Emmanuelle Van Erck-Westergren | Equine microbiota | Outstanding Contribution Award

Prof. Dr. Emmanuelle Van Erck-Westergren | Equine microbiota | Outstanding Contribution Award

Prof. Dr. Emmanuelle Van Erck-Westergren, Equine Sports Medicine Practice, Belgium

Dr. Emmanuelle van Erck-Westergren is a renowned veterinarian specializing in equine internal medicine and sports medicine. She is a diplomate of both the European College of Equine Internal Medicine (ECEIM) and the European College of Veterinary Sports Medicine and Rehabilitation (ECVSMR). Dr. van Erck-Westergren earned her DVM and PhD at the University of Liège, focusing on equine respiratory diseases. She founded the Equine Sports Medicine Practice (ESMP) in Belgium, where she leads a team dedicated to elite equine performance diagnostics. A trusted expert for the Fédération Équestre Internationale (FEI), she also serves as president of the Belgian Equine Practitioners Society (BEPS). Her prolific academic output includes scientific publications, lectures at international conferences, and editorial contributions, notably co-editing the third edition of Equine Sports Medicine and Surgery. Her work bridges clinical expertise with high-impact research, benefitting elite equine athletes worldwide.

Publication Profile: 

Orcid

Scopus

Strengths for the Award:

  1. Dual Specialization & Diplomate Status

    • Certified by both the European College of Equine Internal Medicine (ECEIM) and European College of Veterinary Sports Medicine and Rehabilitation (ECVSMR)—a rare and highly prestigious achievement demonstrating clinical and research excellence.

  2. Academic Contributions

    • Over 10 high-impact publications and book chapters (2024–2025 alone), including contributions to the gold-standard veterinary textbook Equine Sports Medicine and Surgery (3rd Edition), in which she is co-editor.

  3. Foundational Research

    • PhD in equine respiratory diseases—her foundational work has real-world implications for the health and athletic longevity of sport horses.

  4. Global Impact and Leadership

    • Founder of the Equine Sports Medicine Practice (ESMP), servicing elite sport horses globally.

    • President of the Belgian Equine Practitioners Society (BEPS) and expert for the FEI, influencing international veterinary policy.

  5. Interdisciplinary & Translational Work

    • Her research spans virology, exercise physiology, gastroenterology, and equine biomechanics, showcasing her ability to integrate science with applied veterinary sports medicine.

⚖️ Areas for Improvement:

  1. Wider Interdisciplinary Collaboration

    • While her work is strong in traditional veterinary fields, collaboration with emerging tech (e.g., AI/biomechanical sensors) could expand the scope and impact of her research.

  2. Public Outreach and Knowledge Translation

    • Increased visibility through public science communication, open-access publications, or educational content for non-academic stakeholders (e.g., horse owners, trainers) would enhance the societal reach of her findings.

  3. Mentorship Record (Unstated)

    • No information was provided on her mentorship or training of the next generation of veterinary researchers—although this may exist, it should be highlighted if available.

🎓 Education:

Dr. van Erck-Westergren graduated as a Doctor of Veterinary Medicine (DVM) from the University of Liège in Belgium. Pursuing her passion for equine health, she completed a PhD at the same university, with a research focus on equine respiratory diseases—an area central to athletic performance in horses. Her postgraduate training led to board certification from two prestigious veterinary colleges: the European College of Equine Internal Medicine (ECEIM) and the European College of Veterinary Sports Medicine and Rehabilitation (ECVSMR). These dual diplomate titles mark her as one of a select group of veterinarians with exceptional expertise in both internal medicine and athletic performance of horses. Her education is not only grounded in clinical excellence but also in scientific rigor, making her a key academic and practical contributor in the veterinary field.

👩‍⚕️ Experience:

Dr. van Erck-Westergren has over two decades of experience in equine veterinary medicine, specializing in the health and performance of sport horses. She founded the Equine Sports Medicine Practice (ESMP) in Belgium, where she provides advanced diagnostic and rehabilitation services for elite equine athletes. Her clientele includes top-level international competitors across disciplines such as dressage, eventing, and racing. She has served as an expert advisor to the Fédération Équestre Internationale (FEI), lending her insight to regulatory and clinical frameworks for equestrian sports. As the president of the Belgian Equine Practitioners Society (BEPS), she actively shapes veterinary policy and continuing education. In academia, she contributes extensively through authorship of peer-reviewed papers, textbook chapters, and international lectures, reinforcing her reputation as both a clinician and a thought leader.

🔬 Research Focus:

Dr. van Erck-Westergren’s research centers on equine sports medicine, with a strong focus on respiratory function, cardiovascular fitness, exercise physiology, and performance diagnostics. Her PhD on equine respiratory disease laid the foundation for a prolific research career that integrates field-based diagnostics with clinical intervention. She is particularly interested in how subclinical conditions—such as mild respiratory infections or gastric issues—impact performance in elite horses. Recent studies include predictive modeling of racehorse performance, the physiological impacts of diet on gastric health and behavior, and the use of advanced endoscopy in diagnostics. Her approach bridges science and sport, often conducting studies directly on high-performance horses during training or competition. She also contributes to veterinary education as a chapter author and editor of the seminal textbook Equine Sports Medicine and Surgery, ensuring her research continues to influence the field globally.

📚 Publications Top Notes: 

  • 🦠 Respiratory viruses affecting health and performance in equine athletes (Virology, 2025)

  • 🐎 Cardiovascular Fitness and Stride Acceleration in Race-Pace Workouts for the Prediction of Performance in Thoroughbreds (Animals, 2024)

  • 🔍 Endoscopic examination of the respiratory tract (Equine Respiratory Endoscopy, 2024)

  • 🧾 Endoscopy in pre-purchase examinations (Equine Respiratory Endoscopy, 2024)

  • 📘 Equine Sports Medicine and Surgery: Basic and Clinical Sciences of the Equine Athlete, Third Edition (2024)

  • 🏃‍♂️ Exercise Testing in the Field (Chapter in Equine Sports Medicine and Surgery, 2024)

  • 🍽️ Improvement of gastric disease and ridden horse pain ethogram scores with diet adaptation in sport horses (Journal of Veterinary Internal Medicine, 2024)

  • 📝 Preface (Equine Sports Medicine and Surgery, 2024)

  • 🌐 The Connected Horse (Chapter in Equine Sports Medicine and Surgery, 2024)

  • 🏇 Veterinary Aspects of Conditioning, Training, and Competing Dressage Horses (Chapter in Equine Sports Medicine and Surgery, 2024)

🧾 Conclusion:

Dr. Emmanuelle van Erck-Westergren exemplifies the criteria of the Research for Outstanding Contribution Award through her blend of scholarly excellence, clinical leadership, and translational impact on equine health and performance. Her dual-board certification, editorship of a seminal textbook, and active participation in shaping global veterinary policies place her in the top tier of veterinary researchers.

ALINE TAKEJIMA | Tissue engineering | Women Researcher Award

Dr. ALINE TAKEJIMA | tissue engineering | Women Researcher Award

Dr. ALINE TAKEJIMA, pontificia universidade catolica do parana, Brazil

Dr. Aline Luri Takejima is a physician-scientist from Brazil, specializing in regenerative medicine and wound healing. She holds an MD and a PhD in Health Sciences from the Pontifical Catholic University of Paraná (PUCPR), where she currently conducts postdoctoral research. With a focus on biological therapies involving the amniotic membrane, Wharton’s jelly, and mononuclear stem cells, Dr. Takejima has published in multiple high-impact scientific journals. Her research aims to develop novel regenerative strategies to treat complex wounds and enhance tissue repair. As an active member of PUCPR’s Wound Healing Research Group and the Brazilian Society of Plastic Surgery, she combines scientific rigor with clinical insight to bridge bench-to-bedside innovation. Her academic contributions are guided by a translational approach, offering promising avenues for future clinical applications in tissue engineering.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Focused Research Excellence:
    Dr. Takejima’s work on biological scaffolds and stem cells in wound healing is both innovative and clinically relevant. Her studies using amniotic membrane, Wharton’s jelly, and bone marrow mononuclear cells show promising regenerative outcomes in preclinical models.

  2. Research Productivity:
    With 9 peer-reviewed journal articles in high-quality platforms (e.g., Biomedicines, Tissue Barriers, Annals of Biomedical Engineering), she demonstrates consistent academic output in her field.

  3. Translational Impact:
    Her research bridges basic science and clinical practice, aiming to provide regenerative solutions for patients with chronic wounds and cardiac damage.

  4. Collaborative Engagement:
    Active participation in a multidisciplinary wound healing research group, contributing to cross-functional scientific advancements.

  5. Recognition Potential:
    As a young, emerging woman researcher in biomedical sciences, she stands as a role model for future female scientists in Latin America and beyond.

