Frédérique Pasquali | Microbial Cell Biology | Women Researcher Award

Dr. Frédérique Pasquali | Microbial Cell Biology | Women Researcher Award

Dr. Frédérique Pasquali | Alma Mater Studiorum – University of Bologna | Italy

Dr. Frédérique Pasquali is a Junior Assistant Professor at the Alma Mater Studiorum – University of Bologna. She is an expert in microbial food safety and molecular microbiology, with a focus on the genetic and environmental dynamics of foodborne pathogens. Her research integrates metagenomics, antimicrobial resistance monitoring, and source attribution modeling to advance microbial traceability and public health surveillance. She has made notable contributions through high-impact publications and interdisciplinary collaborations with international institutions and organizations, including EFSA. Dr. Pasquali is known for her leadership within academic programs, particularly in food risk management, and her active involvement in European scientific panels. Her career reflects a commitment to scientific excellence and the promotion of food safety in both research and policy settings.

Publication profile:

scopus

 🌟Strengths for the Award :

  • Outstanding Research Portfolio: Dr. Pasquali has an impressive publication record in high-impact journals such as Nature Communications, Scientific Reports, and Frontiers in Microbiology, showcasing deep expertise in microbial genomics, antimicrobial resistance, and source attribution.

  • Relevance and Innovation: Her recent work on sewage metagenomics offers innovative tools for source-attributed surveillance—a timely and impactful contribution to public health and environmental monitoring.

  • Leadership & Academic Involvement: As a Vice-representative of a master’s program in food risk management, she demonstrates strong educational leadership. Her selection to the EFSA reserve list of experts further emphasizes her scientific authority at the European level.

  • Collaborative and Interdisciplinary Work: Active in international consortia and multidisciplinary studies, she bridges the gap between microbial science, risk management, and policy implementation.

  • Recognition & Achievements: Her best poster award at the 34th EAEVE conference and national habilitation for associate professor signify peer recognition and potential for academic advancement.

🔧Areas for Improvement :

  • Visibility as Principal Investigator: While she contributes significantly to consortium papers, increased PI-level leadership in grants and first/last authorships could further solidify her independence as a researcher.

  • Mentorship Documentation: While involved in education, more formal documentation or evidence of mentoring early-career researchers, especially women in STEM, would strengthen her nomination for a gender-focused award.

  • Policy Impact Metrics: While aligned with EFSA, showcasing more direct outcomes or influence on policy would highlight broader societal impacts of her work.

🎓 Education:

Dr. Pasquali earned her Bachelor of Science in Biology in March 2000 from the University of Bologna, where she continued her studies to complete a PhD in Molecular Microbiology in April 2005. Her doctoral work laid the foundation for her expertise in bacterial genomics and microbial ecology. Following her PhD, she pursued postdoctoral research in microbial foodborne traceability, finishing in September 2009. Her academic journey has been deeply rooted in the University of Bologna, one of Europe’s most historic institutions, where she developed a robust understanding of microbial interactions, food safety, and biotechnology. Throughout her education, she engaged in interdisciplinary work that combined microbiology, bioinformatics, and public health. Her academic credentials reflect a long-standing dedication to research and a commitment to solving real-world challenges in food microbiology and safety.

🧪 Experience:

Dr. Pasquali currently serves as Junior Assistant Professor at the University of Bologna, where she plays a key role in teaching and research. Since 2025, she has been Vice-Representative of the Curriculum of Risk Management in the Master’s program in Food Safety and Food Risk Management. Her professional experience spans more than 20 years, including extensive work on microbial source attribution, antimicrobial resistance, and metagenomics. She has collaborated on several European-level research initiatives and actively contributes to EFSA panels and committees. Her previous roles include postdoctoral research in microbial traceability, contributing to national and international food safety surveillance strategies. Her work bridges science and policy, enabling data-driven decision-making in food safety. She also plays an active mentorship role, fostering the next generation of microbiologists. Her combination of teaching, research, and policy advisory experience positions her as a respected leader in her field.

🏆 Awards and Honors:

Dr. Frédérique Pasquali has been recognized with multiple awards and honors throughout her career. In 2021, she received the Best Poster Award at the 34th European Association of Establishments for Veterinary Education (EAEVE) conference held at the University of Turin. In 2017, she obtained the National Scientific Qualification for Associate Professor (07/H2 – SSD MVET02/B) in Italy, marking her academic excellence and eligibility for advanced faculty positions. In 2023, she was listed in the EFSA/E/2023/01 reserve pool for experts eligible to serve on EFSA Scientific Panels and the Scientific Committee. As of 2024, she continues to serve on the EFSA reserve list, reinforcing her status as a recognized authority in food safety and risk analysis. These accolades reflect her continued dedication to high-quality research and public health protection through science-based risk management.

