Rika Sasaki | mitochondria | Best Researcher Award

Dr. Rika Sasaki | mitochondria | Best Researcher Award

Dr. Rika Sasaki , Department of Molecular Pathology, Nara Medical University , Japan

Rika Sasaki is a researcher in the Department of Molecular Pathology at Nara Medical University, Japan. She completed her degree in Medicine from the Faculty of Medicine, Nara Medical University in March 2023 and began her doctoral studies in April 2023. Currently, she is in the second year of her program, focusing on cancer research, particularly on the role of mitochondrial transfer in colorectal cancer. Rika is passionate about understanding the molecular mechanisms behind cancer malignancy and drug resistance. She has a growing academic presence, having published multiple papers in respected journals such as the International Journal of Molecular Sciences. Her work has contributed to important discoveries, including the identification of HMGB1 as a key factor in mitochondrial transfer. Rika is a member of The Japanese Cancer Association and The Japanese Society of Pathology, and she is dedicated to furthering cancer-related research.

Publication Profile:

Scopus

Strengths for the Award:

Rika Sasaki has demonstrated considerable promise as a young researcher in the field of molecular pathology, with a focused interest in cancer biology. Sasaki’s research on the therapeutic strategy for targeting drug resistance in colorectal cancer through mitochondrial transfer is both innovative and highly relevant. Her ability to identify key molecules, such as oxidized HMGB1, contributing to cancer malignancy and resistance, highlights her potential to shape future cancer therapies. Moreover, Sasaki’s publication record, including in high-impact journals, showcases the quality and impact of her work. Her membership in esteemed professional societies further strengthens her standing in the research community.

Areas for Improvement:

Although Sasaki is an emerging researcher with promising contributions, expanding her network through collaborative research and increasing the breadth of her publications could enhance her visibility in the scientific community. Additionally, the exploration of translational research, particularly through clinical applications, could be an important avenue for the future development of her work.

Education:

Rika Sasaki earned her degree in Medicine from the Faculty of Medicine at Nara Medical University in March 2023. Shortly after graduation, she enrolled in the Doctoral Program at Nara Medical University in April 2023. As of February 2025, she is in the second year of her Ph.D. studies. During her academic career, Rika has demonstrated a strong commitment to medical and scientific research. Her education has provided her with a solid foundation in molecular pathology, particularly with an emphasis on cancer biology. Rika’s research interests have led her to focus on understanding the intricate mechanisms of drug resistance in cancer cells, particularly in colorectal cancer. Her research findings are contributing to the development of potential therapeutic strategies, which may play a significant role in overcoming treatment resistance. Her academic journey reflects dedication, rigor, and a passion for advancing medical knowledge.

Experience:

Rika Sasaki’s professional journey as a researcher began after her graduation from Nara Medical University in March 2023, when she immediately began her Doctoral Program. As a second-year Ph.D. student, she has already been involved in groundbreaking research focused on cancer drug resistance mechanisms. Her experience includes working on the project titled “Therapeutic Strategy for Colorectal Cancer Targeting Drug Resistance Induced by Mitochondrial Transfer.” Rika’s research highlights the oxidized form of HMGB1 as a major factor in mitochondrial transfer, contributing to cancer cell stemness and drug resistance. She has also collaborated with a team of scientists, publishing several research articles in peer-reviewed journals. Though she does not have formal consultancy or industry experience yet, Rika’s academic achievements and publication record indicate her growing expertise in molecular pathology. She is currently refining her skills and knowledge, positioning herself as a future leader in cancer research.

Awards and Honors:

Rika Sasaki, while early in her career, has made significant strides in cancer research, particularly focusing on mitochondrial transfer and drug resistance in colorectal cancer. She has not yet received formal awards for her work; however, her research has been published in respected journals such as the International Journal of Molecular Sciences, underlining her scientific contributions. Rika’s H-index of 5 reflects the growing impact of her publications. Although she has not received awards such as the Best Researcher Award yet, her innovative work has attracted recognition within her institution and the scientific community. As her research progresses, particularly in understanding cancer drug resistance, Rika is likely to gain more recognition in the coming years. Her academic commitment and contributions to molecular pathology have earned her membership in notable professional societies like The Japanese Cancer Association and The Japanese Society of Pathology, setting her up for future accolades.