🔧 Areas for Improvement:

  1. Intellectual Property & Innovation:
    No patents filed yet; transitioning her research into patentable therapies or commercial applications would increase its societal and economic impact.

  2. Leadership Roles:
    While active in research, taking on editorial or scientific leadership positions would enhance her academic visibility and influence.

  3. Internationalization:
    She would benefit from developing international collaborations or fellowships to diversify her research scope and increase global reach.

  4. Industry Engagement:
    Engaging in consultancy or biotech partnerships can further the translational impact of her regenerative strategies.

🎓 Education:

Dr. Takejima’s educational journey began with a Doctor of Medicine (MD) degree from the Pontifical Catholic University of Paraná (PUCPR), Brazil. Her passion for research led her to pursue a Doctorate (PhD) in Health Sciences/Medicine, also at PUCPR. Her doctoral thesis focused on the use of biologically active materials such as the amniotic membrane and stem cells to enhance wound healing. Throughout her academic training, she demonstrated a strong commitment to translational medicine by integrating basic science with clinical practice. During her PhD, she engaged in experimental models involving stem cell therapy and tissue engineering, which laid the groundwork for her current postdoctoral research. Her educational path reflects both depth and specialization in the biomedical sciences, particularly in regenerative medicine and cellular therapies.

💼 Experience:

Dr. Aline Takejima has over a decade of experience in medical and scientific fields, balancing her role as a physician with that of a postdoctoral researcher. Her clinical background informs her research, particularly in areas of wound healing and regenerative medicine. At PUCPR, she contributes to the Wound Healing Research Group, where she is involved in designing and conducting animal model studies to test the effects of biomaterials and stem cells. Her multidisciplinary research integrates immunology, histopathology, and molecular biology. With nine peer-reviewed publications and participation in collaborative research, she has become a respected contributor to the field. Though early in her research career, her trajectory shows a steady rise, marked by evidence-based outcomes and a commitment to innovation. Her goal is to bridge clinical challenges with regenerative solutions that can be implemented in real-world medical practice.

🔬 Research Focus:

Dr. Takejima’s research focuses on regenerative strategies for wound healing, utilizing biomaterials and stem cells. Her work primarily explores the application of amniotic membrane, Wharton’s jelly, and bone marrow-derived mononuclear stem cells in treating complex or chronic skin wounds. Using experimental models in rats and rabbits, she evaluates histological recovery, inflammation modulation, and tissue regeneration. A significant aspect of her research is understanding how these materials promote healing through paracrine effects rather than direct integration, offering a safer and scalable pathway to clinical application. Additionally, her work extends to cardiac and tracheal tissue repair, emphasizing the versatility of these regenerative approaches. The translational nature of her research bridges laboratory discoveries with potential bedside applications, positioning her at the forefront of cellular therapy and biomaterials science.

📚 Publications Top Notes:

  1. 🧠 Wharton’s Jelly Bioscaffolds Improve Cardiac Repair with Bone Marrow Mononuclear Stem Cells in RatsJournal of Functional Biomaterials, 2025

  2. 🧫 The effects of decellularized amniotic membrane and Wharton’s jelly on the healing of experimental skin wounds in ratsTissue Barriers, 2025

  3. ❤️ Bone-marrow mononuclear cells and acellular human amniotic membrane improve global cardiac function…Anais da Academia Brasileira de Ciências, 2024

  4. 🫁 Tracheal regeneration with acellular human amniotic membrane and 15d-PGJ2 nanoparticles in rabbitsAnais da Academia Brasileira de Ciências, 2023

  5. 🧬 Acellular Biomaterials + Autologous Stem Cells Improve Wound Healing via Paracrine EffectsBiomedicines, 2023

  6. 💉 Decellularized Amniotic Membrane Solubilized with Hyaluronic Acid in Wound HealingAnnals of Biomedical Engineering, 2022

  7. 🧪 Role of Mononuclear Stem Cells and Decellularized Amniotic Membrane in Skin WoundsTissue Barriers, 2022

  8. 🏥 Trauma hepático: epidemiologia de cinco anos…Revista do Colégio Brasileiro de Cirurgiões, 2008

🧾 Conclusion:

Dr. Aline Luri Takejima is an outstanding candidate for the Women Researcher Award. Her academic profile demonstrates a strong foundation in regenerative medicine with significant contributions to wound healing research. Her commitment to applying biological therapies in clinical contexts shows both depth and innovation. As a woman scientist in a competitive field, she exemplifies leadership, dedication, and potential. With further growth in global engagement and innovation strategy, Dr. Takejima is poised to become a future leader in regenerative biomedical research.

Jørgen Slots | Microbiology | Best Researcher Award

Prof. Dr. Jørgen Slots | Microbiology | Best Researcher Award

Prof. Dr. Jørgen Slots, University of Southern California, United States

Dr. Jørgen Slots, born in 1944 in Vejle, Denmark, is a renowned figure in periodontology and oral microbiology. He has significantly shaped modern dental science through decades of innovative research and academic leadership. After beginning his dental journey in Denmark, he moved to the U.S., where he joined the University of Southern California School of Dentistry. His pioneering work in identifying pathogenic bacteria in periodontal diseases has garnered global recognition. Over the years, he has authored several seminal publications, contributed to textbooks, and led major research initiatives. With an enduring commitment to periodontal health, Dr. Slots has served as a mentor, educator, and thought leader across international academic and clinical platforms. He is married to Maritza Slots and is a father to three children. Dr. Slots’ legacy continues to influence research, treatment protocols, and public awareness of oral-systemic health connections.

Publication Profile: 

Google Scholar

Scopus

✅ Strengths for the Award:

  1. Pioneering Contributions in Periodontology
    Dr. Slots has played a foundational role in identifying key pathogens like Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis, which are now central to the understanding of periodontal disease.

  2. Extensive Research Output
    With over 20 landmark publications and thousands of citations, including high-impact journals and textbooks, his research is internationally recognized and frequently referenced.

  3. Interdisciplinary Impact
    His work bridges microbiology, immunology, and clinical dentistry, influencing both scientific knowledge and practical treatment approaches.

  4. Academic Leadership
    As Head of the Microbiology Group at the NIDR-supported center and faculty at USC, he has mentored future researchers and led major clinical investigations.

  5. Recognition and Grants
    Multiple awards (e.g., Danish Society for Periodontology, IADR) and sustained grant funding reflect peer validation of his excellence.

  6. Global Influence
    Authorship in multiple languages (Danish, Swedish, German, English) and involvement in global research initiatives show his international scholarly reach.

🛠 Areas for Improvement:

  1. Current Research Activity Visibility
    While his contributions are immense, more recent publications or ongoing projects post-2017 could reinforce his continued active leadership in the field.

  2. Technology Integration
    Embracing newer diagnostic tools like AI-driven diagnostics or bioinformatics may further elevate his influence in modern dental research.

  3. Public/Policy Engagement
    Increased participation in public health outreach or policy advisory roles could broaden the societal impact of his findings.

🎓 Education:

Dr. Jørgen Slots began his academic journey at the Royal Dental College in Copenhagen, earning his D.D.S. in 1969. He deepened his expertise with a LIC. ODONT. (M.S.) in 1974, focusing on advanced dental sciences. By 1976, he had completed his postgraduate education in periodontology, laying the foundation for a career centered on oral infections and periodontal disease. His training in Denmark combined rigorous clinical and microbiological research, preparing him for a role as a global pioneer in dental microbiology. His strong academic base enabled him to pursue collaborative research in the United States, especially in the fields of anaerobic oral microbiota and immune response mechanisms. Dr. Slots’ educational background bridges the European and American schools of thought in dental medicine, equipping him with both theoretical and practical expertise that continues to shape evidence-based dentistry.

💼 Experience:

Dr. Jørgen Slots began teaching at the Royal Dental College from 1969 to 1971 while maintaining a private dental practice in Copenhagen (1969–1976). He also served as a doctoral candidate (1971–1974), solidifying his interest in research. His move to the United States marked a pivotal career shift as he led microbiological research at the Periodontal Disease Clinical Research Center in Buffalo (1977–1983). As Head of the Microbiology Group, he contributed significantly to understanding periodontal pathogens. Eventually, he joined the University of Southern California School of Dentistry, where he became a cornerstone in both faculty research and education. His experience spans clinical practice, microbial investigation, immunological studies, and academia. Dr. Slots has guided numerous graduate and postgraduate students, authored widely cited publications, and served on international research panels. His multidisciplinary approach integrates microbiology, immunology, and periodontology to inform clinical treatment protocols and future research.