🔬 Research Focus:

Dr. Pasquali’s research focuses on the microbial ecology and genomics of foodborne pathogens, with a special interest in antimicrobial resistance and microbial traceability. She utilizes metagenomic time-series analysis to distinguish environmental, human, and seasonal microbial profiles, aiding in accurate source attribution. Her work contributes to developing early-warning systems for foodborne outbreaks by integrating big data with network modeling. She is particularly interested in the genomic evolution of pathogens like Salmonella Typhimurium and Klebsiella, including their resistomes and persistence in food processing environments. Her contributions to One Health approaches link microbial data with public health and environmental surveillance. She actively collaborates with EFSA and international research teams to bridge gaps between research and policy, aiming to improve food safety, antimicrobial stewardship, and surveillance methodologies.

📚 Publication Titles Top Notes:

  1. 🧫 Time-series sewage metagenomics distinguishes seasonal, human-derived and environmental microbial communities potentially allowing source-attributed surveillance (Nat Commun, 2024)

  2. 🧬 Genomic features of Klebsiella isolates from artisanal ready-to-eat food production facilities (Sci Rep, 2023)

  3. 🐔 The resistome of commensal Escherichia coli isolated from broiler carcasses “produced without the use of antibiotics” (Poultry Science, 2022)

  4. 🦠 The spatiotemporal dynamics and microevolution events that favored the success of the highly clonal multidrug-resistant monophasic Salmonella Typhimurium circulating in Europe (Front Microbiol, 2021)

  5. 🕸 Network Approach to Source Attribution of Salmonella enterica Serovar Typhimurium and Its Monophasic Variant (Front Microbiol, 2020)

Conclusion :

Dr. Frédérique Pasquali is a highly suitable candidate for the Research for Women Researcher Award. Her work is scientifically rigorous, socially relevant, and internationally recognized. She embodies the spirit of this award through her contributions to food safety, her role in shaping future professionals, and her presence in European scientific governance. With continued support and visibility, she is poised to make even greater contributions to science and public health.

 

Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng , Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences , China

Dr. Jie Feng is a distinguished researcher with significant contributions in the fields of edible fungi, biotechnology, and bioactive compounds, particularly focusing on the production and application of polysaccharides from medicinal mushrooms like Ganoderma lucidum. With a background in food chemistry and microbiology, Dr. Feng’s work bridges the gap between traditional medicine and modern industrial applications. He has developed innovative submerged fermentation techniques to improve the production of high molecular weight polysaccharides, optimizing their bioactivity for medical, nutritional, and functional food industries. His interdisciplinary research integrates microbiological methods with biotechnology, contributing to more efficient and scalable production processes. With a collaborative spirit, Dr. Feng has worked extensively with institutions across China and abroad, fostering international research partnerships. His work is widely recognized for its potential in enhancing the nutritional value and therapeutic properties of fungi-derived products, improving human health globally.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Innovative Approach: The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum (GLPs) demonstrates a significant advancement in the production of bioactive compounds with consistent quality. The focus on directed fermentation to improve yields and polysaccharide structure showcases an innovative approach in the field of food chemistry and biotechnological applications.
  2. Relevance and Market Impact: The study is highly relevant to the growing demand for functional ingredients and bioactive compounds from Ganoderma lucidum, especially in pharmaceuticals and functional foods. It addresses industry challenges such as low yield, unstable quality, and long cultivation times in traditional methods. The ability to produce high MW polysaccharides efficiently through submerged fermentation is an essential breakthrough for large-scale applications.
  3. Strong Multi-Disciplinary Expertise: The authors come from a range of institutions (Shanghai Academy of Agricultural Sciences, University of Shanghai for Science and Technology, and the Institute of General and Physical Chemistry in Belgrade), showing the successful collaboration of experts in food microbiology, fermentation science, chemistry, and biotechnology. This interdisciplinary teamwork strengthens the credibility and quality of the research.
  4. Contribution to Bioactivity Understanding: The research contributes to the deeper understanding of the structure-function relationships of GLPs, particularly the immunostimulatory effects of the β-glucan polysaccharides. This opens doors for further investigations into the therapeutic potential of Ganoderma lucidum.
  5. Impact on Biotechnological Production: The controlled conditions of submerged fermentation could offer a more reliable, scalable, and efficient method to produce high-quality polysaccharides for diverse applications, especially in the pharmaceutical and functional food industries.

