Kwaghgba Elijah Gbabe | Cell Structure Analysis | Best Researcher Award

Dr. Kwaghgba Elijah Gbabe | Cell Structure Analysis | Best Researcher Award

Dr. Kwaghgba Elijah Gbabe | Nigerian Stored Products Research Institute | Nigeria

Engr. Dr. Kwaghgba Elijah Gbabe is a seasoned Senior Research Officer at the Nigerian Stored Products Research Institute (NSPRI), Ilorin, Nigeria. With over nine years of progressive research experience, he specializes in food processing, postharvest technology, and agricultural nanotechnology. He is a trailblazer in developing electrospun hexanal nanofiber matrices aimed at extending the shelf-life of fruits such as bananas, mangoes, and tomatoes. His research integrates innovative preservation technologies to enhance food quality and sustainability. A COREN-certified engineer and postgraduate fellow, Dr. Gbabe has collaborated internationally, notably with the Centre for Agricultural Nanotechnology in India. With extensive publications and conference contributions, he is an advocate of research-driven food security and sustainable packaging. He brings a multidisciplinary edge to the evolving field of agricultural innovation, focusing on reducing postharvest losses and increasing storage efficiency in sub-Saharan Africa.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Innovative Research in Agricultural Nanotechnology

    • Pioneered the development of electrospun hexanal nanofiber matrices for fruit shelf-life extension — an emerging and impactful technology in food preservation.

  2. Strong Publication Record 

    • Over a dozen peer-reviewed journal articles and conference papers published across international and national platforms with DOIs, indicating high-quality scholarly contribution.

  3. Hands-On International Collaboration 

    • Completed a research internship at TNAU, India, and collaborated with renowned global experts like Prof. K.S. Subramanian in nanoscience.

  4. Multi-disciplinary Skills 

    • Expertise in advanced instrumentation (FTIR, GC-MS, SEM, TEM) and statistical tools (R, SPSS) shows broad technical competence.

  5. Real-world Application & Societal Impact 

    • Focuses on postharvest technologies to reduce food losses, enhance food safety, and support smallholder farmers and artisans.

  6. Leadership and Mentorship

    • Supervises junior staff, fabricators, and trainees, and contributes to capacity building through training workshops.

  7. Recognized Academic Achievement 

    • Recipient of the Benue State University Postgraduate Fellowship (2020–2025).

Areas for Improvement:

  1. Technology Commercialization and Patenting

    • While research output is strong, translating research into commercial products or patents could increase impact.

  2. Broader International Visibility

    • Participation in more international consortia or grants (e.g., EU Horizon, USAID, FAO) could elevate the global footprint.

  3. Expanded Multidisciplinary Outreach

    • Could integrate more with biotech and AI in agri-research, especially in smart packaging and AI-driven postharvest solutions.

Education:

Dr. Gbabe is currently pursuing his Ph.D. in Food Processing and Technology at Benue State University, Makurdi (2020–2025), with a research focus on developing electrospun hexanal nanofiber matrices for fruit preservation. He holds a Master of Engineering in Agricultural and Environmental Engineering from the University of Agriculture, Makurdi (2017–2019), where his thesis explored eco-building materials using rice husk and sawdust. His undergraduate and professional training background is further enhanced by a Certificate in Computer Appreciation (2010), an internship at the Centre for Agricultural Nanotechnology, TNAU, India (2023), and registration with COREN (2024). Dr. Gbabe is also a member of the Nigerian Institution of Agricultural Engineers (NIAE-M2207), demonstrating a strong foundation in both academic knowledge and regulatory standards in engineering and food technology. His educational pursuits reflect a consistent drive toward sustainability, innovation, and technological adaptation in agricultural systems.

Experience:

Dr. Gbabe serves as a Senior Research Officer at NSPRI since 2016, where he leads projects on postharvest technology, storage engineering, and food shelf-life enhancement. His duties span experimental design, research data analysis, technical report writing, equipment fabrication supervision, and stakeholder training. He has been instrumental in developing novel postharvest technologies and electrospun hexanal nanofiber matrices for fruit preservation. In 2023, he completed a research internship at the Centre for Agricultural Nanotechnology, TNAU, India, gaining hands-on experience in nanotoxicity, food nanotechnology, and biosafety. Dr. Gbabe is known for his interdisciplinary collaboration, capacity-building initiatives, and extensive field and lab-based research. He also coordinates training programs for artisans, farmers, and students. His rich professional journey is marked by impactful project execution, community-focused technology dissemination, and consistent contributions to national and international research publications.

