Dominique Heymann | Cancer Cell Biology | Best Researcher Award

Prof. Dr. Dominique Heymann | Cancer Cell Biology | Best Researcher Award

Prof. Dr. Dominique Heymann , Nantes Université, CNRS, Institut de Cancérologie de l”Ouest , France

Professor Dominique Heymann is a highly esteemed academic and clinician, specializing in histology, embryology, and oncology. He is a Professor at Nantes University, France, and a Hospital Practitioner at the ICO Cancer Centre. With a wealth of experience in bone oncology and cancer research, he is also an Honorary Professor at the University of Sheffield, UK. His expertise spans from cell biology to immunology and biochemistry, and he is dedicated to advancing cancer research, particularly in the field of bone tumors and osteosarcoma. With numerous publications to his name and contributions to the global scientific community, Professor Heymann is recognized for his groundbreaking work in cell signaling and tumor progression. He is a valued researcher in the oncology community, with a strong focus on developing innovative therapies for cancer treatment.

Publication Profile:

Google Scholar

Strengths for the Award:

Professor Dominique Heymann is a distinguished figure in the field of oncology, particularly bone oncology, with a strong focus on the molecular mechanisms of bone tumors like osteosarcoma. His academic and clinical roles at the University of Nantes and the ICO Cancer Centre underscore his leadership in research and patient care. He has contributed significantly to understanding tumor biology, bone remodeling, and regenerative medicine, making him a highly respected expert in these fields. His research addresses crucial topics such as circulating tumor cells, targeted therapies, and the development of new anticancer agents, all of which are of immense value to advancing cancer treatment. With multiple publications in prestigious journals, including studies on novel therapies and molecular pathways in cancer progression, Professor Heymann has demonstrated exceptional scientific rigor. His global collaborations and recognition further establish him as a leading researcher in cancer biology and oncology.

Areas for Improvements:

Despite his numerous contributions, there are a few areas where Professor Heymann’s research could evolve. While he has made notable strides in cancer treatment and bone oncology, expanding research into more personalized medicine approaches and exploring the integration of AI and machine learning in predictive oncology could enhance the applicability of his findings. Furthermore, increasing collaborative efforts with international interdisciplinary teams could yield broader insights, especially in rare cancers and metastasis research. Developing a more extensive outreach to clinical trials and collaborations in broader regions may also allow for faster translation of his research into practice.

Education:

Professor Heymann began his academic journey at Paris VII University, where he earned a Master’s degree in Cell Biology in 1991. His PhD in Cell Biology and Immunology was completed at Nantes University in 1995, a pivotal moment in his career. Further expanding his knowledge, he pursued research management abilities and a deeper focus on Biochemistry and Cell Biology at Nantes University in 1998. He also received specialized certification in Histology from Nantes University in 1999 and later completed the required authorizations for animal experimentation in 2003 and 2016. Throughout his academic career, Professor Heymann has continually updated his qualifications, ensuring his expertise remains at the cutting edge of medical and biological sciences. His academic foundation has underpinned his significant contributions to cancer research, with a strong emphasis on bone oncology and regenerative medicine.

Experience:

Professor Dominique Heymann has an extensive and diverse career spanning several decades in both academic and clinical settings. Currently, he serves as a Professor of Histology/Embryology at Nantes University and as a Hospital Practitioner at the ICO Cancer Centre, where he is instrumental in patient care and research. His professional trajectory includes significant roles in oncology, particularly focused on bone tumors, osteosarcoma, and regenerative medicine. As an Honorary Professor at the University of Sheffield, he extends his influence beyond France, fostering international collaboration in cancer research. Professor Heymann has been a prominent figure in multiple research projects, having managed and contributed to groundbreaking studies. His expertise in cancer biology, combined with his academic roles, has allowed him to mentor students and researchers, shaping the next generation of scientists. His dual role in academia and clinical practice makes him a leading figure in both spheres.

Awards and Honors:

Professor Dominique Heymann’s career is adorned with numerous accolades and honors. As a tenured professor at the University of Nantes, he has received recognition for his contributions to histology, embryology, and oncology. He was appointed as an Honorary Professor in Bone Oncology at the University of Sheffield, UK, an esteemed acknowledgment of his expertise in the field. His work in cancer research, particularly related to bone tumors, has earned him international recognition, and his published studies continue to be highly regarded in scientific journals. Additionally, Professor Heymann has contributed significantly to the understanding of osteosarcoma and bone regeneration, which has earned him awards from academic and clinical societies. His continuous impact in advancing the field through groundbreaking research, leadership in clinical oncology, and educational contributions has made him a highly respected figure in the medical and scientific communities.