🏅 Awards and Honors:

Dr. Jørgen Slots has received several prestigious honors recognizing his contributions to periodontology. In 1985, he was awarded by the Danish Society for the Study of Periodontology for his groundbreaking research. In 1986, the University of Pennsylvania honored him with an Honorary Master’s Degree, recognizing his academic impact. The International Association for Dental Research granted him the Basic Research in Periodontal Disease Award in 1990, further highlighting his global influence. His leadership in dental microbiology has been supported by numerous research grants, including those from the Danish Medical Council (1970–1976) where he served as Principal Investigator, and from the National Institute of Dental Research (NIDR) during his tenure in Buffalo. These accolades reflect his excellence in both clinical and laboratory research, his mentorship in academia, and his role in advancing periodontal science. Dr. Slots’ career is a testament to innovation, scientific rigor, and international collaboration.

🔬 Research Focus:

Dr. Jørgen Slots’ research centers on oral microbiology, specifically the identification and pathogenic mechanisms of bacteria involved in periodontal disease. He was among the first to highlight the role of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and black-pigmented Bacteroides in destructive periodontal infections. His investigations span anaerobic bacteria, host-parasite interactions, immune responses, and the development of selective media for pathogen isolation. Dr. Slots also explored the systemic implications of oral infections, contributing to understanding the link between periodontitis and systemic diseases like diabetes. His use of techniques such as polymerase chain reaction (PCR) advanced diagnostic capabilities in periodontology. By combining microbiological research with clinical insights, he has helped establish treatment standards and prevention strategies. His work continues to influence diagnostic criteria, antimicrobial therapy, and public health policy related to oral-systemic health connections.

📚 Selected Publications Top Notes:

  1. 📘 Parodontopatiernes mikrobiologi (in Danish) – 1980

  2. 📘 Susceptibility of oral bacteria to antimicrobial agents – 1980

  3. 📘 Microflora and bone loss in Macaca arctoides – 1980

  4. 📘 Systemic immune responses to oral anaerobic organisms – 1980

  5. 📘 Juvenil parodontitis (in Danish) – 1981

  6. 📘 Importance of black-pigmented Bacteroides in periodontal disease – 1982

  7. 📘 Juvenile periodontitis (periodontosis) – 1983

  8. 📘 Mikrobiologi vid diagnostik och behandling av parodontit (Swedish) – 1984

  9. 📘 Mikrobiologie Menschlicher Parodontopathien (German) – 1986

  10. 📘 Actinobacillus actinomycetemcomitans in Oral Microbiology – 1988

📌 Conclusion:

Dr. Jørgen Slots stands out as a highly deserving candidate for the Best Researcher Award. His pioneering microbiological discoveries, extensive academic influence, and foundational role in periodontal research make him a global authority in his field. While newer engagements could enhance his profile even further, his established legacy and ongoing relevance are irrefutable. His work has directly influenced diagnostic and treatment standards worldwide, fulfilling all criteria of excellence in research, mentorship, and scientific leadership.

HEMAMALINI MADHUKAR | Cancer Cell Biology | Best Researcher Award

Dr. HEMAMALINI MADHUKAR | Cancer Cell Biology | Best Researcher Award

Dr. HEMAMALINI MADHUKAR, Mother Teresa Women’s University, India

Dr. Madhukar Hemamalini is an accomplished Assistant Professor in the Department of Chemistry at Mother Teresa Women’s University, Kodaikanal. With over five and a half years of dedicated research experience and eight years of teaching, she has made significant contributions to the field of structural and bioorganic chemistry. Her expertise lies in X-ray crystallography, protein-ligand interactions, and the synthesis of supramolecular and pharmaceutical compounds. She earned her Ph.D. in Chemistry from Bharathidasan University and completed a postdoctoral fellowship under Prof. H.-K. Fun at Universiti Sains Malaysia. With 234 international publications and a citation index reflecting her research impact, Dr. Hemamalini’s academic presence is both global and influential. Her guidance to 10 M.Phil. and 21 M.Sc. students reflects her commitment to mentoring the next generation of scientists. She actively contributes to academic committees and has led a UGC Minor Research Project on hydrogen bonding and phase transition.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Extensive Publication Record

    • Over 234 international research publications, primarily in reputed journals such as Journal of Molecular Structure, Molecular Diversity, Russian Journal of Inorganic Chemistry, and IUCrData.

    • Research themes include X-ray crystallography, drug-likeness prediction, molecular docking, and biochemical analysis.

  2. Strong Research Background

    • Postdoctoral research in crystallography at Universiti Sains Malaysia (USM) under a globally respected crystallographer, Prof. H.-K. Fun.

    • More than five and a half years of focused research experience in supramolecular and macromolecular chemistry.

  3. Citation Impact

    • Accumulated 228 citations, with a h-index of 12 and i10-index of 8, reflecting a solid impact in her field.

  4. Mentorship & Teaching

    • 8 years of teaching experience as an Assistant Professor.

    • Mentored 10 M.Phil. and 21 M.Sc. students — demonstrating her commitment to research training and knowledge dissemination.

  5. Research Funding

    • Successfully secured UGC Minor Research Project funding of ₹5,00,000 for studies on hydrogen bonding and phase transition.

  6. Academic Service

    • Contributed to institutional growth as inspection committee member for women’s colleges, affirming leadership in academic governance.

⚠️ Areas for Improvement:

  1. Enhance International Collaboration

    • Collaborations beyond Malaysia, particularly with Europe or North America, could increase citation visibility and interdisciplinary reach.

  2. Diversify Funding Sources

    • Apply for major national/international grants (e.g., DST, DBT, SERB, or industry-academic partnerships) for scaling research infrastructure and student involvement.

  3. Intellectual Property & Innovation

    • Translating research into patents, prototypes, or industry consultancies would enhance her research’s practical value and real-world impact.

  4. Public Engagement and Outreach

    • Participation in conferences as keynote speaker, science communication, or popular science articles would further establish her academic persona.

🎓 Education:

Dr. Madhukar Hemamalini completed her Ph.D. in Chemistry in October 2006 from Bharathidasan University, India, specializing in structural and supramolecular chemistry. Her doctoral research focused on the synthesis and crystallographic analysis of organic compounds, laying a strong foundation for her future work in macromolecular systems. Prior to her doctorate, she obtained her M.Sc. in Chemistry in August 2000 and B.Sc. in Chemistry in August 1998, both from Bharathidasan University. Her academic training has equipped her with a deep understanding of chemical interactions at the molecular level, especially those relevant to drug design, protein-ligand binding, and pharmaceutical solids. Her academic trajectory showcases her longstanding passion for exploring the molecular world through advanced techniques like X-ray crystallography and computational chemistry. Additionally, her exposure to interdisciplinary research at Universiti Sains Malaysia has expanded her global outlook and enriched her research methodologies.

🧪 Experience:

Dr. Hemamalini has a cumulative 13+ years of experience in academia and research. She is currently serving as Assistant Professor at the Department of Chemistry, Mother Teresa Women’s University, Kodaikanal since March 2015. Her teaching portfolio includes mentoring postgraduate and M.Phil. students, with 21 M.Sc. and 10 M.Phil. students successfully guided under her supervision. From December 2009 to February 2012, she pursued Post-Doctoral research in X-ray crystallography at Universiti Sains Malaysia under the mentorship of Prof. H.-K. Fun, focusing on supramolecular motifs and metal coordination complexes. Her total research experience spans over five and a half years, during which she explored protein-ligand interactions, crystal engineering, and bioorganic compound synthesis. She also participated in institutional academic committees and inspection boards, contributing to higher education quality assurance. Her dual expertise in both teaching and high-impact research makes her a well-rounded academic professional.

🏆 Awards and Honors:

Dr. Madhukar Hemamalini has been the recipient of the prestigious Senior Research Fellowship (SRF) from the Council of Scientific and Industrial Research (CSIR), New Delhi (2004–2006), which stands as a testimony to her research potential and academic rigor. In addition to this major national honor, she has been involved in several university-level academic panels, including Inspection Committees for women’s colleges in Dindigul, highlighting her contributions to academic governance and quality control. Her funded project under the UGC Minor Research Project Scheme—with a sanctioned amount of ₹5,00,000—focused on the hydrogen bonding interactions and phase transition studies in organic compounds, an area of current interest in molecular chemistry. Her work has been cited over 228 times, and she holds a h-index of 12 and an i10-index of 8, reflecting a consistent and meaningful research output across international journals.

🔬 Research Focus:

Dr. Hemamalini’s research revolves around X-ray crystallography, macromolecular chemistry, and supramolecular design. Her scientific interest lies in unraveling structure–function relationships in molecules, particularly in protein-ligand complexes, bioorganic frameworks, and pharmaceutical solids. She has applied her expertise in both experimental (e.g., crystal growth and structural analysis) and computational techniques (e.g., molecular docking, dynamics simulations) to synthesize novel compounds with potential drug-like behavior. Her interdisciplinary approach bridges chemistry with biology, enabling her to work on problems like TNF-α inhibition in rheumatoid arthritis, anti-cancer screening, and antidiabetic compound design. She has actively published in reputed journals, showcasing both synthetic and theoretical studies. Her postdoctoral training at Universiti Sains Malaysia helped her master crystallographic techniques, further enriching her analytical capabilities. Her work continues to contribute valuable insights into biomolecular recognition, drug-receptor modeling, and material science.