Research Focus:

Dr. Gbabe’s research is centered on postharvest loss reduction, sustainable food preservation, and agricultural nanotechnology. He is pioneering the use of electrospun hexanal nanofiber matrices to extend the shelf-life of perishable fruits like bananas, mangoes, and tomatoes—a major advancement in food storage technology. His work addresses the chemical and biological challenges in postharvest handling, integrating advanced techniques such as FTIR, GC-MS, SEM, and TEM to monitor quality and degradation. He is also exploring green materials for packaging and eco-friendly building solutions using agricultural waste like rice husks and sawdust. His international collaboration with TNAU, India, expanded his research in nanotoxicity and food safety. With a focus on experimental design, interdisciplinary innovation, and practical application, Dr. Gbabe contributes to the development of scalable, cost-effective technologies tailored for African agricultural ecosystems. His goal is to enhance food security through intelligent preservation methods and sustainable postharvest engineering.

Publication Top Notes:

  1.  Effect of Hexanal Nano-fiber Matrix on Quality Parameters of Tomato Fruits during Storage

  2.  Development of Novel Hexanal Nano-fibre Matrix by Electrospinning for Shelf-life Extension of Mango Fruits

  3.  Implication of Different Storage Techniques on Physical Attributes of African Okra (Abelmoschus esculentus)

  4.  Maize Grains Milling Efficiency: A Performance Analysis of a Hammer Mill

  5.  Insecticidal and Toxicity Studies of Heliotropium Indicum Leaf Extracts for Stored Grain Pest Control

  6.  Commercial Utilization of Inert Atmosphere Silo for Maize Storage

  7.  Chemical and Physico-chemical Properties of OFSP Chips Dried Using Solar Dryers

  8.  Evaluation of the Use of Rice Husk in Producing Eco-Building Materials

  9.  Pros and Cons of AI Thermal Imaging in Postharvest Handling of Agricultural Products

  10.  Development of Hexanal Electrospun Nano-fiber Matrix for Banana Preservation

Conclusion:

Engr. Dr. Kwaghgba Elijah Gbabe is an exemplary researcher who combines scientific rigor, technological innovation, and practical application in the field of food systems and agricultural engineering. His pioneering work in nanotechnology, coupled with his leadership in postharvest technology, makes him exceptionally deserving of the Best Researcher Award.

Yang Liu | Cell Migration Studies | Best Researcher Award

Prof. Dr. Yang Liu | Cell Migration Studies | Best Researcher Award

Prof. Dr. Yang Liu, Taiyuan University of Technology Institute of Biomedical Engineering CHINA, China

Dr. Yang Liu is an Associate Professor at the Institute of Biomedical Engineering, Taiyuan University of Technology, China. Since joining in 2013, Dr. Liu has focused on biomechanics, particularly the mechanical mechanisms involved in skin tissue damage and healing processes during traumatic events like burns and radiotherapy. Her interdisciplinary work bridges molecular, cellular, and tissue-level studies to better understand the interplay between mechanical factors and skin regeneration. Her research also extends into the development and structural optimization of biomedical materials such as tissue-engineered skins and advanced dressings. Dr. Liu has led several research and teaching reform projects, obtained a patent transformation, and contributed to national and provincial-level scientific investigations. Her innovative work in tissue engineering and skin trauma treatment continues to contribute significantly to biomedical science and material engineering.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Specialized Expertise
    Dr. Liu focuses on biomechanics in disease development, particularly related to cutaneous trauma (e.g., burns, radiotherapy), a niche but critical area in biomedical engineering.

  2. Material Innovation
    Her work in developing tissue-engineered skin and antibacterial dressings demonstrates applied innovation with potential clinical relevance.

  3. Project Leadership
    Successfully led and participated in multiple competitive research projects funded by national and provincial bodies, indicating trust in her scientific vision and capabilities.

  4. Research Productivity
    Though early in recognition, Dr. Liu has already co-authored several peer-reviewed journal articles in reputable publications like Scientific Reports and Placenta, which reflect growing academic contribution.

