Yanlan Wang | Cancer Cell Biology | Best Researcher Award

Dr. Yanlan Wang | Cancer Cell Biology | Best Researcher Award

Dr. Yanlan Wang, Stanford, United States

Dr. Yanlan Wang is a distinguished postdoctoral research fellow at Stanford University’s Department of Pathology. She works in the esteemed Dr. Gerald Crabtree’s lab, where her research revolves around leveraging molecular glues to reprogram cancer drivers and trigger apoptosis. With a strong background in immuno-oncology, antibody engineering, and small molecule therapeutics, Dr. Wang has made significant contributions to targeted cancer therapies. Her interdisciplinary collaborations, notably with Dr. Nathanael Gray’s group, have explored the role of transcription factor complex-inducing compounds (TCIPs) in MLL-rearranged leukemia. Dr. Wang brings a rich international research experience from China and the U.S., with a career spanning translational medicine, biotechnology innovation, and academic excellence. She is known for her rigorous approach to scientific inquiry, collaborative spirit, and prolific publication record. Her passion for understanding and overcoming the mechanisms of cancer resistance positions her as a future leader in oncology drug development and precision medicine.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Outstanding Research Focus
    Dr. Wang’s work on molecular glues and transcription factor modulators represents cutting-edge approaches in cancer therapy, especially in targeting previously undruggable pathways.

  2. High Impact Publications
    With multiple first-author and co-corresponding author papers (e.g., J Immunol Methods 2025, Leukemia & Lymphoma 2020, Clin Pharmacol Ther 2021), Dr. Wang has demonstrated a strong track record in both fundamental and translational cancer research.

  3. Innovation & Translational Impact
    Her efforts in bispecific antibody engineering, IL-15 therapeutics, and AKR1C3-targeted prodrugs show clear applications in oncology drug development, bridging the lab and clinic.

  4. Prestigious Collaborations
    Collaborating with renowned researchers such as Dr. Gerald Crabtree and Dr. Nathanael Gray at Stanford indicates high confidence and integration in world-class research circles.

  5. Recognition & Awards
    She has received the Coxe Fellowship at Stanford and multiple merit-based scholarships, highlighting academic excellence and innovation.

  6. Leadership and Multidisciplinary Skills
    Dr. Wang has led several projects, authored high-level papers, and mentored junior researchers, showcasing both technical and leadership capability.

🔄 Areas for Improvement:

  1. Greater International Presentation Exposure
    Although she has strong publication credentials, more visibility through international oral presentations, keynote addresses, or panel roles would amplify her leadership profile.

  2. Independent Grant Record
    While she is currently in a postdoctoral role, seeking independent funding (e.g., K99/R00, early-career PI grants) would position her more competitively for independent investigator status.

  3. Patent or Commercial Translation
    Given the translational nature of her work, pursuit of intellectual property filings or biotech partnerships would further highlight impact.

🎓 Education:

Dr. Yanlan Wang began her academic journey at Xiangya School of Medicine, Central South University, where she earned her MBBS (M.D. equivalent) in June 2012. She continued at The Second Xiangya Hospital for her clinical residency, completing her M.S. in June 2015. Her pursuit of scientific excellence led her to earn a doctorate (M.D. equivalent to PhD) from Sun Yat-sen University in June 2018, with a research focus on microbial immunology and tumor biology. This diverse educational background gave her a solid foundation in both clinical medicine and biomedical research, allowing her to bridge translational gaps in cancer research. Her early training emphasized immunotherapy, molecular biology, and oncology, all of which paved the way for her postdoctoral work in cutting-edge labs. Her education reflects a consistent upward trajectory, marked by prestigious institutions, interdisciplinary training, and a seamless integration of clinical and scientific disciplines.

🔬 Experience:

Dr. Yanlan Wang is currently a postdoctoral research fellow in Dr. Gerald Crabtree’s lab at Stanford University, where she focuses on manipulating cancer cell pathways using molecular glues. Her prior research in China included pivotal roles in biotechnology innovation, including bispecific antibody engineering, prodrug design, and immune-oncology drug development. She has also collaborated extensively with Dr. Nathanael Gray’s lab at Stanford, exploring the therapeutic potential of TCIPs in leukemia. Dr. Wang’s hands-on experience includes multiplex screening platforms, flow cytometry, in vivo tumor models, and translational immunotherapy development. Over the years, she has taken leadership roles in preclinical projects, manuscript authorship, and international scientific presentations. Her diverse roles—from clinical residency to laboratory innovation—reflect her capability to translate complex scientific findings into therapeutic strategies. Dr. Wang has also mentored junior researchers and worked across multiple disciplines, underscoring her adaptability, leadership potential, and deep commitment to cancer research.