📚 Publications Top Notes: 

  1. 📄 Synthesis of 3-Methoxy…phenol Schiff base: spectral, in-silico & in-vitro studiesHeliyon, 2022

  2. 🧬 In silico and in vitro identification of TNF-α inhibitors from Euphorbia hirta for rheumatoid arthritisMolecular Diversity, 2025

  3. 💊 Anti-diabetic activity of pyrimidinium-hydrogen oxalate conjugates: synthesis, docking & simulationJournal of Molecular Structure, 2025

  4. 🧪 [2-(1H-indol-3-yl)ethyl]-(4-nitrobenzylidene)amine: anti-breast cancer & antibacterial insightsJournal of Molecular Structure, 2025

  5. 🔬 PPI networking, expression analysis & TNF-α inhibitor screening for RAMolecular Diversity, 2025

  6. 🧫 6-Bromo-9,9-diethyl-N,N-diphenylfluoren-2-amine – Data Paper

  7. 🧊 Insights into oxidovanadium porphyrin: synthesis & Hirshfeld surface analysisJournal of Molecular Structure, 2024

  8. 🧬 1,4-Dimethylpiperazine-2,3-dione – crystal structure studyIucrdata, 2024

  9. ⚗️ (1H-Benzodiazol-2-ylmethyl)diethylamine – molecular characterizationIucrdata, 2024

  10. 🔍 Structural & oxidative studies of (3,4,5-trimethoxyphenyl)Porphyrin Ni(II) ComplexRussian Journal of Inorganic Chemistry, 2024

🧾 Conclusion:

Dr. Madhukar Hemamalini possesses a well-rounded academic profile with consistent research output, teaching excellence, mentorship, and academic service. Her work in structural and medicinal chemistry, particularly involving crystallography and biomolecular interactions, has practical implications in drug discovery and material science. She demonstrates all the key markers of a successful and impactful researcher.

Aime Christian Kayath | Microbial Cell Biology | Best Researcher Award

Prof. Aime Christian Kayath | Microbial Cell Biology | Best Researcher Award

Prof. Aime Christian Kayath, Marien NGOUABI University, Republic of the Congo

Dr. Christian Aimé Kayath is a Congolese biotechnologist, academic, and scientific leader with over two decades of experience in teaching, research, and science policy. Currently serving as the Director of Cooperation at the Ministry of Higher Education, Scientific Research and Technological Innovation (MESRSIT) in the Republic of Congo, he is also a CAMES-accredited Research Professor at Marien Ngouabi University. With a strong foundation in microbiology, molecular biology, and biotechnology, Dr. Kayath has authored over 70 peer-reviewed publications and supervised more than 100 dissertations. His research spans bioremediation, biosurfactants, and fermented food technology. A multilingual scholar fluent in French and English, he has also held research and teaching roles in Belgium, significantly shaping Congo’s scientific infrastructure. He is known for his dedication to academic excellence and public science engagement, as reflected in his creation of educational movements and leadership in cultural organizations.

Publication Profile: 

Orcid

Strengths for the Award:

  1. 🔬 Robust Research Output

    • 71 peer-reviewed journal articles, 1 book, and 10+ supervised theses.

    • h-index of 9, with 311 citations and a Research Interest Score of 526.8 on ResearchGate.

    • Published consistently in reputable journals like International Journal of Microbiology and Journal of Pathogens.

  2. 👨‍🏫 Academic & Mentorship Leadership

    • Over 100 dissertations supervised since 2015, showing commitment to academic mentorship.

    • Active as a CAMES Lecturer, Research Professor, and Head of a Research Laboratory.

  3. 🌍 International & Policy Experience

    • Held senior roles in government ministries (MRSIT, MESRSIT) as Director of Cooperation and Scientific Activities.

    • Experience across Congo and Belgium, including universities and research institutes.

    • Served as National Liaison Officer (NLO) with the IAEA (2014–2023), indicating global collaboration in science and technology.

  4. 📚 Multidisciplinary Expertise

    • Specialized in biotechnology, molecular biology, microbiology, and biosurfactants.

    • Also skilled in e-management, IT tools, and web design, showcasing adaptability and cross-functional capabilities.

  5. 🫂 Community & Social Engagement

    • Founder of the social education movement “L’école ke bien, l’école ke futa” to fight school dropouts.

    • President of a historic choir with 200+ members, highlighting leadership in civil society.

⚠️ Areas for Improvement:

  • 🌐 Global Collaboration Expansion

    • Although strong in Africa and Europe, expanding collaborations to North America or Asia could enhance his global academic influence.

  • 📱 Digital Visibility

    • A dedicated academic website, active LinkedIn profile, or Google Scholar page would improve public and institutional access to his achievements.

  • 🎯 Citation and Impact

    • While his h-index (9) and citation count (311) are respectable, targeting high-impact journals could elevate his academic footprint further.

🎓 Education:

Dr. Kayath’s academic journey began at Marien Ngouabi University (Congo) with a Bachelor’s degree in Cell Biology and Physiology (1999–2000), followed by a Master’s in Cellular and Molecular Biology (2000–2001). He later pursued a DES in Biotechnology with Distinction at the University of Liège, Belgium (2003–2005), before completing a PhD in Biotechnology–Biochemistry–Molecular Biology (2005–2010), where he graduated with honors. His education is enhanced by complementary training in e-management and business administration (2008–2009, Brussels), which supports his administrative expertise. Dr. Kayath has consistently merged academic rigor with applied science and policy, reflecting a versatile and forward-thinking scholar. His multidisciplinary background underpins his work in biosciences, research governance, and international cooperation.

💼 Professional Experience:

Dr. Kayath’s career includes significant roles in academia, research, and science governance. He has served as Research Professor and Head of Laboratory of Applied Microbiology and Molecular Biology at IRSEN/MESRSIT since 2014. He was previously Scientific Attaché (2015–2016), Director of Scientific Activities (2019–2021), and currently serves as Director of Cooperation at MESRSIT. Internationally, he worked in Belgium as a Senior Scientist at Ovogenics (2011–2012), Project Developer at CERP Haren (2010–2011), and Assistant Professor at the University of Brussels (2008–2011). Earlier, he taught biology at Lycée Ecole Actuel and the International University of Brazzaville. He also acted as NLO for the IAEA (2014–2023), enhancing nuclear science cooperation. His professional path showcases a strong alignment between scientific leadership and practical impact.

🔬 Research Focus:

Dr. Kayath’s research specializes in microbial biotechnology, with a focus on biosurfactant production, bioremediation, microbial fermentation, and pathogen control. His investigations explore the role of indigenous Bacillus strains in soil cleanup and food preservation, alongside the biomedical enhancement of fermented products. He has studied Shigella flexneri’s biosurfactant mechanisms, polyphenol enhancement in ginger fermentation, and biosurfactants in plantain wine. His research directly addresses health, food security, and environmental issues in Sub-Saharan Africa and beyond. Dr. Kayath integrates molecular biology, biochemistry, and microbial ecology, often applying meta-analytical techniques and PCR methods. His ability to blend applied research with policy has made him a bridge between science and governance, reinforcing national research strategies in Congo. His work is widely cited, and he continues to contribute to sustainable innovation in African biotechnology.

📚 Publications Top Notes: 

  1. 🧫 High Efficacy of Rose Bengal in Reducing the Pathogenicity of Escherichia coli – Int. J. of Microbiology (2025)

  2. 🍛 Evolution of Fermented Food Products in the Republic of Congo: A Meta-analytic Review – J. of Advances in Microbiology (2024)

  3. 🌱 Bacillus Species Consortium as a New Starter in Cassava Retting – Int. J. of Microbiology & Biotechnology (2024)

  4. 🧪 Involvement of Bacillus SecYEG Pathway in Biosurfactant Production and Biofilm Formation – Int. J. of Microbiology (2024)

  5. 🛢 Profiling of Indigenous Biosurfactant-Producing Bacillus Isolates in Bioremediation – Int. J. of Microbiology (2021)

  6. 🔬 Prime Enzymatic Exocellular Background of Lysinibacillus louembei – Advances in Microbiology (2020)

  7. 🍹 Synergic Involvements of Microorganisms in Fermented Ginger Juice – Int. J. of Microbiology (2020)

  8. 🧫 Invasion of Epithelial Cells via T3SS of Shigella flexneri – J. of Pathogens (2020)

  9. 🧬 Invasion of Epithelial Cells via T3SS of Shigella flexneri (Preprint) – bioRxiv (2020)

  10. 🍷 Benefits of Biosurfactants from Lactic Acid Bacteria in Plantain Wine – Advances in Microbiology (2019)

🧾 Conclusion:

Dr. Christian Aimé Kayath is an exceptionally qualified and well-rounded researcher, merging high-level academic output with administrative leadership and societal engagement. His prolific publication record, contribution to education policy, international collaborations, and mentorship excellence make him highly suitable for the Best Researcher Award.

