Ilaria Cossu | Immunology Cellular Interactions | Research Excellence Award

Ms. Ilaria Cossu | Immunology Cellular Interactions | Research Excellence Award

University of Sassari | Italy

Ilaria Cossu is a motivated PhD candidate in Life Sciences and Biotechnologies with a specialization in Microbiology and Immunology. Their work focuses on understanding the role of human endogenous retroviruses (HERVs) in cancer, integrating molecular biology, immunology, and virology approaches to explore how retroviral elements may influence tumorigenesis. Their doctoral project involves conducting indirect ELISA assays, maintaining and analyzing cell cultures, processing blood samples, performing RNA extraction and reverse transcription, and carrying out quantitative PCR for gene expression profiling. The researcher is actively engaged in experimental design, data analysis, scientific writing, and collaborative research activities at both national and international levels.

Prior academic training includes Master’s and Bachelor’s degrees in Biology, each completed with top distinction, and research internships in microbiology, virology, and biochemistry laboratories. These experiences provided hands-on expertise in electrophoretic methods such as cellulose acetate electrophoresis, C-PAGE, fluorescent 2-aminoacridone probe (FACE) analysis, and SDS-PAGE, contributing to a solid foundation in protein and nucleic acid characterization. Their current research aims to advance understanding of retroviral contributions to cancer biology and supports the development of innovative molecular approaches for disease investigation and potential therapeutic insights.

Profile: Scopus

Featured Publications:

Cossu, I., Ruberto, S., Filippi, E., Simula, E. R., Noli, M., Mottula, A., & others. (2025). HERV-K envelope induces a humoral response in Non-Hodgkin lymphoma patients. Current Microbiology, 82(12), 574.

Jasemi, S., Molicotti, P., Fais, M., Cossu, I., Simula, E. R., Sechi, L. A., & others. (2025). Biological mechanisms of enterotoxigenic Bacteroides fragilis toxin: Linking inflammation, colorectal cancer, and clinical implications. Toxins, 17(6), 305.

Simula, E. R., Jasemi, S., Cossu, D., Fais, M., Cossu, I., Chessa, V., & others. (2025). Human endogenous retroviruses as novel therapeutic targets in neurodegenerative disorders. Vaccines, 13(4), 415. h

Ruberto, S., Santovito, A., Caviglia, G. P., Noli, M., Cossu, D., Ribaldone, D. G., & others. (2025). Mycobacterium avium subsp. paratuberculosis and human endogenous retrovirus in Italian patients with inflammatory bowel disease and irritable bowel syndrome. Immunology.

Kimberly Gilmour | Immunology Cellular Interactions | Women Researcher Award

Dr. Kimberly Gilmour | Immunology Cellular Interactions | Women Researcher Award

Great Ormond Street Hospital | United Kingdom

Kimberly Coughlan Gilmour is a leading expert in immunology, molecular diagnostics, and cell-based therapeutic development. Her early academic work contributed foundational insights into cytokine signaling, particularly the regulation of the Interferon Regulatory Factor-1 (IRF-1) gene and the signal transduction pathways activated by prolactin and interleukin-2. During her postdoctoral research, she investigated mechanisms governing thymocyte proliferation and differentiation using retroviral manipulation of murine thymic organ cultures, advancing understanding of T-cell development.

Gilmour has played a pivotal role in the evolution of clinical immunology diagnostics, leading the development of national services for the molecular diagnosis of primary immunodeficiency disorders. She has been instrumental in translating complex research methodologies—including gene expression analysis, retroviral and lentiviral transduction, and thymus tissue culture—into routine clinical tools that directly inform patient management. Her work supports post-treatment monitoring for haematopoietic stem cell transplantation, gene therapy, and targeted antibody-based interventions.

As a leader in cell therapy, she has overseen the implementation of advanced cellular manufacturing processes and supervised the clinical authorization of personalized therapeutic products. Her career integrates immunogenetics, translational science, and cellular therapy innovation, significantly shaping clinical practice for paediatric patients with rare and complex immune disorders.

