Luminita Paraoan | Cancer Cell Biology | Best Researcher Award

Prof. Dr. Luminita Paraoan | Cancer Cell Biology | Best Researcher Award

Manchester Metropolitan University | United Kingdom

Professor Luminita Paraoan is a leading molecular and ocular cell biologist whose research focuses on the molecular mechanisms underlying retinal pigment epithelium (RPE) function, degeneration, and age-related macular degeneration (AMD). Her pioneering work integrates omics-based analyses, molecular genetics, and cell biology to uncover how cellular stress responses, proteostasis, and intercellular communication contribute to retinal aging and disease. Paraoan has made significant discoveries on endoplasmic reticulum (ER) stress pathways, particularly the PERK/EIF2AK3 axis, and the regulation of apoptosis, oxidative stress, and autophagy in RPE cells. Her studies have also revealed novel insights into p53/p63 effector PERP, Cystatin C, and visual cycle gene regulation in aging and disease contexts. Through collaborative research, she has explored stem cell protection mechanisms, PI3K/AKT signaling inhibition, and multi-omic signatures of aging across cancers and ocular tissues. Supported by over £4 million in external funding, her work has advanced understanding of molecular targets for retinal and neurodegenerative diseases. Professor Paraoan leads the Ocular Molecular Biology and Mechanisms of Disease Group, mentoring numerous postdoctoral and doctoral researchers internationally, and continues to shape the field of vision science and molecular ophthalmology.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Suwanmanee, G., Kheolamai, P., Tantrawatpan, C., Grimes, D., Matei, I. V., Paraoan, L., & Manochantr, S. (2025). Fucoxanthin protects placenta-derived human mesenchymal stem cells against oxidative stress-induced apoptosis by modulating genes involved in DNA damage repair, ER stress response, and p53-induced apoptosis. Stem Cell Research & Therapy, 16(1), 497.

Jantalika, T., Manochantr, S., Kheolamai, P., Tantikanlayaporn, D., Pinlaor, S., Saijuntha, W., Paraoan, L., & Tantrawatpan, C. (2025). Human chorion and placental mesenchymal stem cells conditioned media suppress cell migration and invasion by inhibiting the PI3K/AKT pathway in cholangiocarcinoma. Scientific Reports, 15(1), 31472.

Matei, I. V., & Paraoan, L. (2024). Aging retinal pigmented epithelium: Omics-based insights into vision decline. Aging (Albany NY), 16(12), 10201–10202.

Carlsson, E., Sharif, U., Supharattanasitthi, W., & Paraoan, L. (2023). Analysis of wild type and variant B cystatin C interactome in retinal pigment epithelium cells reveals variant B. Cells, 12(5), 713.

Dhirachaikulpanich, D., Lagger, C., Chatsirisupachai, K., de Magalhães, J. P., & Paraoan, L. (2022). Intercellular communication analysis of the human retinal pigment epithelial and choroidal cells predicts pathways associated with aging, cellular senescence, and age-related macular degeneration. Frontiers in Aging Neuroscience, 14, 1016293.

Saptarshi, N., Porter, L. F., & Paraoan, L. (2022). PERK/EIF2AK3 integrates endoplasmic reticulum stress-induced apoptosis, oxidative stress, and autophagy responses in immortalised retinal pigment epithelial cells. Scientific Reports, 12(1), 13324.

Lei Shi | Tumorigenesis | Distinguished Scientist Award

Mr. Lei Shi | Tumorigenesis | Distinguished Scientist Award

Mr. Lei Shi, Lanzhou University, China

Dr. Lei Shi is a distinguished cancer biologist and molecular pathologist, currently serving as a Professor and Group Leader at the School of Public Health, Lanzhou University, China. With an international career spanning Germany, the UK, and China, Dr. Shi has significantly contributed to our understanding of long non-coding RNAs (lncRNAs), KRAS-mediated tumorigenesis, and lung cancer biology. He earned his Ph.D. from Ludwig Maximilian University of Munich, and completed postdoctoral training at the CRUK Manchester Institute, one of the world’s premier cancer research centers. His interdisciplinary research bridges cancer signaling, immunotherapy, and molecular genetics. Dr. Shi has been the recipient of multiple national and international grants and has authored numerous high-impact publications in journals such as Nature Communications, Molecular Cancer, and Cell Death & Differentiation. His research plays a pivotal role in advancing personalized cancer therapy and diagnostics, making him a strong contender for the Distinguished Scientist Award.