Alaka Sahoo | Immunology Cellular Interactions | Young Researcher Award

Mrs. Alaka Sahoo | Immunology Cellular Interactions | Young Researcher Award

Mrs. Alaka Sahoo, Siksha’O’ Anusandhan University, India

Dr. Alaka Sahoo is a dedicated young researcher in the field of Biotechnology with a focus on translational and clinical research. She holds a Ph.D. in Biotechnology from Siksha ‘O’ Anusandhan University, Odisha, with a CGPA of 8.90. With over 17 publications, including 11 research articles and 3 high-impact reviews, Dr. Sahoo has significantly contributed to oral disease therapeutics and antimicrobial studies. She demonstrates expertise in multi-omics analysis, drug discovery, and natural product-based therapy. A recipient of prestigious awards such as the Lalchand Women Entrepreneurs Award (2024), she is also a life member of reputed organizations like the British Society for Antimicrobial Chemotherapy. Her innovative approach to disease management using phytochemicals and peptides sets her apart as a rising talent in biomedical research.

Publication Profile: 

Google Scholar

Scopus

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record:

    • 17 publications including 11 original research, 3 reviews, and 2 book chapters, showcasing depth and breadth.

    • 7 papers as first or corresponding author—indicating independent research capability.

    • Research in high-impact journals like Frontiers in Microbiology, Journal of Ethnopharmacology, Nanomaterials, and Chemistry & Biodiversity.

  2. Innovative & Multidisciplinary Research:

    • Integrates multi-omics, computational modeling, clinical dermatology, and natural products.

    • Focus on oral inflammatory diseases, antimicrobial peptides, and drug delivery systems.

  3. Academic Excellence & Research Training:

    • Ph.D. with 8.90 CGPA, and M.Sc. with 87.07% marks.

    • Expertise in BSL-2+ lab work, PCR, ELISA, microbial culture, and molecular docking.

  4. Awards & Recognition:

    • Lalchand Women Entrepreneurs Award (2024).

    • MSME-Idea Hackathon Innovation Award, Govt. of India.

  5. Global and National Engagement:

    • Life member of the British Society for Antimicrobial Chemotherapy (UK).

    • Demonstrates leadership in science entrepreneurship and women in research.

🛠️ Areas for Improvement:

  1. Expanded International Collaboration:

    • Building long-term research partnerships with international labs could increase global visibility.

  2. Patent/Technology Transfer Efforts:

    • While publications are strong, translating research into patents or commercial products will further strengthen applied impact.

  3. Focused Project Leadership:

    • Leading large interdisciplinary projects or acquiring independent grants will showcase funding leadership.

🎓 Education:

Dr. Alaka Sahoo has pursued a progressive academic path in Biotechnology. She earned her Ph.D. in Biotechnology from the School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan Deemed University, Odisha, completing her research with a notable 8.90 CGPA. Her thesis focused on “Therapeutic Opportunities for Oral Lichen Planus: An Integrated Multi-Omics Approach to Drug Discovery” under the guidance of Prof. (Dr.) Maitreyee Panda. Prior to this, she completed her M.Sc. in Biotechnology (87.07%) from the College of Basic Science and Humanities, OUAT, Bhubaneswar in 2018 and a B.Sc. in Biotechnology with distinction (75%) from Ramadevi Women’s College, Utkal University in 2016. Her academic journey showcases a strong foundation in both theoretical and applied aspects of biosciences.

💼 Experience:

Dr. Alaka Sahoo brings rich hands-on research experience in clinical and experimental biotechnology. She is skilled in BSL-2+ lab practices, molecular techniques like PCR, gel electrophoresis, microbial culture, ELISA-based diagnostics, and bioinformatics. Her doctoral work integrated multi-omics and computational biology to study inflammatory oral diseases, and her postdoctoral research spans drug delivery and antimicrobial drug discovery. As first or corresponding author in 7 out of 17 publications, she has led collaborative studies with both national and international partners. Dr. Sahoo’s cross-disciplinary knowledge in microbiology, pharmacology, and nanomedicine enhances her problem-solving abilities, making her a versatile researcher. Her ability to bridge clinical dermatology with biotechnology research positions her as an impactful contributor in both healthcare and academic environments.

🏆 Awards & Honors:

Dr. Alaka Sahoo has received notable accolades for her innovation and leadership in science. In 2024, she was awarded the Lalchand Women Entrepreneurs Award by the Odisha Corporate Foundation, recognizing her outstanding contributions in biotech innovation. She also earned the MSME-Idea Hackathon 3.0 (Women) Innovation Award by the Government of India, honoring her practical scientific advancements with societal impact. These awards reflect her dedication to translational research and her vision to develop cost-effective, natural therapies. Dr. Sahoo is also a life member of two esteemed organizations: the British Society for Antimicrobial Chemotherapy (UK) and Bioclues Innovation, Research and Development (India). Her achievements signify her rising prominence in the field and her commitment to addressing public health challenges through integrative research.

🔬 Research Focus:

Dr. Alaka Sahoo’s research focuses on oral inflammatory diseases, natural product therapeutics, and insect-derived peptides as alternatives to conventional antimicrobials. Her Ph.D. thesis explored multi-omics approaches for drug discovery in Oral Lichen Planus, integrating in vitro, in silico, and clinical data. Her work spans immunomodulation, anti-inflammatory drug screening, and nanodrug delivery systems, with cross-functional expertise in dermatology, pharmacology, and microbiology. She combines computational modeling, molecular docking, and wet-lab validation to develop target-specific therapies. Her studies on biofilm inhibition, antifungal peptides, and phytosteroids hold promise for tackling antimicrobial resistance. Through collaborations across academia and healthcare, she aims to translate her lab findings into clinically viable solutions. Her contributions to systematic reviews and molecular simulations further demonstrate her analytical rigor and commitment to evidence-based research.

📚 Publications Top Notes:

  1. 📘 Experimental and clinical trial investigations of phytoextracts in Oral Lichen Planus: A systematic review – J Ethnopharmacol (2022)

  2. 🐞 Insect-derived antimicrobial peptides as novel anti-biofilm agents: A systematic review – Front. Microbiol. (2021)

  3. 💊 Ultraflexible liposome nanocargo for dermal drug delivery – Nanomaterials (2021)

  4. 🌿 Phytochemicals for Oral Lichen Planus: A multi-omics and experimental study – Chem Biodivers (2025)

  5. ⚗️ Carbohydrate-derived N-benzyl aminocyclopentitols with anticancer properties – Carbohydr Res. (2025)

  6. 🧬 Target-specific screening of anti-inflammatory phytosteroids using molecular docking – Steroids (2025)

  7. 🧪 Insect-derived antifungal peptides in Candida management – Int. J. Mol. Sci. (2025)

  8. 🧫 Azo-coumarin-Co(II)-galangin hybrids for multipotential activities – J. Biomol. Struct. Dyn. (2024)

  9. 🧒 Pediatric dermatology case analysis in Eastern India – Indian J. Paediatr. Dermatol. (2024)

  10. 🔬 Schiff/Mannich coumarin derivatives: Antibacterial and anti-biofilm evaluation – RSC Adv. (2024)

🧾 Conclusion:

Dr. Alaka Sahoo is highly suitable for the Research for Young Researcher Award. Her multi-disciplinary expertise, robust research record, and recognition through national awards highlight her as a promising early-career scientist. She combines academic rigor with innovation, and her work has meaningful implications for public health, especially in oral disease therapy, biofilm inhibition, and phytochemical-based drug development.

Subodh Kumar | Neuronal Cell Biology | Best Researcher Award

Assist. Prof. Dr. Subodh Kumar | Neuronal Cell Biology | Best Researcher Award

Assist. Prof. Dr. Subodh Kumar | Texas Tech Univesrity Health Sciences Center El Paso | United States

Dr. Subodh Kumar is an Assistant Professor in Molecular and Translational Medicine at Texas Tech University Health Sciences Center (TTUHSC), El Paso. With a Ph.D. in Molecular Biology from PGIMER, India, and postdoctoral training in Neurobiology at TTUHSC, his work is rooted in understanding neurodegenerative diseases, especially Alzheimer’s disease (AD). He has significantly contributed to identifying synapse-localized microRNAs and their mechanistic roles in AD pathology. Dr. Kumar is the recipient of the prestigious NIH K99/R00 Career Development Award and the Marsh Foundation Research Award. His translational research spans biomarker discovery, synaptic dysfunction, and multi-omics analysis. As a corresponding author on several high-impact publications, Dr. Kumar has developed miRNA-based therapeutic strategies and diagnostics. He serves as an Associate Editor for the Journal of Alzheimer’s Disease and holds memberships in several professional neuroscience organizations. His ongoing research aims to translate molecular findings into innovative treatments for AD.