🏅 Awards and Honors:

Dr. Yanlan Wang’s excellence has been recognized through several prestigious awards. At Stanford, she received the Coxe Fellowship in 2021, honoring outstanding postdoctoral researchers. During her doctoral training, she earned the Special Award of Merit for the BJ-001 Project at BJ Bioscience Inc. in 2019 for her impactful translational research. Her academic merit was consistently acknowledged through the Bidi Scholarship (2016–2017) and Daxiang Scholarship (2015–2016) at Sun Yat-sen University. These honors underscore her commitment to scientific excellence, innovation, and translational impact in oncology and immunotherapy. Her ability to receive awards across both academic and industrial settings highlights her versatility and the real-world relevance of her work. These distinctions serve as a testament to her leadership in cancer drug development, collaborative effectiveness, and contribution to next-generation therapeutic discoveries.

🔍 Research Focus:

Dr. Yanlan Wang’s research lies at the intersection of cancer biology, molecular pharmacology, and immunotherapy. At Stanford, she investigates how molecular glues can be used to hijack cancer drivers and activate apoptosis, offering a novel route for targeted cancer therapies. Her work involves multiplex molecular glue screening, understanding protein degradation pathways, and designing synthetic lethality strategies. In collaboration with Dr. Nathanael Gray, she is also studying Transcription factor Complex-Inducing Compounds (TCIPs) for the treatment of MLL-rearranged leukemia, a particularly aggressive form of blood cancer. Prior to this, her research focused on bispecific antibodies, prodrugs, and IL-15 based immunotherapeutics, with a vision to decouple efficacy from toxicity. Through a blend of basic science and translational applications, she aims to rewire oncogenic signaling pathways and enhance anti-tumor immunity. Her research combines drug discovery, systems biology, and precision oncology, pushing the boundaries of targeted cancer treatment.

📚 Publications Top Notes:

  1. 🔬 Quantitative flow cytometry using quantitative streptavidin-protein G-biotin beads (qBeads)J Immunol Methods, 2025

  2. 🧬 A Bivalent Molecular Glue Linking Lysine Acetyltransferases to Oncogene-directed Cell DeathCell (revising)

  3. 💉 Enhance IL15 anti-tumor efficacy by inhibiting its negative feedback mechanism(in preparation)

  4. ⚛️ Decouple the toxicity and efficacy of BJ-001, an integrin targeting IL-15AACR Abstract, 2019

  5. 🔄 Decoupling the toxicity and efficacy of immunotherapeuticsSITC Abstract, 2019

  6. 🧪 An AKR1C3-specific prodrug with potent anti-tumor activities against T-ALLLeukemia & Lymphoma, 2020

  7. 🧫 A novel AKR1C3 specific prodrug TH3424 with potent anti-tumor activity in liver cancerClin Pharmacol Ther, 2021

  8. 🧲 A GPC3-targeting Bispecific Antibody, GPC3-S-Fab, with Potent CytotoxicityJ Vis Exp, 2018

  9. 🧠 Identification of anti-CD16a single domain antibodies and their application in bispecific antibodiesCancer Biol Ther, 2020

  10. 🧿 Bp-Bs, a novel T-cell engaging bispecific antibody with biparatopic Her2 bindingMol Ther Oncolytics, 2019

  11. 🧰 A novel multi-functional anti-CEA-IL15 molecule displays potent anti-tumor activitiesDrug Des Devel Ther, 2018

  12. 🧠 A single domain based anti-Her2 antibody has potent anti-tumor activitiesTransl Oncol, 2018

🧾 Conclusion:

Dr. Yanlan Wang is highly deserving of the Best Researcher Award. Her contributions to cancer therapeutics through novel molecular approaches, her collaborations with globally renowned labs, and her publication record reflect a researcher of exceptional caliber and promise. With a deep understanding of tumor biology, a commitment to innovation, and a growing leadership presence in oncology research, she is not only suitable for the award but stands as a strong role model for future biomedical researchers.