Research Focus:

Rika Sasaki’s research primarily revolves around understanding cancer drug resistance, particularly in colorectal cancer. Her focus is on the therapeutic strategy targeting mitochondrial transfer that promotes cancer cell stemness and resistance to conventional chemotherapy. Through her research, she has identified the oxidized form of HMGB1 as a key factor that accelerates mitochondrial transfer from mesenchymal stem cells to colorectal cancer cells. This discovery holds potential for novel cancer therapies aimed at reversing drug resistance. Rika’s research also extends to studying energy metabolism and the role of various molecules, such as lauric acid, in overcoming chemoresistance. Her work provides critical insights into the molecular mechanisms underlying the malignancy of cancer cells, contributing to the development of more effective treatments. Rika’s research bridges molecular pathology and clinical applications, making her a promising scientist in the fight against cancer. Her findings are already influencing the field of cancer research, making her work highly relevant.

Publications Top Notes:

  • Oxidative stress
  • “Oxidative High Mobility Group Box-1 Accelerates Mitochondrial Transfer from Mesenchymal Stem Cells to Colorectal Cancer Cells Providing Cancer Cell Stemness” (Int. J. Mol. Sci. 2025) 📚💥
  • “Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells” (Int. J. Mol. Sci. 2025) 🍏🔬
  • “Significance of CD10 for Mucosal Immunomodulation by β-Casomorphin-7 in Exacerbation of Ulcerative Colitis” (Curr. Issues Mol. Biol. 2024) 🔬🧬
  • “Effects of High-Mobility Group Box-1 on Mucosal Immunity and Epithelial Differentiation in Colitic Carcinoma” (Int. J. Mol. Sci. 2024) 🔬🦠
  • “Berberine Improves Cancer-Derived Myocardial Impairment in Experimental Cachexia Models by Targeting High-Mobility Group Box-1” (Int. J. Mol. Sci. 2024) 💪🧪
  • “Nuclear MAST4 Suppresses FOXO3 through Interaction with AKT3 and Induces Chemoresistance in Pancreatic Ductal Carcinoma” (Int. J. Mol. Sci. 2024) 💥🧠
  • “Investigation of Cancer-Induced Myocardial Damage in Autopsy Cases—A Comparison of Cases with and without Chemotherapy” (Pathol. Int. 2024) 🧠❤️
  • “Pterostilbene Induces Apoptosis from Endoplasmic Reticulum Stress Synergistically with Anticancer Drugs That Deposit Iron in Mitochondria” (Int. J. Mol. Sci. 2024) 🧪💔
  • “Involvement of Ferroptosis Induction and Oxidative Phosphorylation Inhibition in the Anticancer-Drug-Induced Myocardial Injury: Ameliorative Role of Pterostilbene” (Int. J. Mol. Sci. 2024) ⚡🧬
  • “Lauric Acid Overcomes Hypoxia-Induced Gemcitabine Chemoresistance in Pancreatic Ductal Adenocarcinoma” (Int. J. Mol. Sci. 2023) 🧪🍃

Conclusion:

Given her strong academic background, innovative research on cancer biology, and growing publication record, Rika Sasaki is a strong candidate for the Best Researcher Award. Her work on mitochondrial transfer and cancer resistance mechanisms promises significant advancements in cancer treatment. With continued professional growth and wider collaborations, she has the potential to make substantial contributions to medical science.