Publication Profile: 

Orcid

Scopus

Strengths for the Award:

  1. Extensive Expertise in Tumorigenesis
    Dr. Shi has built a deep and consistent research track record in lung cancer biology, KRAS signaling, and non-coding RNAs—critical areas in modern tumorigenesis research. His work spans oncogene-driven pathways, epigenetics, and RNA biology, which are all highly relevant to the theme of this award.

  2. Strong International Training and Collaborations
    His academic path includes a Ph.D. in Germany (LMU Munich), a postdoctoral fellowship in the UK (University of Manchester/Cancer Research UK), and leadership in China—demonstrating international impact and collaboration.

  3. Proven Research Leadership
    As a Group Leader and Professor at Lanzhou University, Dr. Shi has led grants from both national and provincial Chinese funding bodies, showcasing strong institutional leadership and research independence.

  4. High-Impact Publications
    Dr. Shi has multiple first-author and corresponding-author publications in top-tier journals like Nature Communications, Molecular Cancer, Cell Death & Differentiation, Cancer Research, and others. This indicates a sustained contribution to scientific knowledge with measurable impact.

  5. Focus on Translational Relevance
    His work on KRAS-mediated tumorigenesis, lncRNAs in cancer, microRNA regulation, and drug resistance directly contributes to potential cancer therapies and diagnostics, aligning with the translational emphasis of many distinguished awards.

  6. Mentorship and Emerging Talent Development
    Multiple publications list junior co-authors under his supervision, showing that he actively mentors young scientists and builds collaborative research teams.

Areas for Improvement:

  1. Broader Recognition in Global Awards
    While Dr. Shi has an impressive research footprint, there is limited mention of international awards, editorial roles, or keynote presentations, which are often considered markers of distinguished global leadership.

  2. Clinical Translation or Patents
    The profile would benefit from stronger clinical application indicators, such as patents, clinical trials, or biotechnology translation, to further demonstrate real-world impact.

  3. Broader Research Diversification
    Although his expertise is deep in KRAS and RNA biology, engaging with emerging areas like AI in cancer research, organoid modeling, or immune-oncology interfaces could amplify his multidisciplinary influence.

Education:

Dr. Lei Shi’s academic journey is deeply rooted in life sciences and molecular pathology. He obtained his Bachelor’s degree in Veterinary Medicine (2003–2007) from Heibei North University, China, followed by a Master’s degree (2007–2010) in Agricultural Microbiology at Huazhong Agricultural University, where he developed his early interest in pathogenic mechanisms. He then pursued his Ph.D. (Dr.rer.nat) in Molecular Pathology (2011–2014) at the Ludwig Maximilian University of Munich, Germany, under the mentorship of Prof. Dr. Heiko Hermeking. His doctoral research explored the transcriptional regulation of tumor suppressors and oncogenes. This academic progression built a solid foundation in molecular oncology, leading to a postdoctoral fellowship (2015–2021) at the Cancer Research UK Manchester Institute and Lung Cancer Centre of Excellence, UK. Dr. Shi’s diverse education has provided him with a global and translational perspective on cancer biology, strengthening his leadership in molecular oncology research today.

Professional Experience:

Dr. Lei Shi is a Professor and Group Leader (2021–present) at Lanzhou University, where he heads translational cancer biology research within the School of Public Health. Prior to this, he held a prestigious Postdoctoral Research Fellow role (2015–2021) at the Cancer Research UK Manchester Institute, affiliated with The University of Manchester. There, he conducted cutting-edge research on KRAS-driven lung cancers, drug resistance mechanisms, and RNA therapeutics. Earlier, he was a Ph.D. researcher (2011–2014) at Ludwig Maximilian University of Munich, delving into the regulatory roles of p53 and lncRNAs. His professional experience reflects a continuum of cancer research from fundamental science to translational applications. Dr. Shi’s team at Lanzhou University is now exploring new therapeutic targets for non-small cell lung cancer and virus-associated cancers. He has secured multiple prestigious national and international grants and is actively mentoring the next generation of cancer researchers in China.

