Song He | Tissue Engineering Regeneration | Best Researcher Award

Dr. Song He | Tissue Engineering Regeneration | Best Researcher Award

Dr. Song He, Hunan University of Humanities, Science and Technology, China

Dr. Song He is a dedicated researcher and lecturer at the School of Energy and Mechanical Engineering, Hunan University of Humanities, Science and Technology. With a strong background in civil materials and energy systems, Dr. He has made impactful contributions in the field of nanoporous aluminum substrates, heat transfer mechanisms, and condensation processes. His research bridges fundamental science and engineering applications, particularly in energy efficiency and materials performance. As a first author on multiple high-impact publications and an inventor on several patents, he has demonstrated both technical depth and innovation. Dr. He’s work is recognized for addressing real-world challenges in sustainable cooling and energy systems. His career path reflects consistent academic growth from undergraduate studies through to a PhD, followed by impactful research and teaching contributions. Passionate about material science and thermal dynamics, Dr. He exemplifies the qualities of a next-generation scientific leader.

Publication  Profile:

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record (First Author & Peer-Reviewed)

    • Multiple first-author journal articles in internationally recognized journals like Materials, Applied Sciences, Energies, and Journal of Materials Research and Technology.

    • Research is focused on high-impact, emerging areas like nanoporous aluminum substrates, solar thermal applications, and frosting mechanisms.

  2. Innovation and Practical Contribution

    • Holder of three patents related to testing devices for heat transfer and solar radiation absorption of aluminum materials, showing real-world application of research.

  3. Specialization in Sustainability and Energy Efficiency

    • Research closely aligns with modern needs for sustainable cities, renewable energy, and climate-adaptive cooling technologies.

    • Topics such as interface condensation, solar absorption, and surface coatings are directly relevant to global energy challenges.

  4. Long-Term Academic and Research Dedication

    • Strong academic background (BEng + PhD) and a consistent career trajectory.

    • Lecturer since 2020, actively involved in both teaching and applied research.

🔧 Areas for Improvement:

  1. Broader International Engagement Needed

    • Limited visibility in international conferences, workshops, and global collaborative projects.

    • Increasing participation in international academic communities would enhance both recognition and impact.

  2. Publication Impact and Journal Tier

    • While the journals are respectable, publishing in top-tier (Q1) journals like Advanced Materials, Nano Energy, or Energy & Environmental Science could elevate the scientific profile.

  3. Postdoctoral or International Fellowships

    • No postdoctoral experience or overseas academic training mentioned.

    • Pursuing a global postdoctoral opportunity would enhance expertise and network.

🎓 Education:

Dr. Song He holds a Ph.D. in Civil Materials and Engineering from Guangdong University of Technology (2015–2020), where his research focused on advanced thermal interface materials and nanoporous substrates. Prior to this, he completed his Bachelor’s degree in Building Environment and Equipment Engineering at Hunan University of Technology (2011–2015), laying the foundation for his interest in energy systems and materials performance. His academic training included interdisciplinary exposure to heat exchange technologies, solar energy applications, and environmental materials, combining theory with hands-on experimentation. Through his doctoral studies, Dr. He developed expertise in micro/nanoporous materials, surface treatments, and condensation properties critical to energy efficiency systems. His strong academic record and progression reflect his commitment to high-impact research and continuous learning. Dr. He’s educational background has prepared him to lead and innovate in the domains of thermal sciences, sustainable technologies, and energy-efficient materials.

💼 Experience:

Since December 2020, Dr. Song He has been a lecturer at the School of Energy and Mechanical Engineering, Hunan University of Humanities, Science and Technology. His teaching and research focus on material science, energy engineering, and surface phenomena. Prior to this, he completed his Ph.D. at Guangdong University of Technology, where he was actively involved in national and regional research projects. Dr. He has collaborated with notable researchers, contributed to interdisciplinary research teams, and co-authored several scientific papers. His hands-on experience includes the development and testing of novel nanoporous aluminum sheets for thermal applications. He has also contributed to the design and patenting of specialized testing devices for thermal and frosting properties. With a blend of academic and experimental work, Dr. He has developed deep knowledge in sustainable materials and surface engineering. His career showcases a balance of scientific inquiry, practical innovation, and educational contribution.

