Tarun Kumar Upadhyay | Biotechnology | Best Researcher Award

Dr. Tarun Kumar Upadhyay | Biotechnology | Best Researcher Award

Parul University | India

Dr. Tarun Kumar Upadhyay is an accomplished researcher in biotechnology with extensive expertise in cell biology, immunobiochemistry, nanobiotechnology, and bioinformatics. His doctoral research at CSIR-CDRI, Lucknow, focused on advanced biotechnological applications, including the biosynthesis of gold nanoparticles and their bioconjugation with anticancer agents, characterized using chromatographic and analytical techniques. He has actively contributed to government-sponsored research projects under UPCST, emphasizing molecular and cellular approaches in biotechnology. Dr. Upadhyay’s work integrates experimental and computational methods, leveraging bioinformatics tools for sequence analysis and molecular characterization. His research interests encompass nanomaterials in drug delivery, cellular signaling mechanisms, immunological assays, and enzymology, with applications in therapeutic development and biomedical research. In addition, he has substantial experience in training and mentoring students in advanced cell biology, immunology, and biochemistry techniques. His scholarly contributions have been recognized through multiple awards, including Best Biotechnologist, Young Scientist, and Associate Scientist Awards, reflecting his impact on biotechnology research. As a member of prominent scientific societies and an invited reviewer for international journals, Dr. Upadhyay continues to advance knowledge in nanobiotechnology, molecular therapeutics, and translational research, contributing significantly to innovative strategies in cell-based therapies, bioactive compound characterization, and biomedical applications.

Profile: Orcid

Featured Publications: 

Upadhyay, T., Sharma, A., Fatima, N., Singh, A., Muttil, P., & Sharma, R. (2019). Targeted delivery of antibiotics using microparticles to combat multi-drug-resistant tuberculosis. In I. Ahmad, S. Ahmad, & K. P. Rumbaugh (Eds.), Antibacterial drug discovery to combat MDR: Natural compounds, nanotechnology and novel synthetic source (pp. 441–458). Springer Singapore. h

Upadhyay, T. K., Mathur, M., Prajapat, R. K., Nagar, S. K., Singh, K., Khan, F., Pandey, P., & Khan, M. M. (2021). Prosopis cineraria (Khejri): Ethanopharmacology and phytochemistry. In A. B. Sharangi & K. V. Peter (Eds.), Medicinal plants: Bioprospecting and pharmacognocy (pp. 1–xx). Taylor & Francis.

Alam, M., Kamal, A., & Upadhyay, T. (2021). Role and effects of aromatic plants: Status, scenario, scope and trends of aroma including its impact on human health. In A. B. Sharangi (Ed.), Aromatic plants: The technology, human welfare and beyond (pp. 1–xx). Nova Publishers.

Ali, M. I., Onyancha, W., Mathur, M., Prajapat, R. K., Moin, S., Bajia, R., Sharma, S. K., Sharma, G., & Upadhyay, T. K. (2021). Status, scenario, scope and trends of aromatic medicinal plants including its impact on human health. In A. B. Sharangi (Ed.), Aromatic plants: The technology, human welfare and beyond (pp. 1–xx). Nova Publishers.

Sharma, D., Joshi, A., Mathur, M., Prajapat, R. K., & Upadhyay, T. (2021). Genome editing for crop improvement. In P. Kumar & A. K. Thakur (Eds.), Crop improvement: Biotechnological advances (pp. 1–xx). Taylor & Francis.

Mathur, M., Prajapat, R. K., Sharma, D., & Upadhyay, T. K. (2021). Recent advancement in nanotechnology in agriculture. In P. Kumar & A. K. Thakur (Eds.), Crop improvement: Biotechnological advances (pp. 1–xx). Taylor & Francis.

Prajapat, R. K., Mathur, M., Upadhyay, T., & Sharma, D. (2021). Molecular assisted breeding for crop improvement. In P. Kumar & A. K. Thakur (Eds.), Crop improvement: Biotechnological advances (pp. 1–xx). Taylor & Francis.

Sharma, D., Joshi, A., Mathur, M., Prajapat, R. K., & Upadhyay, T. (2021). Advances in genomics and proteomics in agriculture. In P. Kumar & A. K. Thakur (Eds.), Crop improvement: Biotechnological advances (pp. 1–xx). Taylor & Francis.