Research Focus:

Dr. Lei Shi’s research centers on the molecular mechanisms of cancer development and progression, with a primary focus on long non-coding RNAs (lncRNAs), KRAS oncogene signaling, and RNA-based therapeutic strategies. His lab investigates how lncRNAs modulate gene expression, interact with microRNAs, and influence tumor microenvironment and immune response, particularly in non-small cell lung cancer (NSCLC) and virus-related malignancies. Dr. Shi is also exploring transcriptional feedback loops, including interactions between HIF1A-AS2 and MYC, to unravel how oncogenic pathways fuel metastasis. His postdoctoral work revealed KRAS-induced microRNA regulation, significantly advancing the understanding of RNA biology in cancer. Dr. Shi’s research integrates bioinformatics, functional genomics, and clinical samples to identify novel biomarkers and therapeutic targets. His contributions are paving the way for precision oncology, making a significant impact on early diagnosis, patient stratification, and drug resistance profiling in solid tumors, especially lung cancer.

Publications Top Notes: 

  1. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy – Molecular Cancer (2025)

  2. Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications – Cell Death & Discovery (2024)

  3. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy – Cancer Gene Therapy (2023)

  4. Long non-coding RNA HIF1A-As2 and MYC form a double positive feedback loop in NSCLC – Cell Death & Differentiation (2023)

  5. Long non-coding RNAs in virus-related cancers – Reviews in Medical Virology (2022)

  6. Prognostic and immunotherapeutic roles of KRAS in Pan-Cancer – Cells (2022)

  7. A KRAS-responsive long non-coding RNA controls microRNA processing – Nature Communications (2021)

  8. Diverse roles of long non-coding RNA in viral diseases – Reviews in Medical Virology (2020)

  9. Vulnerability of drug-resistant EML4-ALK lung cancer to transcriptional inhibition – EMBO Mol Med (2020)

  10. KRAS induces lung tumorigenesis through microRNAs modulation – Cell Death & Disease (2018)

  11. The immunological and prognostic landscape of TFAP4 in cancer (scRNA-seq study) – Archives of Biochemistry and Biophysics (2025)

Conclusion:

Dr. Lei Shi is highly suitable for the Distinguished Scientist Award in Tumorigenesis Research. His exceptional publication record, international training, leadership in cancer biology, and dedication to translational science make him a standout candidate. With ongoing contributions and future expansion into cross-disciplinary domains, his research trajectory is aligned with the highest standards of scientific distinction.

Alma Burlingame | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Alma Burlingame | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Alma Burlingame , UCSF , United States

Alma L. Burlingame is a distinguished Professor of Chemistry and Pharmaceutical Chemistry at the University of California, San Francisco. She has over five decades of experience in the fields of mass spectrometry, proteomics, and systems biology. With expertise in the identification and study of unknown proteins and post-translational modifications like phosphorylation, acetylation, and glycosylation, her work has contributed significantly to understanding protein dynamics. Dr. Burlingame has been a pioneer in proximity-biotin labeling for protein complex discovery and has earned widespread recognition for her interdisciplinary contributions to molecular biology and chemistry. Her long-standing collaboration with various international research institutions has fostered advancements in protein interaction and cellular signaling pathways, marking her as a leader in her field.

Publication Profile:

Scopus

Strengths for the Award:

  1. Innovative Contributions: Dr. Burlingame has made significant contributions to mass spectrometry, proteomics, and systems biology, especially in the development of new methodologies for protein analysis and post-translational modifications. Her work in identifying and studying unknown proteins and their modifications has broadened the scope of proteomics.

  2. Multidisciplinary Expertise: Her expertise spans across various fields including chemistry, physics, biological sciences, and medicine, demonstrating her versatility and depth of knowledge in complex scientific issues.

  3. Impact on the Scientific Community: Through her extensive publication record and influential research, Dr. Burlingame has advanced our understanding of protein dynamics, cell signaling, and the role of glycosylation and phosphorylation in health and disease.

  4. Leadership and Mentorship: Dr. Burlingame’s leadership roles, particularly as a co-chair of major international symposia, reflect her stature in the scientific community. Additionally, her mentorship of students and postdocs has helped shape the next generation of scientists in proteomics and systems biology.

Areas for Improvement:

  1. Broader Collaboration with Clinical Applications: While Dr. Burlingame’s research is foundational in proteomics, further expansion of collaborative work with clinical researchers could enhance the practical application of her discoveries, particularly in disease diagnosis and therapeutics.