Publication Profile:

Scopus

✅ Strengths For The Award:

  1. Cutting-edge Research in Alzheimer’s Disease 🧠🧬: Dr. Kumar’s multi-omics and miRNA-focused studies provide novel insights into synaptic dysfunction in Alzheimer’s disease—an area with significant global impact and scientific relevance.

  2. High-impact Publications 📚: His work has appeared in top-tier journals such as Molecular Psychiatry, NPJ Genomic Medicine, Redox Biology, and Human Molecular Genetics—a testament to research quality and scientific contribution.

  3. Leadership & Innovation 🧪: He is the corresponding author on many publications, highlighting leadership in collaborative research. His pioneering discovery of miRNAs like miR-455-3p and miR-502-3p as biomarkers has translational potential.

  4. Consistent Funding & Recognition 💰🏆: Secured prestigious awards like the NIH K99/R00 and Marsh Foundation Research Award, showing trust and acknowledgment from the scientific community.

  5. Mentorship & Editorial Involvement ✏️: Active as an Associate Editor and likely mentoring younger researchers, showcasing academic service and leadership.

⚠️ Areas for Improvement:

  1. Global Collaboration 🌍: Though his current work is impactful, forming more global or cross-institutional collaborations could increase the international visibility of his research.

  2. Public Science Communication 📢: There’s little mention of science outreach or public education; engaging with broader audiences could amplify his societal impact.

  3. Commercialization & Patents: While one patent is listed, further steps toward translational research or biotech partnerships could accelerate clinical applications.

🎓 Education:

Dr. Kumar began his academic journey at CCS University, Meerut, India, where he earned a B.S. in Biology (2004) and an M.S. in Biotechnology (2005). He pursued his doctoral studies at the prestigious Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, where he earned his Ph.D. in Molecular Biology in 2014. His graduate research centered on liver-specific miRNAs in hepatitis C. He further expanded his expertise during a comprehensive postdoctoral training at Texas Tech University Health Sciences Center (TTUHSC), Lubbock, from 2015 to 2021, focusing on neurobiology and Alzheimer’s disease mechanisms. His advanced education combined molecular biology, genomics, and translational neuroscience, laying a solid foundation for his innovative contributions to AD research. Dr. Kumar’s academic training has uniquely equipped him to explore complex disease pathways, develop miRNA-based biomarkers, and use multi-omics approaches for therapeutic target discovery in neurodegeneration.

🧪 Experience:

Dr. Subodh Kumar has nearly two decades of research and academic experience spanning molecular biology, neuroscience, and translational medicine. Currently an Assistant Professor at TTUHSC El Paso (2022–Present), he previously served as a Research Assistant Professor and Postdoctoral Fellow at TTUHSC Lubbock (2015–2022). His early career included roles as a Senior and Junior Research Fellow at ICMR, India, and as a tutor in Biotechnology. He has mentored multiple students and leads independent NIH-funded research investigating microRNA roles in Alzheimer’s disease. Notably, his pioneering studies on synapse-localized miRNAs and multi-omics integration have shed light on novel targets and mechanisms underlying AD pathogenesis. He has also worked on liver-related miRNAs and their biomarker potential during hepatitis C virus infections. With a well-rounded profile combining teaching, laboratory research, and grant writing, Dr. Kumar’s experience reflects strong leadership in collaborative, interdisciplinary, and translational research.

🏅 Awards and Honors:

Dr. Kumar has received numerous accolades throughout his career, highlighting both his scientific excellence and research impact. Most notably, he was awarded the NIH NIA K99/R00 Pathway to Independence Award in 2020, supporting his pioneering work on microRNA in Alzheimer’s disease. In 2024, he received the Marsh Foundation Research Award at TTUHSC El Paso. His presentations and posters have been recognized at institutional and national levels, including the Best Oral Presentation Award at the 14th Annual Research Symposium (2022) and the Best Poster Award at the Healthy Aging and Dementia Symposium (2018). He has also received competitive fellowships and travel awards from prestigious Indian agencies such as CSIR and ICMR, including an International Travel Award and GATE fellowship. These honors reflect Dr. Kumar’s sustained excellence in translational neuroscience, innovation in biomarker discovery, and leadership in Alzheimer’s disease research.

🧬 Research Focus:

Dr. Subodh Kumar’s research focuses on the molecular mechanisms of synaptic dysfunction in Alzheimer’s disease (AD), with particular emphasis on synapse-localized microRNAs (miRNAs). His lab explores how deregulated miRNAs like miR-501-3p, miR-502-3p, and miR-455-3p affect synaptic protein expression, GABAergic function, and mitochondrial dynamics. Dr. Kumar integrates multi-omics approaches—including transcriptomics, proteomics, and miRNA sequencing—on human brain-derived synaptosomes to uncover novel biomarkers and therapeutic targets. His group also uses lentiviral vector systems and stereotaxic injections in mouse models to manipulate miRNA expression in vivo. These findings help clarify miRNA-mRNA-protein interactions in AD progression. Dr. Kumar also explores the diagnostic potential of miRNAs using patient-derived samples (CSF, serum, fibroblasts). His research bridges basic neuroscience with clinical translation, aiming to develop miRNA-based therapeutics and non-invasive diagnostic panels for early AD detection. His work holds promise in reshaping our understanding and treatment of neurodegenerative diseases.

📚 Publication Titles Top Notes:

  1. 🧠 Integrated multi-omics analyses of synaptosomes revealed synapse-associated novel targets in Alzheimer’s disease (Molecular Psychiatry, 2025)

  2. 🧬 MiRNA-501-3p and MiRNA-502-3p: a promising biomarker panel for Alzheimer’s disease (Clinical and Translational Medicine, 2025)

  3. 🧩 MicroRNA-502-3p Modulates the GABA A Subunits, Synaptic Proteins, and Mitochondrial Morphology in Hippocampal Neurons (Molecular Neurobiology, 2025)

  4. 🔬 MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons (Neural Regeneration Research, 2024)

  5. 🧠 Synaptosome microRNAs regulate synapse functions in Alzheimer’s disease (NPJ Genomic Medicine, 2022)

  6. 🧪 MicroRNA-455-3p improves synaptic, cognitive functions and extends lifespan: relevance to Alzheimer’s disease (Redox Biology, 2021)

  7. 🧠 Novel MicroRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease (BBA, 2019)

  8. 🧬 MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: an update (Frontiers in Aging Neuroscience, 2018)

  9. 🧪 MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease (Human Molecular Genetics, 2017)

  10. 🧫 Crosstalk between microRNA-122 and FOX family genes in HepG2 cells (Exp Biology & Medicine, 2017)

📌 Conclusion:

Dr. Subodh Kumar is a highly suitable candidate for the Best Researcher Award. His research on microRNAs in neurodegeneration is groundbreaking, well-funded, and internationally recognized. With a robust publication record, academic leadership, and translational potential, he exemplifies the caliber expected of this distinction. Strategic enhancements in international outreach and translational ventures would further elevate his global impact.

Tiantao Zhang | Microbial Cell Biology | Best Researcher Award

Prof. Tiantao Zhang | Microbial Cell Biology | Best Researcher Award

Prof. Tiantao Zhang, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China

Dr. Tiantao Zhang is a prominent agricultural entomologist specializing in the management of maize pests and pest resistance. He earned his doctoral degree in Agricultural Entomology and Pest Control from Northwest A&F University, followed by a post at the Chinese Academy of Agricultural Sciences. His research spans pest population dynamics, resistance to Bt and pesticides, and climate-induced pest behavior. A dedicated scientist with international exposure at the University of California, Davis, Dr. Zhang has led national research programs and published extensively in peer-reviewed journals. His work combines field experimentation with molecular and ecological approaches, contributing to sustainable pest management in China and beyond. Dr. Zhang’s scientific leadership and commitment to solving agricultural challenges position him as a standout researcher in plant protection and pest ecology.

Publication Profile: 

Scopus

Strengths for the Award:

  1. Proven Scientific Expertise:
    Dr. Zhang has over 15 years of focused research in agricultural entomology, particularly in maize pest management—an area critical to global food security.

  2. Leadership in National Projects:
    He is the Principal Investigator of two major National Key R&D Programs of China (2023–2026 and 2025–2028), demonstrating trust from national research institutions and strong project management capability.

  3. Research Innovation and Relevance:
    His work on pest population prediction, diapause regulation, and resistance mechanisms to Bt toxins and pesticides addresses urgent agricultural challenges in the face of climate change and biotechnology deployment.