Profiles: Scopus | Orcid

Featured Publications:

  • Maimaris, J., Roa-Bautista, A., Sohail, M., et al. (2025). Griscelli Syndrome Type 2: Comprehensive analysis of 149 new and previously described patients with RAB27A deficiency. Journal of Clinical Immunology, 45(50).

  • Author(s) Unknown. (2025). Safety and diagnostic utility of brain biopsy and metagenomics in decision-making for patients with inborn errors of immunity (IEI) and unexplained neurological manifestations. Journal of Clinical Immunology, 45, 86.

  • Booth, C., Masiuk, K., Vazouras, K., Fernandes, A., Xu-Bayford, J., Campo Fernandez, B., Roy, S., Curio-Penny, B., Arnold, J., Terrazas, D., Reid, J., Gilmour, K. C., Adams, S., Mediavilla, E. A., Mhaldien, L., O’Toole, G., Ahmed, R., Garabedian, E., Malech, H., De Ravin, S. S., Moore, T. B., De Oliveira, S., Pellin, D., Lin, T.-Y., Dang, T. T., Cornetta, K., Hershfield, M. S., Hara, H., Thrasher, A. J., Gaspar, H. B., & Kohn, D. B. (2025). Long-term safety and efficacy of gene therapy for adenosine deaminase deficiency. New England Journal of Medicine, 393(15), 1486–1497.

  • Guardo, D., Mishra, A. K., Rashed, H., Gilmour, K. C., Adams, S., Pinner, D., Sauer, M., Vora, A., Veys, P., Pavasovic, V., Rao, K., & Qasim, W. (2025). Long-term outcomes of genome-edited “universal” CAR19 T cells for relapsed/refractory B-ALL at a single pediatric center. Blood Advances, 9(18), 4750–4754.

 

Wan Wan Lin | Inflammation | Best Researcher Award

Prof. Wan Wan Lin | Inflammation | Best Researcher Award

Department of Pharmacology, College of Medicine, NTU | Taiwan

Dr. Wan-Wan Lin is a leading researcher in the fields of pharmacology and immunology, with a strong focus on cellular signaling and innate immune mechanisms. Her work has significantly advanced understanding of signal transduction pathways and their regulation of inflammation and cell death. She has made notable contributions to the study of pattern recognition receptors, inflammasomes, and cytokine-mediated immune responses, particularly in the context of oxidative stress and mitochondrial function. Dr. Lin’s research explores how mitochondrial dynamics and redox balance influence inflammatory signaling and programmed cell death, providing key insights into the molecular basis of immune regulation and inflammatory diseases. Her studies have also shed light on the crosstalk between cellular stress responses and immune activation, offering potential therapeutic targets for controlling excessive inflammation and tissue damage. Recognized for her excellence in research, Dr. Lin has received multiple national awards and continues to contribute to the advancement of pharmacological sciences through her editorial and academic roles. Her integrative approach bridges pharmacology, immunology, and cell biology, driving innovations in the understanding of molecular mechanisms underlying inflammation and innate immunity.

Profile: Orcid

Featured Publications:

Lin, W.-W., Lee, C.-Y., Tsai, M.-C., & Tsaur, M.-L. (1985). Pharmacological study on angusticeps-type toxins from mamba snake venoms. Journal of Pharmacology and Experimental Therapeutics, 233, 491–498.

Lin, W.-W., Chang, P.-L., Lee, C.-Y., & Joubert, F. J. (1987). Pharmacological study on phospholipases A₂ isolated from Naja mossambica mossambica venom. Proceedings of the National Science Council, Republic of China B, 11, 155–163.

Lin, W.-W., Lee, C.-Y., & Burnett, J. W. (1988). Effect of sea nettle (Chrysaora quinquecirrha) venom on isolated rat aorta. Toxicon, 26, 1209–1212.

Chiou, S.-H., Lin, W.-W., & Chang, W.-P. (1989). Sequence characterization of venom toxins from Thailand cobra. International Journal of Peptide and Protein Research, 34, 148–152.