  2. Public Outreach: Given the complexity of her research, efforts to communicate her findings to broader audiences could help bridge the gap between academic research and public understanding of the significance of proteomics in health.

Education:

Dr. Burlingame earned her Bachelor of Science degree from the University of Rhode Island in 1959. She went on to complete her PhD in Chemistry and Physics at the Massachusetts Institute of Technology (MIT) in 1962. She further honed her scientific expertise as a Guggenheim Fellow at the Karolinska Institute in Stockholm, Sweden, in 1972, specializing in Physiological Chemistry. Over the years, Dr. Burlingame has continued to advance her education, conducting cutting-edge research in the realms of mass spectrometry, proteomics, and the study of post-translational modifications. Her rigorous academic background, combined with her groundbreaking work, has made her a respected figure in biochemistry and molecular biology.

Experience:

Dr. Burlingame has held several prominent positions throughout her distinguished career. She currently serves as a Professor of Chemistry and Pharmaceutical Chemistry at the University of California, San Francisco. She has also held significant roles such as a University Fellow at Hong Kong Baptist University and Professor of Biochemistry at University College London. Dr. Burlingame has been recognized by the American Association for the Advancement of Science and has been an elected Fellow since 1990. Her professional journey includes visiting professorships at leading institutions such as the Ludwig Institute for Cancer Research. Additionally, she has co-chaired major international symposia on mass spectrometry, enhancing her reputation in the global scientific community. Her leadership and influence in research have made her a pivotal figure in mass spectrometry and proteomics.

Awards and Honors:

Dr. Burlingame has earned numerous prestigious honors throughout her career. In 2018, she was awarded the Albert Nelson Marquis Lifetime Achievement Award for her long-standing contributions to scientific research. She was named a Fellow of the American Society of Biochemistry and Molecular Biology in 2022. Her significant achievements were further recognized when she received the MCP Lectureship Plenary Award at the Society for Glycobiology in 2013. Additionally, she was honored with the Achievement Award from the International Forum of Proteomics in 2012 for her impactful work in proteomics. Her longstanding contributions to the field of mass spectrometry have made her an internationally respected leader, and she continues to inspire future generations of scientists.

Research Focus:

Dr. Burlingame’s research focuses on mass spectrometry, proteomics, and systems biology, with a specific emphasis on protein sequencing, identification, and the dynamics of post-translational modifications (PTMs). She has made significant contributions to understanding the site-specific dynamics of PTMs like phosphorylation, acetylation, and glycosylation, and their roles in cell signaling and differentiation. Her group is particularly known for its work in proximity-biotin labeling, a technique used for protein complex discovery and interactomics. She has also studied the dynamic nature of proteins involved in cellular processes such as protein synthesis, cell signaling, and differentiation. By studying how PTMs influence cellular functions, Dr. Burlingame’s work helps to uncover mechanisms underlying diseases like cancer and neurological disorders. Her innovative approaches in mass spectrometry and proteomics continue to influence the understanding of complex biological systems.

Publications Top Notes:

  1. Revealing nascent proteomics in signaling pathways and cell differentiation 🧬🔬

  2. Locally translated mTOR controls axonal local translation in nerve injury 🧠💥

  3. Mapping axon initial segment structure and function by multiplexed proximity biotinylation 🧬⚡

  4. Capture, release, and identification of newly synthesized proteins for improved profiling of functional translatomes 🔍🔬

  5. Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma 💉🧠

  6. Functional screen identifies RBM42 as a mediator of oncogenic mRNA translation specificity 🧬🔍

  7. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation 🔑🧬

  8. TRIM46 Is Required for Microtubule Fasciculation In Vivo But Not Axon Specification or Axon Initial Segment Formation 🧠⚙️

  9. RAPIDASH: Tag-free enrichment of ribosome-associated proteins reveals composition dynamics in embryonic tissue, cancer cells, and macrophages 🧬📊

  10. Remodelling of the translatome controls diet and its impact on tumorigenesis 🥗🎯

Conclusion:

Dr. Alma Burlingame is undoubtedly a leading figure in the fields of mass spectrometry and proteomics. Her innovative research, mentorship, and contributions to the understanding of protein modifications and their implications for health make her a highly deserving candidate for the Best Researcher Award. Her work has had a profound and lasting impact on molecular biology, and she continues to be a driving force in scientific discovery.