 

 

Vaibhav Rajoriya | Cancer Cell Biology | Cell Biology Research Award

Mr. Vaibhav Rajoriya | Cancer Cell Biology | Cell Biology Research Award

Mr. Vaibhav Rajoriya , Oriental University, Indore , India

Vaibhav Rajoriya is a dedicated and accomplished researcher and pharmacist based in Sagar, Madhya Pradesh, India. With a strong academic background, he has earned his B.Pharm and M.Pharm from renowned institutions. He is a registered pharmacist with the MP State Pharmacy Council and holds memberships in various professional organizations, including the Association of Pharmacy Professionals. As a passionate researcher, Vaibhav has contributed to numerous studies, particularly focusing on nanomedicine, drug delivery systems, and cancer therapies. He has received prestigious fellowships such as ICMR-SRF and CSIR-SRF, contributing significantly to the field of pharmaceutical sciences. Currently pursuing a Ph.D., Vaibhav’s work continues to push boundaries in pharmaceutical research and development. His drive for excellence is further reflected in his active participation in various national and international conferences and research collaborations.

Publication Profile:

Orcid

Strengths for the Award:

  1. Diverse and Strong Research Background:
    • Vaibhav Rajoriya has a robust academic and research profile, with an established history of contributions to pharmaceutical sciences, particularly in the areas of drug delivery, nanotechnology, and cancer therapies.
    • He has authored multiple publications in high-impact journals, such as International Journal of Pharmaceutics and Current Nanomedicine, which demonstrate his expertise in nanomedicine, drug delivery systems, and the pharmaceutical applications of lipid nanoparticles and nanogels.
    • His focus on cutting-edge research areas, such as lung cancer targeting with folate-conjugated nanoparticles and novel drug delivery systems using solid lipid nanoparticles, shows a clear alignment with important biological research themes, including targeted therapy and cellular uptake.
  2. Research Achievements and Awards:
    • He has received prestigious recognitions, such as the MPCST Young Scientist Award and Best Poster Awards from institutions like AIIMS, Rishikesh, and IIT-BHU. These accolades reflect the high quality and relevance of his work in the biomedical field.
    • His successful completion of ICMR-SRF and CSIR-SRF fellowships exemplifies his ability to lead significant research projects. Moreover, he has actively contributed to a variety of projects in pharmaceutical science, indicating a deep understanding of the complexities of drug formulations, targeting mechanisms, and therapeutic applications.
  3. Ph.D. Candidacy and Future Potential:
    • Vaibhav Rajoriya is currently pursuing a Ph.D. at Oriental University, Indore, demonstrating his commitment to further advancing his research capabilities and contributing to cutting-edge research in cell biology and drug development.
    • His experience and involvement in multi-disciplinary projects, along with his fellowship positions, position him to be a strong contender for advanced research awards, including in the field of cell biology.
  4. Collaborative and Multi-dimensional Approach:
    • His involvement in collaborative research is evident through co-authorship in studies that blend different scientific approaches (nanotechnology, pharmacology, and medicinal chemistry). Such collaborations show his adaptability and the potential for cross-pollination of ideas between different scientific domains, an important characteristic in cell biology research.

Areas for Improvement:

  1. Focus on Cell Biology-Specific Research:
    • While Vaibhav’s work in nanomedicine and drug delivery systems has implications for cell biology, the research could benefit from a more explicit focus on cell biology topics such as cell signaling, cell-matrix interactions, or cell morphology, particularly at the molecular level.
    • His research could further explore in vivo and ex vivo models to study the cellular response in the context of drug delivery, providing a direct link to cellular behavior and biological mechanisms.
  2. Publication Expansion in Cell Biology Journals:
    • While his work is widely published in pharmaceutically inclined journals, increasing the number of publications directly in cell biology and molecular biology journals would provide a stronger case for this specific award. It could enhance his visibility and establish his position as a leading researcher in this field.
  3. Broader Approach to Targeted Drug Delivery in Cell Biology:
    • The research could be expanded by investigating multi-targeted delivery systems that engage specific cell types or signaling pathways, thereby providing deeper insights into cellular responses to treatment, as well as optimizing efficacy in various disease models, particularly cancer and genetic disorders.