  5. Translational Research
    Her involvement in a patent achievement transformation shows a commitment to moving research beyond the lab into real-world applications.

🔧 Areas for Improvement:

  1. Citation Impact and Indexing
    The provided articles currently have 0 citations, and there is no citation index or h-index reported. Increasing publication visibility and citation impact should be a future focus.

  2. Global Recognition and Collaboration
    There is no mention of international collaboration, editorial roles, or professional memberships, which would enhance credibility and reach.

  3. Documented Industry Linkages
    Despite some project engagement with enterprises, more evidence of sustained industry partnerships or commercialization success would strengthen the application.

  4. Books, Patents, and Conferences
    Absence of published books, patents in process, or keynote roles in international conferences limits the academic portfolio breadth.

🎓 Education:

Although specific degree details are not listed, Dr. Yang Liu has built a strong academic foundation that supports her expertise in biomedical engineering and biomechanics. Her academic journey is closely aligned with her professional role at Taiyuan University of Technology, which is known for its technical research capabilities. Dr. Liu’s knowledge spans skin tissue biology, mechanical trauma, and biomedical materials science, indicating a background that likely includes degrees in biomedical engineering, bioengineering, or a related field. Her educational experience has equipped her with the skills necessary to conduct high-level research in skin regeneration, materials science, and tissue biomechanics. Additionally, her active participation in national scientific projects and her leadership in academic innovation at the university level point to rigorous formal training and ongoing academic development.

🧪 Experience:

Dr. Yang Liu has over a decade of professional experience in biomedical research since joining the Taiyuan University of Technology in 2013. Her work has revolved around exploring the mechanical and biological factors involved in traumatic skin injury and healing. She has successfully led and contributed to multiple projects, including those funded by the National Natural Science Foundation of China and enterprise collaborations. In addition to her scientific contributions, she has also directed teaching reform projects and a patent transformation, highlighting her dual commitment to both research and education. Her experience includes a strong focus on interdisciplinary collaboration across biology, materials science, and mechanical engineering. This breadth of experience has allowed her to develop innovative biomedical materials, such as tissue-engineered skin and functional skin dressings, aimed at improving clinical treatment outcomes for burn injuries and other trauma-related skin conditions.

🔬 Research Focus:

Dr. Yang Liu’s research centers on the biomechanics of skin tissue damage and healing, with an emphasis on cutaneous trauma from burns and radiotherapy. Her work investigates how mechanical forces impact skin at multiple biological levels—molecular, cellular, tissue, and animal models. A major portion of her research explores biomedical material innovation, particularly tissue-engineered skin, skin dressings, and antibacterial materials. She is particularly focused on understanding how structural and mechanical properties of these materials can improve therapeutic outcomes. Dr. Liu also studies oxidative stress, cell migration, and protein responses under mechanical pressure, making her work crucial to trauma therapy and regenerative medicine. With a patent transformation and multiple research projects to her credit, her research is positioned at the intersection of engineering innovation and clinical application, aiming to reduce complications in skin trauma treatment and enhance recovery efficiency through scientifically engineered materials.

📚 Publications Top Notes:

  1. 🧴🧬 Preparation and characterization of nano-silver/graphene oxide antibacterial skin dressingScientific Reports, 2025

  2. 🔬⛽ Experimental study on liquid products and pore structure characteristics of anthracite saturated by supercritical CO₂Gas Science and Engineering, 2025

  3. 🧠💥 The regulatory role of the nuclear scaffold protein Emerin on the migration of amniotic epithelial cells and oxidative stress in a pressure environmentPlacenta, 2025

  4. 🛠️🔥 Annealing Response of Cold-rolled Ti₂AlNb Based Alloy Foil in Different Phase RegionsTezhong Zhuzao Ji Youse Hejin (Special Casting and Nonferrous Alloys), 2025

📝 Conclusion:

Dr. Yang Liu shows significant promise as a biomedical researcher, with a clear, focused research trajectory, practical outputs (materials for skin regeneration), and consistent project engagement at institutional and national levels. While her global visibility and citation metrics are currently limited, her research has high translational potential in trauma medicine and biomedical materials, making her a strong emerging contender for the Best Researcher Award—especially under a category recognizing early- to mid-career researchers with impactful applied science work.