Weikuan Gu | Cancer Cell Biology | Best Researcher Award

Prof. Weikuan Gu | Cancer Cell Biology | Best Researcher Award

Prof. Weikuan Gu , UTHSC , United States

Weikuan Gu is a Professor at the University of Tennessee Health Science Center, specializing in biomedical research with a focus on disease modeling, genetic factors influencing health, and drug efficacy. After earning his MS and Ph.D. from Cornell University, he worked on eye diseases, osteoporosis, and genetics before joining UTHSC in 2002. His contributions in AI applications for biomedical research are noteworthy. He has developed the Principal Law of Lifespan (PLOSP) theory and has been recognized for his leadership in various international collaborative projects. With a significant role in numerous NIH-funded studies, his research continues to push boundaries in understanding disease mechanisms and therapeutics.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. Extensive Research Experience: Professor Weikuan Gu has over two decades of experience in biomedical research, demonstrating expertise across a wide array of disease models, drug efficacy, and genetic factors influencing health. His work spans a variety of high-impact fields such as ophthalmology, osteoporosis, arthritis, and genomics, showcasing a strong commitment to advancing understanding in multiple medical domains.

  2. Innovative Research Leadership: Professor Gu has been instrumental in leading and contributing to groundbreaking research, including his development of the Principal Law of Lifespan (PLOSP). His ability to innovate, especially in applying AI to biomedical research, positions him at the forefront of cutting-edge science and technology.

  3. Funded Projects & International Collaborations: He has secured substantial funding for his projects, totaling millions of dollars, and has led many high-profile international collaborations. This speaks to the global relevance and potential impact of his work, as well as his ability to manage large-scale research initiatives.

  4. Research Output and Citations: With 175 published scientific papers and multiple accepted articles in prestigious journals such as Cancer Letters and Ecotoxicology and Environmental Safety, his research continues to have a significant impact on the scientific community. His most recent work on AI applications and its implications for public health and disease diagnosis are particularly notable.

  5. Contribution to Education and Training: Professor Gu has played a key role in training future researchers, as evident from his leadership in the Gene Discovery Microarray Core at UTHSC and his involvement in several research education collaborations internationally. His contributions to scientific training are essential for developing the next generation of researchers.

Areas for Improvement:

  1. Broader Public Outreach: While Professor Gu’s research has made significant contributions to the scientific community, there is room to enhance the visibility of his work among broader audiences, including policy makers, healthcare professionals, and the general public. Public engagement with his AI-focused research could improve the real-world application of his findings, especially in public health.

  2. Interdisciplinary Collaboration: Although his collaborations are already diverse, fostering even more interdisciplinary collaborations with experts from areas like data science, engineering, and social sciences could expand the scope of his research, especially in areas like AI and healthcare.

Education:

Dr. Gu completed his MS and Ph.D. from Cornell University, where he specialized in molecular genetics. His academic journey focused on genetic disorders, particularly in disease modeling and understanding complex genetic mechanisms. His research provided foundational insights into eye diseases and osteoporosis, leading to his early work at Loma Linda University and later at the University of Tennessee Health Science Center. His vast academic knowledge enables him to merge genetic research with cutting-edge technologies, including AI applications in biomedical research, paving the way for transformative healthcare solutions.

Experience:

Dr. Weikuan Gu has a rich career that spans over two decades in biomedical research. His early work at Loma Linda University involved osteoporosis and genetic studies in human and mouse models. Since joining the University of Tennessee Health Science Center in 2002, his research expanded to disease modeling, drug efficacy, and the role of genetics in health. He has been a principal investigator and co-investigator in numerous NIH-funded projects, specializing in genetic factors influencing diseases like osteoarthritis, fibrotic diseases, and stroke. Additionally, he is involved in AI-based research, advancing the integration of AI in biomedical research methodologies.

Research Focus:

Dr. Weikuan Gu’s research is centered on understanding disease mechanisms and therapeutic strategies, with a focus on genetic and molecular factors. His work spans glaucoma therapy, fibrotic diseases, and AI in biomedical research. He is the lead on various NIH-funded projects, investigating genetic regulation in conditions like osteoarthritis and stroke. One of his innovative contributions is the Principal Law of Lifespan (PLOSP), a theory aimed at understanding the aging process. His multidisciplinary approach, combining traditional genetic research with modern technologies such as AI, positions him at the forefront of cutting-edge biomedical research.