Education:

Vaibhav Rajoriya’s educational journey is marked by a focus on pharmaceutical sciences and research. He completed his Standard X and XII from Jain Higher Secondary School, Sagar, achieving 69% and 68%, respectively. Vaibhav pursued his B.Pharm from Sagar Institute of Pharmaceutical Sciences, securing 70.4% and completed his M.Pharm at Adina Institute of Pharmaceutical Sciences with an impressive 79.9%. In addition to his pharmaceutical qualifications, Vaibhav obtained a PGDCA (Post Graduate Diploma in Computer Applications) from Agrabhan Institute of Excellence. His pursuit of knowledge led him to enroll in a Ph.D. program at Oriental University, Indore, in 2022, to further his expertise in pharmaceutical research. Throughout his academic career, he has demonstrated a strong foundation in various fields, including drug delivery systems and nanotechnology, which continues to shape his innovative research.

Experience”

Vaibhav Rajoriya has extensive experience in the field of pharmaceutical sciences, with a career that spans various research positions and projects. He was a Junior Research Fellow (JRF) in the DST-SERB-sponsored project from May 2016 to June 2018, followed by a Project Fellow position in the MPCST-sponsored research project from 2014 to 2016. These roles allowed him to gain hands-on experience in scientific research, contributing to the advancement of drug delivery systems and nanomedicine. Vaibhav has been awarded prestigious fellowships, including the ICMR-SRF (2018–2021), which further honed his skills in biomedical research. He has worked on numerous research topics, particularly focused on targeted drug delivery for cancer and other diseases, which resulted in multiple publications in high-impact journals. Vaibhav’s expertise spans the development of nanoparticle-based drug delivery systems, nano-lipid carriers, and the formulation of pharmaceutical compounds with specific targeting properties.

Awards and Honors:

Vaibhav Rajoriya’s exceptional contributions to pharmaceutical sciences have earned him several prestigious awards and honors. Notably, he was the recipient of the MPCST Young Scientist Award in 2018, recognizing his contributions to innovative research in nanomedicine. He has also earned accolades for his research presentations, including the Best Poster Award at AIIMS, Rishikesh, in 2018, for his work on folate-conjugated solid lipid nanoparticles for cancer treatment. In addition, Vaibhav won the Outstanding Poster Presentation Award in the Life Sciences category at the 1st National Biomedical Research Competition in 2018. His work at the 3rd SPIRIT 2019 conference earned him the 3rd position in the poster presentation, further highlighting his research prowess. These accolades reflect Vaibhav’s deep commitment to advancing pharmaceutical research, particularly in targeted drug delivery systems and cancer therapies, as well as his ability to effectively communicate his findings on national and international platforms.

Research Focus:

Vaibhav Rajoriya’s research focus lies primarily in the development of novel drug delivery systems, particularly for cancer treatment and other chronic diseases. His work explores the use of nanomedicine, including the formulation of solid lipid nanoparticles, nano-lipid carriers, and targeted drug delivery systems. Vaibhav’s research aims to enhance the bioavailability and therapeutic efficacy of drugs, particularly in targeted therapies for lung carcinoma and other cancers. He is particularly interested in the design and optimization of nanoparticles conjugated with targeting moieties such as folate and mannosylation to improve cellular uptake and reduce side effects. Through his research, Vaibhav has contributed to the advancement of nanocarriers for targeted drug delivery, studying their physicochemical properties, drug release profiles, cytotoxicity, and in vivo behavior. His focus is on using cutting-edge nanotechnology to create more effective and precise drug therapies for patients, particularly in oncology and infectious diseases.