  4. Global Collaboration:
    His tenure as a visiting scholar at the University of California, Davis (2018–2019) highlights international research engagement and cross-cultural collaboration.

  5. Strong Publication Record:
    Dr. Zhang has published in respected international journals including Scientific Data, Biology, Toxins, and Entomologia Generalis. He covers molecular biology, ecology, and toxicology, reflecting interdisciplinary research breadth.

⚠️ Areas for Improvement:

  1. Increased Global Visibility:
    While his research is of high quality, expanding participation in international symposia and authoring high-impact reviews could increase visibility and citation impact.

  2. Data Sharing and Open Science:
    Strengthening the availability of raw data and modeling tools (e.g., pest prediction models) through open-access repositories would amplify his research utility and recognition.

  3. Mentorship and Outreach:
    Highlighting his role in mentoring young scientists, if applicable, would further support his candidacy as a well-rounded researcher contributing to capacity building.

🎓 Educational Background:

Dr. Zhang’s educational foundation is deeply rooted in plant protection and entomology. He earned his Bachelor of Agriculture degree in Plant Protection from Shihezi University in 2005. Driven by a passion for integrated pest management, he pursued graduate studies at Northwest A&F University, completing a Master of Agriculture (2008) and a Doctor of Agriculture (2011), both in Agricultural Entomology and Pest Control. His academic journey honed his expertise in pest population dynamics, ecological interactions, and biochemical resistance mechanisms. Dr. Zhang’s education laid the groundwork for his future contributions to pest forecasting, Bt resistance research, and sustainable agriculture, bridging traditional agricultural sciences with modern molecular approaches.

💼 Working Experience:

Since December 2011, Dr. Zhang has been a core member of the Corn Insect Pest Laboratory at the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing. In this role, he has been instrumental in national research projects on maize pest control and climate-responsive pest behavior. Between 2018 and 2019, he broadened his academic perspective as a visiting scholar at the University of California, Davis, where he engaged in collaborative research on pest resistance. His long-standing involvement with the national plant protection institute has enabled him to lead high-profile studies, publish widely, and mentor emerging researchers. Dr. Zhang’s professional trajectory reflects deep commitment, research leadership, and a forward-looking approach to pest ecology and resistance management.

🔬 Research Focus:

Dr. Zhang’s research revolves around sustainable pest management in maize, targeting major pests like Ostrinia furnacalis, Conogethes punctiferalis, and Spodoptera frugiperda. His work delves into pest population dynamics, occurrence modeling, diapause regulation, and early warning systems. A central theme is the genetic and ecological basis of resistance to Bt toxins and chemical pesticides. He investigates resistance selection mechanisms, gene expression changes, and molecular adaptation pathways. Recently, his research expanded into pest responses to climate change, particularly voltinism and diapause shifts. Dr. Zhang integrates entomology, genomics, toxicology, and data modeling to enhance pest forecasting and resistance management. His efforts support China’s food security and contribute globally to environmentally responsible crop protection.

📚 Publications Top Notes: 

  1. 🧬 The function of ABCD3 transporter in the insecticidal process of Bt toxinsEntomologia Generalis, 2023

  2. 🌡️ Intra-population alteration on voltinism of Asian corn borer in response to climate warmingBiology, 2023

  3. 🧬 Chromosome-level genome of a multivoltine biotype Ostrinia furnacalis strainScientific Data, 2025

  4. ❄️ Evolutionary shift of insect diapause strategy in a warming climateBiology, 2023

  5. 🍑 Artificial diet development for mass rearing of yellow peach mothEntomological Research, 2021

  6. 🧪 Phenotypic responses of lepidopterans to graphene oxide exposureEcotoxicology and Environmental Safety, 2021

  7. 🛡️ Down-regulation of aminopeptidase N and ABC transporter in Bt-resistant Asian corn borerInt. J. Biological Sciences, 2017

  8. 🧲 Binding affinity of five PBPs to Ostrinia sex pheromonesBMC Molecular Biology, 2017

  9. 🧫 Structure-function analysis of MhieJHAMT enzyme in juvenile hormone biosynthesisInt. J. Biological Macromolecules, 2025

  10. 🦠 Differential characterization of midgut microbiota in Bt-resistant vs. susceptible Ostrinia furnacalisInsects, 2025

🧾 Conclusion:

Dr. Tiantao Zhang is a highly qualified and deserving candidate for the Best Researcher Award. His leadership in national research programs, his impactful contributions to pest resistance and ecological forecasting, and his consistent scholarly output place him among the top researchers in agricultural sciences. With strategic focus on enhancing his international visibility and interdisciplinary collaborations, Dr. Zhang is not only contributing to China’s agricultural sustainability but also to global crop protection research.

SWATI SHARMA | Microbial Cell Biology | Best Researcher Award

Dr. SWATI SHARMA | Microbial Cell Biology | Best Researcher Award

Dr. SWATI SHARMA, University of Birmingham, United Kingdom

Dr. Swati Sharma is a highly accomplished researcher in environmental remediation, currently serving as a Marie Curie Postdoctoral Fellow at the University of Birmingham, UK. With deep expertise in microbiology, nanotechnology, and biochemical sciences, her work focuses on sustainable solutions to pollution through advanced bioengineering techniques. Dr. Sharma has consistently demonstrated excellence in both academia and research, with over 1,200 citations and a cumulative impact factor exceeding 80. Her scientific journey began in India, where she earned her Ph.D. from the prestigious Indian Institute of Technology (IIT) Guwahati. Her dedication to multidisciplinary collaboration has led to innovative advances in biosurfactants, nanomaterials, and microbial bioremediation. Through her impactful publications and international collaborations, Dr. Sharma is building a globally recognized research profile aimed at addressing some of the most critical environmental challenges.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. International Recognition & Funding

    • Marie Curie Fellowship—a highly competitive and prestigious EU-funded postdoctoral program.

  2. High-Impact Publications

    • 23 peer-reviewed journal articles across top-tier journals (e.g., Chemical Engineering Journal, Bioresource Technology).

  3. Strong Research Metrics

    • Over 1200 citations, indicating significant impact and recognition in the field.

  4. Interdisciplinary Excellence

    • Research spans biotechnology, nanoscience, environmental engineering, and materials science.

  5. Innovation in Sustainability

    • Developed eco-friendly technologies for oil spill remediation, heavy metal detoxification, and biosurfactant production.

  6. Proven Teaching & Mentoring

    • Experience as Teaching Assistant in critical subjects like Biophysics, Biochemical Engineering, and Research Methodology at IIT Guwahati.

🔍 Areas for Improvement:

  1. Industry Collaboration & Technology Transfer

    • Could further enhance her profile through patents, start-ups, or partnerships with environmental technology companies.

  2. Leadership in Global Research Networks

    • Building roles in international research consortia, editorial boards, or scientific committees would increase visibility and influence.

  3. Public Engagement & Outreach

    • Increased involvement in science communication, outreach programs, or policy advocacy would broaden the societal impact of her research.

🎓 Education:

Dr. Swati Sharma’s academic foundation is rooted in premier Indian institutions known for excellence in science and engineering. She earned her Ph.D. in Biosciences and Bioengineering from the Indian Institute of Technology (IIT) Guwahati in 2022, where she focused on microbial remediation and biosurfactant applications. Prior to her doctoral studies, she obtained her M.Tech. in Biotechnology from the National Institute of Technology (NIT) Durgapur in 2016, building her technical and analytical skills in applied biological sciences. Her undergraduate journey began with a B.E. in Biotechnology from RV College of Engineering, Bangalore in 2014, where she was introduced to biochemical engineering and environmental biotechnology. This robust educational background has equipped her with interdisciplinary expertise, integrating biological sciences, nanotechnology, and environmental engineering to tackle global pollution problems through innovative, research-driven solutions.

👩‍🔬 Experience:

Dr. Swati Sharma has extensive experience in research and academia, particularly in biotechnology and environmental sciences. She is currently a Marie Curie Postdoctoral Fellow at the University of Birmingham, where she is investigating advanced bioremediation and nanotechnology applications for pollution control. From 2017 to 2019, she served as a Teaching Assistant at IIT Guwahati, contributing to undergraduate and postgraduate education in Research Methodology, Biophysics, and Biochemical Engineering. Her hands-on experience in reactor design, biosurfactant production, and wastewater treatment has been complemented by collaborative projects with chemical engineers, microbiologists, and materials scientists. Dr. Sharma has also worked in pilot-scale bioreactors and conducted field studies on oil-spill remediation. Her integrated research and teaching background showcase her versatility, communication skills, and a strong commitment to mentoring future scientists while pushing the boundaries of environmental and biochemical research.