🔬 Research Focus:

Dr. Song He’s research centers on the thermal and surface properties of nanoporous aluminum materials and their applications in energy-efficient systems. His work explores the interface effects, condensation characteristics, solar absorption, and frosting mechanisms of micro/nanostructured materials. A significant part of his research focuses on improving heat exchanger efficiency, air-conditioning performance, and solar thermal energy capture through material innovation. He has studied the role of hygroscopic coatings and nanoporous substrates in enhancing thermal transfer and minimizing frost formation. Dr. He also investigates material-environment interactions, including moisture absorption and radiation management, to support sustainable building technologies. His patented devices offer novel methods for testing aluminum sheets under various environmental conditions. His work bridges fundamental surface physics with real-world energy applications, addressing critical needs in sustainable cities, green energy systems, and advanced thermal technologies. His focus positions him at the intersection of materials innovation and energy efficiency.

📚 Publications Top Notes:

  1. 📘 Investigation of the Interface Characteristics and Frosting Properties of the Nanoporous Alumina SheetsJournal of Materials Research and Technology, 2025

  2. 🔬 Review of Hygroscopic Coating on Aluminum Fin Surface of Air Conditioning Heat ExchangerApplied Sciences, 2021

  3. 🌞 Investigation on the Solar Absorption Property of the Nanoporous Alumina Sheet for Solar ApplicationMaterials, 2019

  4. ❄️ Effects and Frosting Mechanism of Nanoporous Alumina SheetsEnergies, 2023

  5. 🧪 Investigation of the Interface Effects and Condensation Properties of the Micro/Nanoporous Aluminum PlatesSustainable Cities and Society, (Date unspecified)

📌 Conclusion:

Dr. Song He is a highly promising candidate for the Best Researcher Award, especially for his contributions to nanomaterials, surface engineering, and sustainable energy applications. He brings a combination of academic rigor, innovation, and application-driven research that addresses critical energy and environmental challenges.

Hongliang Xin | Tissue Engineering Regeneration | Best Researcher Award

Prof. Dr. Hongliang Xin | Tissue Engineering Regeneration | Best Researcher Award

Prof. Dr. Hongliang Xin, Nanjing Medical University, China

Professor Hongliang Xin is a distinguished pharmaceutical scientist at Nanjing Medical University, China. After earning his PhD from Fudan University in 2011, he joined Nanjing Medical University and rapidly rose through academic ranks, becoming a full professor by 2020. His international experience includes a research fellowship at North Carolina State University (2015–2016), enriching his global academic outlook. Professor Xin has made significant contributions in drug delivery, particularly for brain disorders and cancer. His work on biomimetic nanoparticles and dual-targeting systems has been widely recognized, with several of his publications cited hundreds of times. He is a recipient of the Jiangsu Outstanding Research Award and has contributed to translational science through interdisciplinary collaboration. Committed to innovation in intelligent drug delivery, Professor Xin continues to push boundaries in nanomedicine. His dedication and impactful research make him a strong candidate for the Best Researcher Award.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Innovative Research in Drug Delivery
    Prof. Xin has led pioneering work in cellular biomimetic drug delivery systems and brain-targeted therapies, particularly utilizing Angiopep-conjugated and ROS-responsive nanoparticles. His research shows deep innovation in crossing the blood-brain barrier — a major challenge in neuroscience and oncology.

  2. Strong Publication Record
    He has authored multiple high-impact publications in top-tier journals such as Biomaterials, ACS Nano, and Advanced Materials. Several of these works have citations exceeding 300–400, indicating significant influence in the scientific community.

  3. International Research Exposure
    His experience as a visiting scholar at North Carolina State University reflects a global approach to science, enhancing both the breadth and depth of his research collaborations.

  4. Consistent Career Growth
    From lecturer to professor within a decade, Prof. Xin’s steady academic rise reflects both merit and dedication.

  5. Recognition and Awards
    Recipient of the Jiangsu Outstanding Research Award, validating his contributions at the provincial and national level.

⚙️ Areas for Improvement:

  1. Clinical Translation
    While preclinical research is robust, moving towards clinical trials or commercial partnerships would greatly strengthen the translational impact of his work.

  2. Leadership in International Consortia
    Increased participation or leadership in global research initiatives, conferences, or consortia could further elevate his visibility and impact internationally.