Publications Top Notes:

  1. “Generating Research Hypotheses to Overcome Key Challenges in the Early Diagnosis of Colorectal Cancer – Future Application of AI” 🧬
  2. “Alarm: Retracted Articles on Cancer Imaging Are Not Only Continuously Cited by Publications but Also Used by ChatGPT to Answer Questions” 💻
  3. “Evaluation of the Potential Value of Artificial Intelligence (AI) in Public Health Using Fluoride Intake as the Example” 🤖

Conclusion:

Professor Weikuan Gu is an exceptionally qualified candidate for the Best Researcher Award. His extensive experience, leadership in innovative research, impressive body of published work, and commitment to advancing both scientific discovery and education make him a standout candidate. While there are opportunities for further enhancing public outreach and expanding interdisciplinary collaborations, his ongoing contributions to AI in biomedicine and genetic research firmly establish him as a leader in his field.

Ana Figueiras | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Ana Figueiras | Cancer Cell Biology | Best Researcher Award

Assist. Prof. Dr. Ana Figueiras , Faculty of Pharmacy/University of Coimbra , Portugal

Ana Rita Ramalho Figueiras is an Assistant Professor at the Faculty of Pharmacy, University of Coimbra, Portugal, and a researcher at REQUIMTE/LAQV, focusing on Pharmaceutical Technology. She earned her PhD in Pharmaceutics from the University of Coimbra in 2009, specializing in drug delivery systems, particularly for cancer treatments. Throughout her career, Ana has worked on advancing the development of block copolymers and micellar systems for targeted drug delivery. With a strong academic background and international exposure, she has contributed significantly to the fields of pharmaceutics, drug formulation, and pharmaceutical sciences. Ana’s work has been recognized through various publications in top journals, and she is deeply involved in mentoring post-doctoral researchers. Her expertise and leadership in pharmaceutical research continue to influence the development of innovative therapies in the pharmaceutical field.

Publication Profile: 

Orcid

Strengths for the Award:

Ana Rita Ramalho Figueiras is a highly accomplished researcher in pharmaceutical sciences, with extensive contributions to drug delivery systems, particularly focusing on micellar systems and polymeric micelles for cancer therapy. Her interdisciplinary work bridges pharmaceutics, chemistry, and biomedicine, showcasing her ability to innovate within drug delivery mechanisms for complex diseases. As an Assistant Professor at the University of Coimbra and an integrated member of the REQUIMTE/LAQV research group, she brings a wealth of academic and research leadership to her field.

Her innovative contributions have been recognized with various academic awards, including distinctions for oral communications and publications. Additionally, she has made substantial contributions to numerous collaborative research projects, focusing on the development of novel therapeutic strategies and drug delivery systems that target poorly soluble drugs, cancer therapies, and chronic diseases like Alzheimer’s.

Areas for Improvement:

While Figueiras is a leading figure in the scientific community, expanding her outreach to a broader range of international research collaborations could further amplify her impact. Although her work on drug delivery systems has significant potential for clinical applications, there could be further focus on translating her findings from bench to bedside by collaborating with clinical researchers for clinical trials and regulatory studies. A stronger emphasis on commercialization of her research could also be beneficial for broader societal impact.

Education:

Ana Rita Ramalho Figueiras pursued her academic journey in the field of Pharmaceutical Sciences, beginning at the University of Coimbra in Portugal. She graduated with a degree in Pharmaceutical Sciences in 2002, followed by a PhD in Pharmaceutics at the same university in 2009. Her doctoral research was focused on enhancing drug solubility and permeability, with a specific focus on cyclodextrins and mucoadhesive polymers for buccal drug delivery. During her PhD, she gained international exposure by collaborating with the University of Santiago de Compostela, Spain, and the University of Innsbruck, Austria. She is also registered as a member of the Ordem dos Farmacêuticos in Portugal since 2003. Ana’s educational foundation, combined with her interdisciplinary collaborations, has provided her with a robust understanding of pharmaceutical sciences and technologies, forming the cornerstone of her impactful career in academia and research.