Publications Top Notes:

  1. “Lactosaminated-Nsuccinyl Chitosan Nanoparticle for Hepatocyte-Targeted Delivery of Acyclovir” 🧬
  2. “Glycyrrhizin Conjugated Chitosan Nanoparticles for Hepatocyte-Targeted Delivery of Lamivudine” 💊
  3. “Mannosylated Solid Lipid Nanoparticles for Lung Targeted Delivery of Paclitaxel” 🌱
  4. “Folate-Conjugated Albumin Nanoparticles for Rheumatoid Arthritis-Targeted Delivery of Etoricoxib” 🦴
  5. “Development and Validation of RP-HPLC Method for Theophylline and Motelukast Estimation” 🔬
  6. “Evaluation of Ethanolic Extract of Zizyphus Xylopyrus on Wound Healing Activity” 🩹
  7. “Formulation Development and Evaluation of Fast Dissolving Tablet of Ramipril” 💊
  8. “UV-Spectrophotometric and Stability-Indicating RP-HPLC Method for Amlodipine and Indapamide” 📊
  9. “Folate-Conjugated Nano-Lipid Construct of Paclitaxel for Site-Specific Lung Squamous Carcinoma Targeting” 🫁
  10. “Nanostructured Lipid Carriers for Lung Cancer Targeting” 💥

Conclusion:

Vaibhav Rajoriya is a highly capable and promising researcher with strong achievements in pharmaceutical sciences, nanomedicine, and drug delivery systems. His research in the area of targeted drug delivery to specific cell types (e.g., cancer cells) already touches on key aspects of cell biology. His extensive background in various fellowships and awards underscores his dedication and success in research.

 

 

 

Sanjay Kumar | Cancer Cell Biology | Best Researcher Award

Dr. Sanjay Kumar | Cancer Cell Biology | Best Researcher Award

Dr. Sanjay Kumar , Tohoku University , Japan

Dr. Sanjay Kumar is an Assistant Professor at the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Japan. With expertise in natural products chemistry, he has made significant contributions in the field of anti-infective compounds, nanoparticle-based drug delivery, and environmental remediation. His multidisciplinary research spans across pharmaceuticals, biotechnology, and environmental sciences. Dr. Kumar holds a Ph.D. in Natural Products Chemistry from NIPER, India. He is proficient in Hindi, English, Punjabi, and Japanese, facilitating collaborations across diverse global platforms. Apart from his academic role, he has been a JSPS Postdoctoral Researcher at Tohoku University. His passion for innovation has earned him recognition in both national and international academic communities. He actively participates in fostering advanced scientific discussions and technological advancements, helping shape the future of health and environmental science.

Publication Profile:

Orcid

Strengths for the Award:

  1. Extensive Research Experience: Dr. Kumar’s career spans multiple prestigious institutions, particularly his current position as an Assistant Professor at Tohoku University in Japan. His journey from postdoctoral roles to faculty positions reflects his deepening expertise and commitment to advancing research.
  2. Diverse Research Contributions: His publications cover a wide range of topics in natural products chemistry, microbial endophytes, pharmaceutical applications, and drug discovery. He has contributed significantly to the fields of anti-infective compounds, antimicrobial activity, cancer therapy, and environmental science (e.g., microbial remediation for wastewater treatment). This diversity in research themes highlights his ability to address multifaceted scientific problems.
  3. Collaborative Work: Dr. Kumar’s collaborative approach is demonstrated by his co-authorship on numerous high-quality research papers and book chapters with prominent scientists. This speaks to his ability to work effectively in multidisciplinary teams and contribute to impactful research.
  4. Leadership and Impact: As an Assistant Professor, Dr. Kumar has shown leadership in mentoring students and researchers, as well as contributing to major international research projects. His involvement in both basic and applied research, such as drug delivery systems, biotechnological aspects of nanoparticles, and biochemical processes in plants, indicates a deep understanding of scientific applications with real-world relevance.
  5. Awards and Recognition: His work has been published in high-impact journals like Nanoscale, Medicinal Chemistry, and MRS Communications. This not only enhances his visibility within the scientific community but also reflects the importance and quality of his research.