  3. Cross-Disciplinary Outreach
    Expanding collaborations into neuropsychology, regenerative medicine, or pharmaceutical industry applications could broaden the application of his delivery systems.

🎓 Education:

Hongliang Xin completed his doctoral studies in Pharmacy at Fudan University in 2011, one of China’s most prestigious universities. His academic journey was grounded in pharmaceutical sciences, focusing on drug delivery systems and nanotechnology-based therapies. During his PhD, he laid the foundation for his future research in targeted therapy and biomimetic materials. Post-PhD, he expanded his academic training internationally as a visiting scholar at North Carolina State University in the United States (2015–2016). This exposure to global research trends and interdisciplinary approaches further honed his expertise. The integration of chemical engineering, pharmacology, and nanotechnology into his educational training has allowed him to develop innovative and effective therapeutic strategies for brain-targeted drug delivery. His education has not only equipped him with strong technical skills but also with a visionary approach to translational medicine.

🧪 Experience:

Dr. Hongliang Xin began his academic career as a lecturer at Nanjing Medical University’s School of Pharmacy in 2011. He was promoted to Associate Professor in 2015 and became a Full Professor in 2020. Over the years, he has built a robust research program in nanomedicine and drug delivery, leading multiple funded projects and mentoring graduate students. His one-year tenure as a visiting scholar at North Carolina State University provided him international collaborative opportunities, boosting his cross-disciplinary competence. Professor Xin has published extensively in high-impact journals such as Biomaterials, ACS Nano, and Advanced Materials. He is also a recognized leader in translational drug delivery platforms, specifically for brain diseases and cancer. His extensive teaching, grant acquisition, and collaborative research background reflect both academic maturity and innovation. His professional journey exemplifies excellence, persistence, and a global perspective on healthcare research.

🔬 Research Focus:

Professor Hongliang Xin’s research centers on cellular biomimetic drug delivery systems and intelligent therapeutic strategies for brain diseases such as glioblastoma and ischemic stroke. His work integrates polymer chemistry, pharmacokinetics, and molecular targeting to design nanoparticles that can cross the blood-brain barrier with precision. A key innovation in his research is the use of Angiopep-conjugated polymers and ROS-responsive carriers to ensure site-specific and safe drug delivery. His dual-targeting PEG-PCL nanoparticle system has shown remarkable results in preclinical models of brain cancer, while his transcutaneous immunotherapy approach enhances anti-tumor immunity. Professor Xin’s focus also extends to thrombolytic delivery systems, neuroprotectants, and engineered nano-platelets for hematologic malignancies. With over a decade of focused work, his lab continues to address clinical challenges in oncology and neurology, aiming to translate nanoscale innovations into real-world therapeutics.

📚 Publications Top Notes:

  1. 🧠💊 Angiopep-conjugated PEG-PCL nanoparticles as dual-targeting system for brain glioma

  2. 🧬🛡 Anti-glioblastoma efficacy of paclitaxel-loaded Angiopep-conjugated PEG-PCL nanoparticles

  3. 💉🧫 Synergistic transcutaneous immunotherapy for checkpoint inhibitor delivery and tumor response

  4. 🧠🎯 2-deoxy-D-glucose functionalized PEG-PTMC nanoparticles for glioma targeting

  5. 🧠⚡ Boronic ester-dextran polymer nanoparticles responsive to ROS for stroke therapy

  6. 🧫🩸 Nano-platelets for enhanced treatment of multiple myeloma and thrombus

  7. 🧠🧬 Site-specific delivery of thrombolytics and neuroprotectants for ischemic stroke

  8. 🧠🧪 Brain targeting mechanism of Angiopep-conjugated PEG-PCL nanoparticles

  9. 🧠💉 Dual-targeted nanocarrier for treatment of brain ischemic stroke

  10. 💊🧠 Integrin-mediated PEG-PTMC nanoparticles for solid tumor penetration and paclitaxel delivery

🧾 Conclusion:

Professor Hongliang Xin is a highly qualified and impactful researcher whose contributions in intelligent, targeted drug delivery—especially for brain diseases—are both scientifically innovative and socially relevant. His work bridges critical gaps in nanomedicine and therapeutic targeting, and his publications are widely cited, reflecting broad recognition. With strategic focus on clinical translation and deeper global engagement, his already excellent profile could reach even greater heights.