Khan, E. A., Upadhyay, T. K., & Prajapat, R. K. (2021). Revisiting brassinosteroids signaling in plants: Current advances and challenges. In G. J. Ahammed, A. Sharma, & J. Yu (Eds.), Plant hormone signaling: Current advances and challenges (pp. 1–xx). Elsevier.

Arzu Yay | Stem Cell Research | Best Researcher Award

Prof. Dr. Arzu Yay | Stem Cell Research | Best Researcher Award

Erciyes University | Turkey

Prof. Arzu Yay is a distinguished researcher in the Department of Histology and Embryology at Erciyes University, Turkey. Her work focuses on cellular and molecular mechanisms underlying tissue development, injury, and repair, with emphasis on immunohistochemical and ultrastructural analyses. Her M.Sc. research examined E-cadherin expression during renal development in the prenatal period, contributing to the understanding of epithelial differentiation in organogenesis. Her Ph.D. focused on nestin expression across different grades of meningiomas and glioblastomas, highlighting neural stem cell marker dynamics in tumor progression. She has conducted significant studies on oxidative stress, neurobiology, and tissue damage, including investigations into the effects of melatonin and vitamin C on alcohol-induced lung injury and nitric oxide synthase immunoreactivity. Her research has also explored tissue-level alterations in diabetes and the histological impacts of hormonal and anesthetic agents. Prof. Yay’s postdoctoral work at the University of Lübeck, Germany, further advanced her expertise in dermatological histopathology. Her contributions have been recognized through multiple national and international awards for excellence in experimental and translational research, particularly in antioxidant mechanisms and radioprotection. Her body of work reflects a strong integration of histological, molecular, and ultrastructural approaches in biomedical sciences.

Profiles: Google Scholar | Scopus

Featured Publications:

Yıldız, K., Efesoy, S. N., Ozdamar, S., Yay, A., Bicer, C., Aksu, R., & Kılıc, E. (2011). Myotoxic effects of levobupivacaine, bupivacaine and ropivacaine in a rat model. Clinical Investigation in Medicine, 34(5), 273–280.

Sarıozkan, S., Bucak, M. N., Canturk, F., Ozdamar, S., Yay, A., Tuncer, P. B., Ozcan, S., Sorgucu, N., & Caner, Y. (2012). The effects of different sugars on motility, morphology and DNA damage during the liquid storage of rat epididymal sperm at 4°C. Cryobiology, 65(2), 93–97.

Sarıozkan, S., Canturk, F., Yay, A., & Akçay, A. (2012). The effect of different storage temperature on sperm parameters and DNA damage in liquid stored New Zealand rabbit spermatozoa. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(3), 475–480.*

Yay, A., Ozdamar, S., Canoz, O., Tucer, B., & Baran, M. (2013). Nestin expression in meningiomas of different grades. Journal of Neurological Sciences (Turkish), 30, 532–540.

Sarıozkan, S., Türk, G., Canturk, F., Yay, A., Eken, A., & Akçay, A. (2013). The effect of bovine serum albumin and fetal calf serum on sperm quality, DNA fragmentation and lipid peroxidation of liquid stored rabbit semen. Cryobiology, 67(1), 1–6.*

Ernst, N., Yay, A., Bíró, T., Tiede, S., Humphries, M., Paus, R., & Kloepper, J. E. (2013). β1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PLoS ONE, 8(12), e84356.*

Yay, A., Ozdamar, S., Canoz, O., Baran, M., Tucer, B., & Sonmez, M. F. (2014). Intermediate filament protein nestin is expressed in developing meninges. Bratislava Medical Journal, 115(11), 718–722.*

Rosa M Giraldez-Perez | Intracellular Transport Systems | Innovative Research Award

Prof. Dr. Rosa M Giraldez-Perez | Intracellular Transport Systems | Innovative Research Award