Areas for Improvement:

  1. Increased Public Engagement: Although Dr. Kumar has an impressive academic record, increasing his presence in public science communication could broaden the impact of his research. For example, contributing to public talks, outreach programs, or media could further elevate his work’s accessibility to a broader audience.
  2. International Collaborations: While Dr. Kumar has significant collaborations in Japan and India, expanding his research partnerships globally (e.g., with research centers in Europe, North America, etc.) could increase the visibility of his work and open doors for cross-continental innovation.
  3. Grant Proposals and Funding: A focus on securing larger, international research grants could accelerate Dr. Kumar’s research, especially for high-cost projects involving experimental trials and advanced technologies.

Education:

Dr. Sanjay Kumar completed his Ph.D. in Natural Products Chemistry at NIPER, S.A.S. Nagar, Punjab, India (2014-2018), where he deepened his expertise in bioactive compounds and pharmaceutical applications. Prior to that, he earned an M.S. in Pharm. (Natural Products Chemistry) from the same institution (2011-2013). His foundational education was a Bachelor of Pharmacy (B. Pharmacy) from SHUATS, Allahabad, U.P, India (2007-2011). During his academic journey, Dr. Kumar also pursued training courses, including ISO/IEC 17025:2017 certification at Green Economy Initiatives Pvt. Ltd. and a Diploma in Computer Applications. Additionally, he attended a General Course on Intellectual Property from WIPO Worldwide Academy, Switzerland (2010). These qualifications have allowed him to gain a diverse skill set, blending scientific knowledge with practical industry insights, which he applies in his research endeavors.

Experience:

Dr. Sanjay Kumar has an extensive academic and research background, contributing to several prestigious institutions. Currently, he serves as an Assistant Professor at the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Japan, where he also conducted postdoctoral research (2020-2024). His previous role as a JSPS Postdoctoral Researcher at Tohoku University (2022-2024) further enhanced his expertise. Before that, Dr. Kumar worked as a Project Scientist at Punjab Biotechnology Incubator (PBTI), Mohali, India (2018-2020), where he applied his knowledge in the pharmaceutical and biotechnology sectors. His academic career began as a Junior Research Fellow (JRF) at NIPER, India (2014), followed by a brief tenure as Assistant Professor at SIPSAR, Greater Noida (2013-2014). His research focuses on interdisciplinary topics, with a particular emphasis on pharmaceuticals, natural products, and environmental sciences, reflecting his diverse and multi-faceted experience.

Awards and Honors:

Dr. Sanjay Kumar has earned several accolades in recognition of his pioneering work in scientific research. His remarkable contributions to anti-infective compounds and natural product-based drug design have garnered international attention. As an active researcher, he has received the prestigious JSPS Postdoctoral Fellowship at Tohoku University, Japan, which is highly competitive and recognizes excellence in the scientific community. His work on bioactive metabolites, drug delivery, and microbial remediation has been featured in renowned academic journals and international conferences. Additionally, he was honored for his contributions to biotechnology during his tenure at the Punjab Biotechnology Incubator. Dr. Kumar’s research has also contributed significantly to the field of environmental science, particularly in areas of xenobiotic degradation and wastewater treatment. His continued success and recognition reflect his commitment to advancing scientific knowledge and contributing to solving global challenges.

Research Focus:

Dr. Sanjay Kumar’s research is primarily focused on the intersection of natural products chemistry, pharmacology, and environmental science. His work involves exploring bioactive compounds from natural sources, with a particular focus on anti-infective and antimicrobial agents produced by endophytic fungi. He is dedicated to discovering novel drug delivery systems using nanoparticles and other advanced materials for targeted therapies, especially in minimally invasive cancer treatments. In addition, his research extends to microbial remediation strategies, including wastewater treatment and xenobiotic degradation. Dr. Kumar’s projects also delve into the biochemical processes affected by arsenic in plants, as well as the synthesis of pharmaceutical compounds with potential antimicrobial and anti-malarial properties. He is interested in understanding how natural products can address global health challenges, particularly in the face of increasing antibiotic resistance. His research aims to create solutions that integrate pharmaceuticals with environmental sustainability.