Research Focus:

Professor Dominique Heymann’s research is focused on cancer, particularly bone tumors such as osteosarcoma, and the molecular mechanisms involved in bone regeneration. His work primarily investigates the signaling pathways that control bone remodeling, the interactions between tumor cells and the microenvironment, and the role of immune responses in bone diseases. One of his key research interests is the development of targeted therapies to combat cancer progression, with a special emphasis on novel anticancer agents, including glycosaminoglycan-mimetic compounds derived from marine bacterial exopolysaccharides. In addition, Professor Heymann is dedicated to studying the role of circulating tumor cells as predictive markers for drug resistance and tumor progression. His expertise also includes stem cell therapies, autophagy in osteoblasts, and the potential for therapeutic applications in bone repair and regeneration. His research aims to improve patient outcomes through innovative approaches in cancer treatment and bone health.

Publications Top Notes:

  • Heymann D, Muñoz-Garcia J, Babuty A, et al. A new promising anticancer agent: a glycosaminoglycan-mimetic derived from the marine bacterial infernan exopolysaccharide. Int J Biol Macromol. (in press) 🧬

  • Jacquot P, Muñoz-Garcia J, Léger A, et al. A multispecific checkpoint inhibitor Nanofitin with a fast tumor accumulation property and antitumor activity in immune competent mice. Biomolecules. (in press) 🔬

  • Yadav P, Heymann D, Prasad RN. Circulating tumor cells: a predictive marker for drug resistance and tumor progression. Front Oncol. (in press) 🔬

  • Muñoz-Garcia J, et al. Interleukin-34 orchestrates bone formation through its binding to Bone Morphogenic Proteins. Theranostics. 2025; 15(7):3185-3202. 🦴

  • Young RJ, et al. CIRCUS: CIRCUlating tumor cells in soft tissue Sarcoma – a short report. Cancer Drug Resist. 2022; 4:51. 💉

  • Oliver L, et al. Transcriptional landscape of the interaction of human mesenchymal stem cells with glioblastoma in bioprinted co-cultures. Stem Cell Res Ther. 2024; 15(1):424. 🧫

  • Cordova LA, et al. Why are osteoporosis patients treated with antiresorptive therapies considered like oncology patients regarding their oral health care? Osteoporos Int. 2024; 35(9):1677-1678. 🦷

  • Childs A, et al. A prospective observational cohort study for newly diagnosed patients in the UK: ICONIC study initial results. Cancers (Basel). 2024; 16(13):2351. 📊

  • Rey V, et al. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine. 2024; 102:105090. 🧬

  • Jubelin C, et al. Identification of MCM4 and PKRDC as new regulators of osteosarcoma cell dormancy based on 3D cultures. BBA Mol Cell Res. 2024; 1871:119660. 🧪

Conclusion:

Professor Dominique Heymann’s expertise in oncology, histology, and embryology positions him as an outstanding candidate for the Research for Best Researcher Award. His achievements in cancer research, particularly in bone tumors, and his contributions to advancing the understanding of tumor biology make him an exemplary figure. While there are areas to expand in terms of interdisciplinary collaborations and technological integration, his exceptional body of work and his dedication to both academic excellence and clinical practice make him a deserving candidate for this prestigious award.

Chang Feng | Cancer Cell Biology | Best Researcher Award

Dr. Chang Feng | Cancer Cell Biology | Best Researcher Award

Dr. Chang Feng , Shanghai University , China

Chang Feng is a distinguished researcher in the fields of tumor molecular diagnosis, biosensing, and intelligent DNA. Born in Shanghai, China, on January 1, 1988, Chang Feng pursued a rigorous academic journey, completing his Ph.D. at Nanjing University (2015-2019) after earning his M.D. from Shanghai University (2012-2015). He is currently a lecturer at Shanghai University since 2019. Feng has contributed significantly to scientific advancements in cancer diagnostics, molecular biosensors, and cutting-edge DNA research. His works often involve the development of innovative detection techniques and the creation of novel DNA-based diagnostic systems. Feng has a collaborative approach, working with multiple researchers to achieve groundbreaking results. His publications in prestigious journals highlight his expertise in developing biosensors, RNA origami, and catalytic DNAzymes for biomedical applications.

Publication Profile: 

Scopus

Strengths for the Award:

Chang Feng’s research is exceptional and well-suited for the Best Researcher Award. His expertise spans across tumor molecular diagnosis, biosensor development, and intelligent DNA systems. His contributions to cancer diagnostics, bioimaging, and biosensing technologies are groundbreaking. Feng has published several high-impact articles in leading journals, demonstrating significant advancements in DNAzymes, electrochemical biosensing, and RNA origami. His work in designing innovative DNA-based diagnostic platforms and cancer therapies reflects his ability to integrate chemistry, biology, and engineering, providing novel solutions for clinical applications. Feng’s interdisciplinary approach and leadership in the field have earned him numerous collaborations with researchers and institutions globally, further enhancing his credibility as a top-tier researcher.