Areas for Improvement:

  1. Long-Term Stability and Variability: While the research focuses on improving the consistency of high molecular weight polysaccharides, it would be beneficial to explore the long-term stability of the production system and any batch-to-batch variability that could affect commercial scalability. Further exploration of how fermentation scale impacts long-term product stability would be important for real-world industrial applications.
  2. Environmental and Economic Considerations: In an industrial setting, the economic viability and environmental impact of submerged fermentation should be explored further. Incorporating life cycle assessments or a comparison of the economic aspects (e.g., cost-efficiency, energy consumption) of submerged fermentation versus traditional cultivation could provide a more comprehensive analysis of the approach’s benefits.
  3. Further Structural Elucidation of Polysaccharides: The study briefly mentions the structural aspects of the polysaccharides (β-glucan backbone), but further detailed analysis of the molecular configuration and any possible modifications during fermentation could provide additional insights into their bioactivity and potential for therapeutic use.
  4. Exploring Broader Applications: Expanding the research to explore how the produced GLPs interact with other bioactive compounds or their broader applications in nutrition and functional foods could enhance the scope of the work. It could also lead to exploring synergistic effects in combination with other ingredients in the food or pharmaceutical industries.

Education:

Dr. Jie Feng holds a Ph.D. in Food Science from Shanghai Academy of Agricultural Sciences, China, where he specialized in the biotechnology of edible fungi and fermentation processes. Before obtaining his doctoral degree, he completed his Master’s in Microbiology from the University of Shanghai for Science and Technology, focusing on the optimization of microbial fermentation. Throughout his academic journey, Dr. Feng demonstrated a keen interest in microbiology, biotechnology, and food chemistry, working on various projects that explored the bioactive properties of polysaccharides and their applications in functional foods. His doctoral research laid the foundation for innovative submerged fermentation processes for producing high molecular weight polysaccharides. His education reflects a deep understanding of both the theoretical and practical aspects of microbiology and biotechnological applications in food production, setting him apart as an expert in his field.

Experience:

Dr. Jie Feng has a rich academic and research experience in the fields of food science and biotechnology. He has worked as a lead researcher at the Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, where he led groundbreaking projects on the production of high molecular weight polysaccharides from Ganoderma lucidum. In addition to his work in submerged fermentation, Dr. Feng has also contributed to the advancement of biotechnological methods for improving the nutritional and bioactive properties of medicinal mushrooms. His work has been recognized internationally for its impact on functional food development and the medical industry. As a collaborator, Dr. Feng has worked with institutions like the University of Shanghai for Science and Technology and the Institute of General and Physical Chemistry, Belgrade, Serbia. His experience extends to both laboratory research and applied industrial processes, making him a versatile scientist and leader in his field.

Research Focus:

Dr. Jie Feng’s primary research focus is on the biotechnological production of high molecular weight polysaccharides from medicinal fungi, particularly Ganoderma lucidum. His work emphasizes submerged fermentation, a method that allows for precise control over the growth conditions of fungi, enabling the production of structurally defined bioactive polysaccharides. These polysaccharides are of great interest for their potential applications in pharmaceuticals, nutraceuticals, and functional foods. Dr. Feng’s research also investigates the optimization of fermentation parameters such as pH, nutrient supply, and oxygen levels to improve yield and consistency, addressing challenges faced in traditional cultivation methods. His work in the molecular structure and bioactivity of polysaccharides has implications for improving immune response and gut health, along with broader medicinal benefits. Additionally, Dr. Feng’s research aims to enhance the sustainability and scalability of polysaccharide production for industrial applications, making his research pivotal in the fields of functional foods and biotechnology.

Publications Top Notes:

  1. “Innovative Submerged Directed Fermentation: Producing High Molecular Weight Polysaccharides from Ganoderma lucidum” 🍄🔬
  2. “Regulation of Enzymes and Genes for Polysaccharide Synthesis in Ganoderma lucidum” 🧬🍄
  3. “Optimization of Submerged Fermentation for Ganoderma lucidum Polysaccharides” ⏱️🍄
  4. “Improving Immunostimulatory Effects of Ganoderma lucidum Polysaccharides” 💪🍄
  5. “Co-culture Fermentation of Ganoderma lucidum and Beneficial Microorganisms” 🤝🍄
  6. “Enhancing Quality and Yield of Functional Foods from Ganoderma lucidum” 🥗💊
  7. “Fermentation Process Development for Industrial-Scale Production of Polysaccharides” 🏭🔬

Conclusion:

The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum represents a significant step forward in the bioengineering of functional ingredients. It provides a reliable, scalable method for producing bioactive compounds with consistent quality, directly addressing challenges in the production of GLPs. The integration of various expertise from the fields of microbiology, food chemistry, and biotechnology enhances the credibility and applicability of the research. While there are areas for improvement, especially in terms of long-term scalability, economic analysis, and further structural elucidation, the work has great potential to influence both industrial practices and the broader scientific community.