Publication Top Notes:

  1. “Recent Advances in Anti-Infective Compounds Produced by Endophytic Fungi” 📚
  2. “Arsenic‐Induced Responses in Plants: Impacts on Biochemical Processes” 📘
  3. “Pathogenesis and Antibiotic Resistance of Staphylococcus aureus” 🦠
  4. “Endophytic Microbes in Abiotic Stress Management” 🌱
  5. “Endophytic Bacteria in Xenobiotic Degradation” 🧬
  6. “Microbial Remediation for Wastewater Treatment” 💧
  7. “Current Trends in Mycobacterium tuberculosis Pathogenesis and Drug Resistance” 🦠
  8. “Carrier-Free Nano-Prodrugs for Minimally Invasive Cancer Therapy” 💊
  9. “Photodynamic Antimicrobial Activity of Polydiacetylene Crystal Nanostructure Against E. coli” 🦠
  10. “A Concise Synthesis of Methyl Dihydrojasmonate and Methyl (5-Methylidene-4-Oxocyclopent-2-En-1-Yl)Acetate from D-Glucose” 🧪

Conclusion:

Dr. Sanjay Kumar’s exceptional research contributions in natural products chemistry, antimicrobial resistance, biotechnology, and nanotechnology position him as a strong candidate for the Best Researcher Award. His consistent dedication to groundbreaking, multidisciplinary research and his leadership within the scientific community make him an outstanding contender. With minor improvements in expanding global collaborations and public outreach, Dr. Kumar could further elevate his profile as a leading researcher.

 

 

 

Arunima Biswas | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Arunima Biswas | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Arunima Biswas , university of kalyani , India

Dr. Arunima Biswas is an Assistant Professor in the Department of Zoology at the University of Kalyani, India. With a Ph.D. in Biochemistry from the Indian Institute of Chemical Biology, Kolkata, she has focused her career on understanding the molecular mechanisms underlying diseases, particularly cancer and parasitic infections. She leads multiple funded research projects, aiming to develop targeted therapies for various cancers. Dr. Biswas has worked extensively on the cyclic nucleotide signaling pathways in unicellular eukaryotes like Leishmania and cancer. A passionate educator and researcher, she mentors Ph.D. students and collaborates with international scientists to advance medical research.

Publication Profile:

Scopus

Strengths for the Award:

Dr. Arunima Biswas demonstrates significant contributions to cancer research and parasitology. She is highly skilled in understanding and manipulating cyclic nucleotide signaling pathways, which play a crucial role in cancer biology and parasitic diseases like Leishmania infections. With several ongoing research projects, including the repurposing of phosphodiesterase inhibitors for cancer therapy and the development of targeted drug delivery systems, Dr. Biswas has shown an innovative approach to solving complex medical challenges. Her leadership as Principal Investigator for high-impact projects, such as cancer screening and drug targeting, highlights her as a leading researcher in her field. Furthermore, her dedication to mentoring and producing highly qualified Ph.D. students is commendable.

Areas for Improvement:

While Dr. Biswas’ research is already impactful, expanding her work on the practical clinical application of her findings could further bridge the gap between research and patient care. Collaboration with clinical trials or hospitals could expedite the translation of her findings into therapeutic solutions. Additionally, expanding interdisciplinary collaborations could bring novel insights into her research.

Education:

Dr. Arunima Biswas earned her Ph.D. in Biochemistry from the Indian Institute of Chemical Biology, Kolkata, with a thesis on Host-parasite interaction: Modulation of signaling pathways in Macrophage and Leishmania (2010). Prior to this, she completed her Master of Science in Zoology from the University of Calcutta with First Class honors (2005). She also holds a Bachelor of Science in Zoology from Maulana Azad College, University of Calcutta (2003). Her academic journey has been marked by a strong foundation in biochemistry, signaling pathways, and parasitology, forming the basis of her current research interests.