Lee, C.-Y., Lin, W.-W., Chen, Y.-M., & Lee, S.-Y. (1989). Is direct cardiotoxicity the primary cause of death following intravenous injection of the basic phospholipase A₂ from Naja nigricollis venom? Acta Physiologica et Pharmacologica Latinoamericana, 39, 383–391.

Lee, C.-Y., & Lin, W.-W. (1989). Two subtypes of acetylcholinesterase isoenzymes distinguishable by Angusticeps-type toxin F7. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology, 92, 279–281.

Lin, W.-W., Lee, C.-Y., & Chuang, D.-M. (1989). Cross-desensitization of endothelin- and sarafotoxin-induced phosphoinositide turnover in neurons. European Journal of Pharmacology, 166, 581–582.

Lin, W.-W., Chen, Y.-M., Lee, S.-Y., Nishio, H., Kimura, T., Sakakibara, S., & Lee, C.-Y. (1990). Cardiovascular effects of two disulfide analogues of sarafotoxin S6b. Toxicon, 28, 911–923.

Lin, W.-W., Lee, C.-Y., Yasumoto, T., & Chuang, D.-M. (1990). Maitotoxin induces phosphoinositide turnover and modulates glutamatergic and muscarinic cholinergic receptor function in cultured cerebellar neurons. Journal of Neurochemistry, 55, 1563–1568.

Lin, W.-W., & Lee, C.-Y. (1990). Biphasic effects of endothelin in the guinea-pig ileum. European Journal of Pharmacology, 176, 57–62.

Yi Zhang | Tumor Immunology | Best Researcher Award

Prof. Yi Zhang | Tumor Immunology | Best Researcher Award

The First Affiliated Hospital of Zhengzhou University | China

Prof. Yi Zhang is a globally recognized leader in genetically engineered cell therapy and translational immuno-oncology research. Over the past 36 years, he has made pioneering contributions to overcoming major barriers in cell therapy and advancing its clinical applications worldwide. His extensive research has produced 290 SCI-indexed publications, including 11 ESI top 1% highly cited papers, accumulating more than 14,000 citations and an h-index of 66. Prof. Zhang’s groundbreaking innovations include identifying the novel CAR-T therapeutic target CD276 for solid tumors, developing gene-editing technologies to reduce PD-1–mediated immunosuppression, and creating novel cytokines and culture protocols that enhance immune cell stemness and anti-tumor function. He has also led the development of CAR-T cells that normalize tumor vasculature and improve infiltration, significantly enhancing therapeutic efficacy. With 46 invention patents (17 authorized) and over 80 million yuan in technology transfers, his work bridges basic science and clinical application through an integrated “industry-university-research” platform. As principal investigator, he has directed more than 52 clinical trials—29 targeting solid tumors, the highest number globally—resulting in improved outcomes and even clinical cures for advanced cancer patients. His leadership in establishing national standards and safety protocols has also shaped the regulation and global best practices in cell therapy.

Profile: Orcid

Featured Publications:

Gao, Y., Liu, S., Huang, Y., Wang, H., Zhao, Y., Cui, X., Peng, Y., Li, F., & Zhang, Y. (2024, December 3). CAR T cells engineered to secrete IFNκ induce tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Cancer Immunology Research.

Huang, Y., Cao, R., Wang, S., Chen, X., Ping, Y., & Zhang, Y. (2025, December 31). In vivo CAR-T cell therapy: New breakthroughs for cell-based tumor immunotherapy. Human Vaccines & Immunotherapeutics.

Li, J., Wang, D., Zhang, Z., Sun, K., Lei, Q., Zhao, X., Huang, J., Wang, L., & Zhang, Y. (2025, June 1). Serum carcinoembryonic antigen levels as a predictive biomarker for cytokine-induced killer cell immunotherapy in patients with colorectal cancer. The Journal of Immunology.

Lian, J., Yue, Y., Yu, W., & Zhang, Y. (2025, March 5). Correction: Immunosenescence: A key player in cancer development. Journal of Hematology & Oncology.