🔬 Research Focus:

Dr. Swati Sharma’s research centers on environmental remediation using biosurfactants, nanomaterials, and microbial consortia. Her primary focus lies in the biodegradation of hydrocarbons, heavy metals, and dyes using engineered microbial systems and green nanotechnology. She has developed and optimized bioprocesses for oil-spill cleanup, wastewater treatment, and pathogen control, including innovative reactor configurations and biosorption mechanisms. Dr. Sharma’s work is interdisciplinary, spanning biotechnology, chemical engineering, and material sciences—with a strong emphasis on sustainability. She explores the synergy between biosorption and biodegradation, enabling cost-effective and scalable remediation systems. Her recent projects involve the use of tungsten-oxide nanomaterials for hydrogen evolution and the disinfection of viral pathogens like SARS-CoV-2 through novel physical methods. Through high-impact research and global collaborations, she aims to bridge the gap between lab-scale discoveries and real-world environmental solutions.

📚 Publications Top Notes: 

  1. 🦴 Design of biphasic Fe and Zn doped hydroxyapatite to combat osteomyelitis – Ceramics Int.

  2. 🌱 Enhanced biosurfactant production by Bacillus subtilis using molasses – J. Biotech

  3. 🛢️ Biodegradation kinetics of Hexadecane & Phenanthrene via microconsortium – Bioresource Tech

  4. ⚡ Bulk synthesis of WO₃ nanomaterials for wastewater and hydrogen generation – Chem Eng J

  5. 🦠 UV-C & IR disinfection of SARS-CoV-2 spike protein – Int. J. Biol. Macromol

  6. 🧽 Hydrophobic biosorption & microbial remediation of oil spills – Ind Eng Chem Res

  7. 🛢️ Fed-batch integration of biosorption and biodegradation for oil cleanup – Lett Appl Microbiol

  8. 🍳 Waste cooking oil biodegradation & rhamnolipid production – Bioproc Biosyst Eng

  9. 🌿 Fungal bioherbicides for water hyacinth control – J. Basic Microbiol

  10. 🛢️ Biosurfactant production from sludge-isolated Bacillus subtilisBioresource Tech

🧾 Conclusion:

Dr. Swati Sharma is an outstanding early-career researcher whose academic rigor, international fellowship recognition, and impactful research position her as a strong and deserving candidate for the Best Researcher Award. Her work addresses urgent global environmental problems using an integrative and innovative scientific approach, bridging fundamental research and applied environmental biotechnology. Given her achievements to date and her potential for continued excellence and leadership, she merits serious consideration for this honor.

Jacques Demongeot | RNA Biology Function | Best Academic Researcher Award

Prof. Jacques Demongeot | RNA Biology Function | Best Academic Researcher Award

Prof. Jacques Demongeot, University Grenoble Alpes, France

Prof. Jacques Demongeot is a renowned French academic with an exceptional career blending applied mathematics and medical science. As an Honorary Member of the Institut Universitaire de France, he has held influential positions including President of the European Society for Mathematical and Theoretical Biology and the Société Francophone de Biologie Théorique. He is affiliated with University Joseph Fourier in Grenoble and the AGEIS Laboratory, focusing on biomedical informatics, theoretical biology, and smart healthcare technologies. Prof. Demongeot’s work is highly interdisciplinary, bridging mathematics, biology, and clinical applications. Over the decades, he has significantly contributed to areas such as health smart homes, predictive modeling, and Boolean networks, with a prolific record of peer-reviewed publications and international collaborations. His research is not only deeply theoretical but also highly impactful for public health systems and patient care. His influence spans across generations of researchers and across continents, cementing his legacy as a transformative scholar.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. 🎓 Interdisciplinary Excellence:
    Prof. Demongeot uniquely holds a Ph.D. in Applied Mathematics and an M.D. in Medicine, positioning him as a rare and influential figure in computational medicine and mathematical biology.

  2. 📚 Outstanding Publication Record:
    With hundreds of peer-reviewed publications in prestigious journals, his research spans from health informatics to genetic modeling and non-linear systems—highlighting both depth and breadth.

  3. 🌍 International Recognition and Collaboration:
    Former President of major scientific boards such as the European Society for Mathematical and Theoretical Biology, his leadership has shaped research agendas globally.

  4. 🏥 Innovation in Smart Health & Telemedicine:
    He has contributed significantly to the development of smart home technologies and e-health systems for elderly care—translating science into societal impact.

  5. 🧠 Theoretical Contributions with Practical Value:
    His work integrates modeling, biological systems theory, and real-world medical applications, especially in chronic disease management and health monitoring systems.

🛠️ Areas for Improvement:

  1. 📢 Broader Public Engagement:
    While his academic influence is undisputed, increasing visibility through public science communication and media outreach could expand the societal resonance of his work.

  2. 👨‍🏫 Mentorship Visibility:
    More explicit focus on his role as a mentor and research supervisor (e.g., Ph.D. students trained, junior faculty supported) would highlight his contribution to academic continuity.

  3. 🌐 Centralized Digital Presence:
    A consolidated digital portfolio (website or research repository) could enhance accessibility to his full body of work for interdisciplinary audiences and policy-makers.

🎓 Education:

Jacques Demongeot’s educational background reflects his deep-rooted expertise in both mathematical theory and clinical science. He earned his Ph.D. in Applied Mathematics in 1975 from the University Joseph Fourier of Grenoble, where he specialized in mathematical modeling and systems theory. Demonstrating his dual commitment to both scientific rigor and human health, he completed his Doctorate in Medicine (M.D.) in 1978 from the same institution. This rare combination of qualifications provided him with the analytical tools of a mathematician and the practical understanding of a medical doctor. It positioned him uniquely to pioneer interdisciplinary approaches in systems biology, bioinformatics, and smart health systems. His educational achievements laid the foundation for a long and impactful career bridging numerical theory and real-world healthcare challenges. This dual expertise has enabled him to lead innovative research in diverse domains, from wound healing modeling to the design of telemedicine tools and aging-related medical support technologies.

💼 Experience:

Prof. Jacques Demongeot’s professional career spans over four decades of academic excellence, leadership, and innovation. As a professor at the Faculty of Medicine at the University J. Fourier of Grenoble, he has led pioneering research in mathematical biology and biomedical engineering. He served as President of CIMES (1994–1998), President of the French CNU 46-04 (1994–2000), and President of the European Society for Mathematical and Theoretical Biology (1998–2000). Additionally, he was President of the Société Francophone de Biologie Théorique from 2006 to 2014. He has played pivotal roles in establishing research programs in smart homes for elderly care, medical imaging technologies, and non-linear biological systems modeling. Prof. Demongeot has also contributed to international journals, research boards, and multi-national scientific initiatives. His career combines deep theoretical insight with hands-on application and societal impact, marking him as a rare blend of thought leader, mentor, and innovator.

🔬 Research Focus:

Prof. Jacques Demongeot’s research focuses on mathematical and theoretical biology, with extensive work in functional statistics, telemedicine, health smart homes, genetic code modeling, and Boolean automata networks. His work bridges the gap between abstract modeling and applied biomedical engineering. He has designed predictive models for chronic diseases, including diabetes and obesity, and has contributed to understanding biological regulation, cell differentiation, and wound healing through discrete mesh and morphogenetic modeling. He also investigates social and network-based approaches to frailty and aging. Additionally, Prof. Demongeot has led the development of sensor networks and telemedicine platforms for home-based patient monitoring. His research often uses non-linear systems, stochastic modeling, and functional data analysis, making significant contributions to both clinical and public health informatics. His integrative approach connects human physiology, healthcare infrastructure, and computational biology—enabling a holistic understanding of health across biological, social, and technological domains.

📚 Publications Top Notes: 

1️⃣ 📊 Relative-Error Prediction in Nonparametric Functional Statistics: Theory and Practice
2️⃣ 📉 Estimation locale linéaire de la fonction de régression pour des variables hilbertiennes
3️⃣ 🧠 Global Regulation of Individual Decision Making
4️⃣ 🖼️ Comparison of the Evolution and Entropy of Responses on an Absurdum Questionnaire
5️⃣ 🏠 Smart homes: data fusion for preventive and therapy education at home
6️⃣ 🧬 Poitiers school of mathematical and theoretical biology: RNA structures and genetic code
7️⃣ 🦓 Wound healing modelling in Zebrafish
8️⃣ 🌱 Discrete mesh approach in morphogenesis: the example of gastrulation
9️⃣ 📈 Local linear regression modelization when all variables are curves
🔟 👴 Estimation of life expectancy of cancer patients in Valparaiso Region

🏁 Conclusion:

Prof. Jacques Demongeot is exceptionally well-qualified for the Best Academic Researcher Award. His interdisciplinary achievements, pioneering contributions to biomedical engineering and mathematical biology, and global academic leadership make him a model candidate. His body of work demonstrates a seamless blend of theoretical innovation and real-world medical application—impacting both science and society. With enhanced visibility and strategic outreach, his influence could become even more profound across generations and disciplines.