Experience:

Dr. Arunima Biswas has over a decade of teaching and research experience. As an Assistant Professor at the University of Kalyani, she has significantly contributed to the academic and research growth in the Department of Zoology. She is the Principal Investigator of several research projects funded by national bodies like CSIR, SERB, and UGC, with an emphasis on cancer research, especially targeting pathways involving cyclic nucleotides. Dr. Biswas has also collaborated with multiple national and international institutions and mentored several Ph.D. students, contributing to their academic and research advancements. Her experience in guiding research and mentoring future scientists is widely acknowledged.

Awards and Honors:

Dr. Arunima Biswas has received numerous accolades for her research and academic contributions. Notably, she won the Young Scientist Presentation Award at the Translational Cancer Research Conference (2020) and was honored with an International Congress of Cell Biology Travel Award (2016). She also received the American Society of Biochemistry and Cell Biology Travel Award (2015) and the prestigious DST-INSPIRE Faculty Scheme award (2012). These recognitions underscore her outstanding contributions to biomedical research, particularly in cancer biology and parasitology, further establishing her as a leader in her field.

Research Focus:

Dr. Arunima Biswas’s research focuses on cancer biology and parasitology, particularly the role of cyclic nucleotide signaling in cancer and Leishmania infections. She investigates therapeutic targets to modulate these pathways for better treatment options in cancer, including breast and gynecological cancers. Her ongoing projects include exploring phosphodiesterase inhibitors for breast cancer and cervical cancer, as well as developing vesicular drug carriers for targeted drug delivery. Dr. Biswas is dedicated to understanding the molecular intricacies of host-parasite interactions and their implications for disease management.

Publications Top Notes:

  1. Metal Oxide–Enhanced Para-Coumaric Acid Nanoparticles for Precision Targeting of Leishmania donovani
  2. Repurposing Approved Protein Kinase Inhibitors as Potent Anti-Leishmanials Targeting Leishmania MAP Kinases
  3. Anticancer, Antimicrobial, and Photocatalytic Activities of a New Pyrazole-Containing Thiosemicarbazone Ligand and Its Co(III) and Ni(II) Complexes
  4. Synthesis, Spectroscopy, and Structural Elucidation of Two New CoII and NiII Complexes of Pyrazole Derived Heterocyclic Schiff Base Ligand as Potential Anticancer and Photocatalytic Agents
  5. Vesicle-Encapsulated Rolipram (PDE4 Inhibitor) and Its Anticancer Activity
  6. Rhodamine Hydrazide-Linked Naphthalimide Derivative: Selective Naked Eye Detection of Cu2+, S2− and Understanding the Therapeutic Potential of the Copper Complex as an Anti-Cervical Cancer Agent
  7. Modulation and Determination of the Status of Inflammasomes in Leishmania-Infected Macrophages
  8. Catalytic and Anticancer Activity of Two New Ni(II) Complexes with a Pyrazole-Based Heterocyclic Schiff-Base Ligand
  9. Biophysical Study on DNA and BSA Binding Activity of Cu(II) Complex: Synthesis, Molecular Docking, Cytotoxic Activity, and Theoretical Approach
  10. Cytotoxic Behavior and DNA/BSA Binding Activity of Thiosemicarbazone-Based Ni(II) Complex: Bio-Physical, Molecular Docking, and DFT Study

Conclusion:

Dr. Arunima Biswas is an exceptional candidate for the “Best Researcher Award.” Her diverse research in cancer biology, parasitology, and drug development showcases her commitment to advancing healthcare. She has made significant strides in understanding complex molecular mechanisms, and her work holds great promise for improving cancer treatments. With a robust academic record, influential publications, and ongoing impactful projects, Dr. Biswas is undoubtedly a deserving contender for the award.