Experience:

Ana Rita Ramalho Figueiras has been an Assistant Professor at the Faculty of Pharmacy, University of Coimbra, since September 2014, where she is an integrated Ph.D. member in the Pharmaceutical Technology group of REQUIMTE/LAQV. Prior to this, she was an Invited Assistant Professor from 2013 to 2014, working closely with the Center of Neuroscience and Cell Biology (CNC/UC) and contributing as a collaborator in the Health Sciences Research Centre (CICS/UBI). Her academic roles involve teaching, mentoring students and postdoctoral fellows, and leading research projects on advanced drug delivery systems. She has also been involved in supervising several postdoctoral researchers, focusing on developing and characterizing polymeric micellar systems and controlled delivery systems for drugs like pilocarpine. Throughout her career, Ana has participated in various scientific projects, bringing valuable insights into the design of innovative drug delivery platforms with applications in cancer therapy and other medical conditions.

Awards and Honors:

Ana Rita Ramalho Figueiras has received several accolades for her research excellence and contributions to the field of Pharmaceutical Sciences. In 2004, she was awarded a prestigious PhD fellowship by Fundação para a Ciência e Tecnologia (FCT), which enabled her to pursue her doctoral studies. In 2011, she received the Best Short Communication Award at the VI Annual CICS Symposium for her work on new therapeutic strategies for siRNA delivery. In 2012, she was honored with the Best Oral Communication Award for her research on Poloxamine-α-cyclodextrin supramolecular gels promoting osteogenic differentiation of mesenchymal stem cells. These awards underscore her commitment to scientific advancement, as she continues to lead innovative research in drug delivery systems, nanomedicine, and cancer therapy. Ana’s dedication to advancing pharmaceutics has also led her to mentor future generations of researchers, further solidifying her reputation as a leading academic in her field.

Research Focus:

Ana Rita Ramalho Figueiras focuses her research on developing advanced drug delivery systems, specifically in the context of cancer therapies. Her primary research interest lies in utilizing block copolymers and micellar systems for targeted and controlled drug release. This includes the formulation of poorly water-soluble drugs, improving their bioavailability, and creating novel pharmaceutical formulations for effective treatment. Ana is particularly interested in the development of polymeric micelles for the delivery of therapeutic agents, including drugs and genes, to treat various diseases, with a strong emphasis on oncology. Additionally, her research investigates the use of mucoadhesive polymers for drug delivery to mucosal surfaces. With a commitment to improving drug efficacy and reducing side effects, her work aims to enhance patient outcomes through innovative drug formulations. Ana is also involved in several projects that explore natural compounds and their potential for pharmaceutical applications, further contributing to advancements in the drug delivery and pharmaceutical fields.

Publications Top Notes:

  1. “Unraveling Rosmarinic Acid Anticancer Mechanisms in Oral Cancer Malignant Transformation” 🎗️🦷
  2. “Regulation and Safety of Cosmetics: Pre- and Post-Market Considerations for Adverse Events and Environmental Impacts” 💄⚖️
  3. “The Many Faces of Cyclodextrins within Self-Assembling Polymer Nanovehicles: From Inclusion Complexes to Valuable Structural and Functional Elements” 🔬🧪
  4. “Development and Characterization of Curcumin-Loaded TPGS/F127/P123 Polymeric Micelles as a Potential Therapy for Colorectal Cancer” 🍂⚕️
  5. “Pulmonary Delivery of Bacterial Lysates Mediated by Locust Bean Gum Microparticles” 🌬️🦠
  6. “Non-Toxic Mucoadhesive Locust Bean Gum Microparticles for Delivery of Bacterial Lysates to Prevent Respiratory Diseases” 🌱🫁
  7. “Polymersomes as the Next Attractive Generation of Drug Delivery Systems: Definition, Synthesis and Applications” 🧫💊
  8. “Nanotheranostics: The Afterglow for Cancer Immunotherapy” 💡💉
  9. “Acanthus Mollis Formulations for Transdermal Delivery: From Hydrogels to Emulsions” 🌿💧
  10. “A Review of the Application of Ganoderma Lucidum (Curtis) P. Karst. in Nanotechnology for the Treatment of Cancer” 🍄💻

Conclusion:

Ana Figueiras’ expertise in pharmaceutical technology, particularly in the development of polymeric micelles for drug delivery, marks her as an outstanding candidate for the Best Researcher Award. She is an exemplary figure in the realm of pharmaceutics with a strong research focus on improving drug therapies for cancer and other severe diseases. Her work continues to advance drug delivery systems, paving the way for future medical breakthroughs. Figueiras demonstrates a strong foundation in academic excellence, research innovation, and collaboration, positioning her as a leader in her field.