Areas for Improvements:

While Feng has made remarkable contributions to scientific research, one area for improvement is expanding his focus to more clinical applications of his findings. Commercializing his biosensing technologies for real-world healthcare implementation would increase the practical impact of his work. Additionally, improving outreach through public science communication could help raise awareness of his advancements and engage a broader audience.

Education:

Chang Feng received his M.D. from Shanghai University in 2015, where he developed a strong foundation in molecular biology, diagnostics, and bioengineering. His doctoral journey continued at Nanjing University (2015-2019), where he obtained his Ph.D. focusing on tumor molecular diagnosis and biosensing technologies. During his time at Nanjing University, Feng’s research concentrated on the development of DNA-based biosensors and new methodologies for cancer detection. His education at these esteemed institutions provided him with the technical expertise necessary to pioneer groundbreaking research in the field of molecular diagnostics. Feng’s academic training involved rigorous coursework in molecular biology, chemical engineering, and bioinformatics, contributing significantly to his current work in bioimaging, biosensing, and the development of intelligent DNA systems.

Experience:

Chang Feng has a strong academic and research career, currently serving as a lecturer at Shanghai University since 2019. Prior to his current role, he earned his Ph.D. at Nanjing University (2015-2019) and M.D. from Shanghai University (2012-2015). Throughout his career, Feng has collaborated with leading researchers, contributing to the development of innovative biosensing technologies and cancer diagnostics. His work includes advancing DNA-based biosensors, DNAzyme probes, and other cutting-edge diagnostic tools. As a lecturer, Feng mentors graduate students and participates in academic teaching and research projects. He has been involved in several collaborative publications that have furthered the field of molecular biosensors, focusing on intelligent DNA-based systems and tumor detection methodologies. Feng’s research experience combines theoretical knowledge with practical applications, making him a recognized figure in the field of biosensor research and molecular diagnostics.

Research Focus:

Chang Feng’s primary research focus lies in tumor molecular diagnosis, biosensor development, and intelligent DNA systems. He is particularly interested in advancing technologies for cancer detection through the application of molecular biosensors, bioimaging, and intelligent DNA devices. His research explores the use of DNAzymes, catalytic DNA molecules, and RNA origami for targeted molecular detection, with a focus on enhancing the sensitivity and specificity of cancer diagnostics. Feng’s work also investigates the use of biosensors for the detection of small molecules, leveraging innovative electrochemical and fluorescence-based platforms. His interdisciplinary approach combines elements of chemistry, biology, and engineering to create advanced diagnostic systems with potential clinical applications. Feng is dedicated to improving the efficiency of diagnostic tools and is committed to developing more accurate and faster methods for early cancer detection and molecular analysis.

Publications Top Notes:

  1. Single-cell analysis of highly metastatic circulating tumor cells by combining a self-folding induced release reaction with a cell capture microchip 🧬🔬 (Anal. Chem., 2021)
  2. Hierarchical biomarkers detection via a universal polydopamine probe catalyzed by a hexagonal star-nanostructured DNAzyme 🔬🧪 (Sensor. Actuat. B-Chem., 2022)
  3. Construction of a ternary complex based DNA logic nanomachine for a highly accurate imaging analysis of cancer cells 🧬💡 (ACS Sens., 2020)
  4. Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer 🧬🦠 (Nat. Commun., 2023)
  5. Liquid-colloid-solid modular assembly for three-dimensional electrochemical biosensing of small molecules 💧⚡ (Biosens. Bioelectron., 2024)
  6. Dual-targets binding protection mediated rolling circle transcription with tandem fluorescent RNA aptamers for label-free detection of liver cancer biomarkers 🧬🦠 (Sensor. Actuat. B-Chem., 2024)
  7. Cell-Free Biosensing Genetic Circuit Coupled with Ribozyme Cleavage Reaction for Rapid and Sensitive Detection of Small Molecules 🧬⚡ (ACS Synth. Biol., 2023)
  8. A portable and partitioned DNA hydrogel chip for multitarget detection 💧🧬 (Lab Chip., 2023)

Conclusion:

Chang Feng’s research in tumor molecular diagnostics, biosensors, and intelligent DNA is truly cutting-edge. His scientific rigor, collaboration with top researchers, and groundbreaking discoveries in cancer detection and biosensing technologies make him a deserving candidate for the Best Researcher Award. By continuing to bridge the gap between laboratory research and clinical applications, Feng will likely have an even greater impact in advancing medical diagnostics and therapeutic strategies.