoparticles for Precision Targeting of Leishmania donovani
  2. Repurposing Approved Protein Kinase Inhibitors as Potent Anti-Leishmanials Targeting Leishmania MAP Kinases
  3. Anticancer, Antimicrobial, and Photocatalytic Activities of a New Pyrazole-Containing Thiosemicarbazone Ligand and Its Co(III) and Ni(II) Complexes
  4. Synthesis, Spectroscopy, and Structural Elucidation of Two New CoII and NiII Complexes of Pyrazole Derived Heterocyclic Schiff Base Ligand as Potential Anticancer and Photocatalytic Agents
  5. Vesicle-Encapsulated Rolipram (PDE4 Inhibitor) and Its Anticancer Activity
  6. Rhodamine Hydrazide-Linked Naphthalimide Derivative: Selective Naked Eye Detection of Cu2+, S2− and Understanding the Therapeutic Potential of the Copper Complex as an Anti-Cervical Cancer Agent
  7. Modulation and Determination of the Status of Inflammasomes in Leishmania-Infected Macrophages
  8. Catalytic and Anticancer Activity of Two New Ni(II) Complexes with a Pyrazole-Based Heterocyclic Schiff-Base Ligand
  9. Biophysical Study on DNA and BSA Binding Activity of Cu(II) Complex: Synthesis, Molecular Docking, Cytotoxic Activity, and Theoretical Approach
  10. Cytotoxic Behavior and DNA/BSA Binding Activity of Thiosemicarbazone-Based Ni(II) Complex: Bio-Physical, Molecular Docking, and DFT Study

Conclusion:

Dr. Arunima Biswas is an exceptional candidate for the “Best Researcher Award.” Her diverse research in cancer biology, parasitology, and drug development showcases her commitment to advancing healthcare. She has made significant strides in understanding complex molecular mechanisms, and her work holds great promise for improving cancer treatments. With a robust academic record, influential publications, and ongoing impactful projects, Dr. Biswas is undoubtedly a deserving contender for the award.