Ping, Y., Fan, Q., & Zhang, Y. (2025, February). Modulating lipid metabolism improves tumor immunotherapy. Journal for ImmunoTherapy of Cancer.

Hu, W., Li, F., Liang, Y., Liu, S., Wang, S., Shen, C., Zhao, Y., Wang, H., & Zhang, Y. (2025, January). Glut3 overexpression improves environmental glucose uptake and antitumor efficacy of CAR-T cells in solid tumors. Journal for ImmunoTherapy of Cancer.

Alaka Sahoo | Immunology Cellular Interactions | Young Researcher Award

Mrs. Alaka Sahoo | Immunology Cellular Interactions | Young Researcher Award

Mrs. Alaka Sahoo, Siksha’O’ Anusandhan University, India

Dr. Alaka Sahoo is a dedicated young researcher in the field of Biotechnology with a focus on translational and clinical research. She holds a Ph.D. in Biotechnology from Siksha ‘O’ Anusandhan University, Odisha, with a CGPA of 8.90. With over 17 publications, including 11 research articles and 3 high-impact reviews, Dr. Sahoo has significantly contributed to oral disease therapeutics and antimicrobial studies. She demonstrates expertise in multi-omics analysis, drug discovery, and natural product-based therapy. A recipient of prestigious awards such as the Lalchand Women Entrepreneurs Award (2024), she is also a life member of reputed organizations like the British Society for Antimicrobial Chemotherapy. Her innovative approach to disease management using phytochemicals and peptides sets her apart as a rising talent in biomedical research.

Publication Profile: 

Google Scholar

Scopus

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record:

    • 17 publications including 11 original research, 3 reviews, and 2 book chapters, showcasing depth and breadth.

    • 7 papers as first or corresponding author—indicating independent research capability.

    • Research in high-impact journals like Frontiers in Microbiology, Journal of Ethnopharmacology, Nanomaterials, and Chemistry & Biodiversity.

  2. Innovative & Multidisciplinary Research:

    • Integrates multi-omics, computational modeling, clinical dermatology, and natural products.

    • Focus on oral inflammatory diseases, antimicrobial peptides, and drug delivery systems.

  3. Academic Excellence & Research Training:

    • Ph.D. with 8.90 CGPA, and M.Sc. with 87.07% marks.

    • Expertise in BSL-2+ lab work, PCR, ELISA, microbial culture, and molecular docking.

  4. Awards & Recognition:

    • Lalchand Women Entrepreneurs Award (2024).

    • MSME-Idea Hackathon Innovation Award, Govt. of India.

  5. Global and National Engagement:

    • Life member of the British Society for Antimicrobial Chemotherapy (UK).

    • Demonstrates leadership in science entrepreneurship and women in research.

🛠️ Areas for Improvement:

  1. Expanded International Collaboration:

    • Building long-term research partnerships with international labs could increase global visibility.

  2. Patent/Technology Transfer Efforts:

    • While publications are strong, translating research into patents or commercial products will further strengthen applied impact.

  3. Focused Project Leadership:

    • Leading large interdisciplinary projects or acquiring independent grants will showcase funding leadership.

🎓 Education:

Dr. Alaka Sahoo has pursued a progressive academic path in Biotechnology. She earned her Ph.D. in Biotechnology from the School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan Deemed University, Odisha, completing her research with a notable 8.90 CGPA. Her thesis focused on “Therapeutic Opportunities for Oral Lichen Planus: An Integrated Multi-Omics Approach to Drug Discovery” under the guidance of Prof. (Dr.) Maitreyee Panda. Prior to this, she completed her M.Sc. in Biotechnology (87.07%) from the College of Basic Science and Humanities, OUAT, Bhubaneswar in 2018 and a B.Sc. in Biotechnology with distinction (75%) from Ramadevi Women’s College, Utkal University in 2016. Her academic journey showcases a strong foundation in both theoretical and applied aspects of biosciences.