University or Cordoba | Spain

Rosa María Giráldez-Pérez is a researcher in the fields of nanotechnology, nanomedicine, physiology, and neuroscience whose scientific contributions focus on the design and application of nanomaterials for therapeutic purposes. Her work has addressed innovative strategies such as gold nanosystems functionalized with antibiotics or anticancer drugs, the development of nanocarriers for leukemia, prostate, liver, and lung cancer treatments, as well as nanoparticle-based approaches to prevent antibiotic resistance. She has also contributed to research in obesity therapy through nanosystems targeting metabolic regulation and in neuroscience through studies on oxidative stress and fragile X syndrome. Her research output includes 81 scientific documents, which have accumulated 911 citations and reflect an h-index of 13, demonstrating both productivity and impact in her field. A significant portion of her publications are in high-impact journals indexed in the Journal Citation Reports (JCR), and several list her as first or senior author, highlighting her leading role in collaborative projects. By integrating expertise from cellular biology, physiology, and nanoscience, her work advances translational biomedical research and offers potential therapeutic solutions for cancer, infectious diseases, metabolic disorders, and neurological conditions.

Profiles: Orcid | Scopus

Featured Publications:

Giráldez-Pérez, R. M., Grueso, E. M., Montero-Hidalgo, A. J., Muriana-Fernández, C., Kuliszewska, E., Luque, R. M., & Prado-Gotor, R. (2025). Daunomycin nanocarriers with high therapeutic payload for the treatment of childhood leukemia. Pharmaceutics, 17(9), 1236.

De Diego-Otero, Y., El Bekay, R., García-Guirado, F., Sánchez-Salido, L., & Giráldez-Pérez, R. M. (2024). Apocynin, a selective NADPH oxidase (Nox2) inhibitor, ameliorates behavioural and learning deficits in the fragile X syndrome mouse model. Biomedicines, 12(2887).

Lhamyani, S., Gentile, A. M., Mengual-Mesa, M., Grueso, E., Giráldez-Pérez, R. M., Fernandez-Garcia, J. C., … El Bekay, R. (2024). Au@16-pH-16/miR-21 mimic nanosystem: An efficient treatment for obesity through browning and thermogenesis induction. Biomedicine & Pharmacotherapy, 171, 116104.

Giráldez-Pérez, R. M., Grueso-Molina, E. M., Carbonero-Martínez, A., Álvarezmárquez, J., Kuliszewska, E., Gordillo-Macías, M., & Prado-Gotor, R. (2023). Synergistic antibacterial effects of amoxicillin and gold nanoparticles: A therapeutic option to combat antibiotic resistance. Antibiotics, 12(8), 81275.

Giráldez-Pérez, R. M., Grueso, E., Montero-Hidalgo, A. J., Luque, R. M., Carnerero, J. M., Kuliszewska, E., & Prado-Gotor, R. (2022). Gold nanosystems covered with doxorubicin/DNA complexes: A therapeutic target for prostate and liver cancer. International Journal of Molecular Sciences, 23(24), 15575.

Giráldez-Pérez, R. M., Grueso, E. M., Jiménez-Aguayo, R., Carbonero, A., González-Bravo, M., Kuliszewska, E., & Prado-Gotor, R. (2022). Use of nanoparticles to prevent resistance to antibiotics: Synthesis and characterization of gold nanosystems based on tetracycline. Pharmaceutics, 14(9), 1941.

Lhamyani, S., Gentile, A. M., Giráldez-Pérez, R. M., et al. (2021). miR-21 mimic blocks obesity in mice: A novel therapeutic option. Molecular Therapy – Nucleic Acids, 26, 401–416. h

Grueso-Molina, E. M., Giráldez-Pérez, R. M., Kuliszewska, E., Guerrero, J. A., & Prado-Gotor, R. (2021). Reversible cationic gemini surfactant-induced aggregation of anionic gold nanoparticles for sensing biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125893.

Gomes, A., Carnerero-Panduro, J. M., Jiménez-Ruiz, A., Grueso-Molina, E. M., Giráldez-Pérez, R. M., & Prado-Gotor, R. (2021). Lysozyme-AuNPs interactions: Determination of binding free energy. Nanomaterials, 11(8), 2139.

Giráldez-Pérez, R. M., Grueso-Molina, E. M., Domínguez-García, I., Pastor-Carrillo, N. M., Kuliszewska, E., & Prado-Gotor, R. (2021). Biocompatible DNA/5-fluorouracil gemini surfactant-functionalized gold nanoparticles as promising vectors in lung cancer therapy. Pharmaceutics, 13(3), 423.