💼 Experience:

Dr. Alaka Sahoo brings rich hands-on research experience in clinical and experimental biotechnology. She is skilled in BSL-2+ lab practices, molecular techniques like PCR, gel electrophoresis, microbial culture, ELISA-based diagnostics, and bioinformatics. Her doctoral work integrated multi-omics and computational biology to study inflammatory oral diseases, and her postdoctoral research spans drug delivery and antimicrobial drug discovery. As first or corresponding author in 7 out of 17 publications, she has led collaborative studies with both national and international partners. Dr. Sahoo’s cross-disciplinary knowledge in microbiology, pharmacology, and nanomedicine enhances her problem-solving abilities, making her a versatile researcher. Her ability to bridge clinical dermatology with biotechnology research positions her as an impactful contributor in both healthcare and academic environments.

🏆 Awards & Honors:

Dr. Alaka Sahoo has received notable accolades for her innovation and leadership in science. In 2024, she was awarded the Lalchand Women Entrepreneurs Award by the Odisha Corporate Foundation, recognizing her outstanding contributions in biotech innovation. She also earned the MSME-Idea Hackathon 3.0 (Women) Innovation Award by the Government of India, honoring her practical scientific advancements with societal impact. These awards reflect her dedication to translational research and her vision to develop cost-effective, natural therapies. Dr. Sahoo is also a life member of two esteemed organizations: the British Society for Antimicrobial Chemotherapy (UK) and Bioclues Innovation, Research and Development (India). Her achievements signify her rising prominence in the field and her commitment to addressing public health challenges through integrative research.

🔬 Research Focus:

Dr. Alaka Sahoo’s research focuses on oral inflammatory diseases, natural product therapeutics, and insect-derived peptides as alternatives to conventional antimicrobials. Her Ph.D. thesis explored multi-omics approaches for drug discovery in Oral Lichen Planus, integrating in vitro, in silico, and clinical data. Her work spans immunomodulation, anti-inflammatory drug screening, and nanodrug delivery systems, with cross-functional expertise in dermatology, pharmacology, and microbiology. She combines computational modeling, molecular docking, and wet-lab validation to develop target-specific therapies. Her studies on biofilm inhibition, antifungal peptides, and phytosteroids hold promise for tackling antimicrobial resistance. Through collaborations across academia and healthcare, she aims to translate her lab findings into clinically viable solutions. Her contributions to systematic reviews and molecular simulations further demonstrate her analytical rigor and commitment to evidence-based research.

📚 Publications Top Notes:

  1. 📘 Experimental and clinical trial investigations of phytoextracts in Oral Lichen Planus: A systematic review – J Ethnopharmacol (2022)

  2. 🐞 Insect-derived antimicrobial peptides as novel anti-biofilm agents: A systematic review – Front. Microbiol. (2021)

  3. 💊 Ultraflexible liposome nanocargo for dermal drug delivery – Nanomaterials (2021)

  4. 🌿 Phytochemicals for Oral Lichen Planus: A multi-omics and experimental study – Chem Biodivers (2025)

  5. ⚗️ Carbohydrate-derived N-benzyl aminocyclopentitols with anticancer properties – Carbohydr Res. (2025)

  6. 🧬 Target-specific screening of anti-inflammatory phytosteroids using molecular docking – Steroids (2025)

  7. 🧪 Insect-derived antifungal peptides in Candida management – Int. J. Mol. Sci. (2025)

  8. 🧫 Azo-coumarin-Co(II)-galangin hybrids for multipotential activities – J. Biomol. Struct. Dyn. (2024)

  9. 🧒 Pediatric dermatology case analysis in Eastern India – Indian J. Paediatr. Dermatol. (2024)

  10. 🔬 Schiff/Mannich coumarin derivatives: Antibacterial and anti-biofilm evaluation – RSC Adv. (2024)

🧾 Conclusion:

Dr. Alaka Sahoo is highly suitable for the Research for Young Researcher Award. Her multi-disciplinary expertise, robust research record, and recognition through national awards highlight her as a promising early-career scientist. She combines academic rigor with innovation, and her work has meaningful implications for public health, especially in oral disease therapy, biofilm inhibition, and phytochemical-based drug development.