Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada | Molecular Mechanisms Signaling | Best Researcher Award

Dr. Naoki Harada, Osaka Metropolitan University, Japan

Naoki Harada is an Associate Professor at Osaka Metropolitan University, Japan, with extensive expertise in molecular biology, biochemistry, endocrinology, and nutrition. He earned his Ph.D. in Life Sciences from Osaka Prefecture University in 2007. Over the past two decades, Harada has made significant contributions to understanding the physiological and biochemical mechanisms underpinning metabolic diseases, particularly type 2 diabetes. His research, characterized by high citation impact (H-index of 25), centers on pancreatic β-cell function and metabolic regulation. He has published 77 peer-reviewed articles and holds a patent related to therapeutic interventions. Harada has collaborated with leading scientists like Professors Hiroshi Inui and Ryoichi Yamaji, strengthening his academic footprint in both national and international circles. A member of multiple scientific societies, Harada continues to influence the field through impactful research, industry collaboration, and educational leadership.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. Consistent Research Output

    • 77 peer-reviewed publications in reputable journals (SCI, Scopus).

    • Recent high-impact studies published in Journal of Biological Chemistry, Scientific Reports, and FASEB BioAdvances.

    • Active research profile with an H-index of 25 and over 1,785 citations.

  2. Innovative Scientific Contributions

    • Identified REDD2 as a novel therapeutic target for type 2 diabetes—bridging basic research with translational medicine.

    • Works across disciplines such as molecular biology, endocrinology, and nutritional biochemistry.

  3. Project Leadership & Industry Engagement

    • Led or participated in 14 major research projects.

    • 5 consultancy/industry-based projects, reflecting application-oriented research.

  4. Academic and Collaborative Network

    • Strong academic collaborations with Professors Hiroshi Inui and Ryoichi Yamaji.

    • Member of prestigious scientific societies (e.g., Japanese Biochemical Society, Japan Society of Nutrition and Food Science).

  5. Scientific Versatility

    • Contributions span fundamental mechanisms (e.g., oxidative stress, insulin signaling) to dietary interventions (e.g., mogrol, oleamide).

    • Demonstrates ability to bridge molecular insights with systemic physiological outcomes.

⚙️ Areas for Improvement:

  1. International Visibility and Engagement

    • Expanding participation in international conferences and editorial boards could elevate his global scientific standing.

    • Pursuing cross-border collaborations would further enrich the translational value of his work.

  2. Commercialization and Patent Activity

    • While one patent is noted, increased focus on intellectual property development and biomedical commercialization could further validate his applied research strength.

  3. Outreach and Communication

    • More active public science communication (e.g., webinars, policy advocacy, media coverage) would amplify the societal impact of his research.

🎓 Education:

Naoki Harada received his Ph.D. in Life Sciences from Osaka Prefecture University, Osaka, Japan, in September 2007. His doctoral studies laid the foundation for his interdisciplinary research in molecular biology, biochemistry, and endocrinology. Harada’s academic path was driven by a keen interest in the cellular and molecular mechanisms underlying metabolic regulation, particularly in relation to glucose homeostasis and pancreatic function. His education provided him with a solid grounding in experimental techniques, critical thinking, and scientific communication, which have become hallmarks of his later work. The institution, known for excellence in biosciences, enabled Harada to cultivate a strong research acumen. His academic training was complemented by exposure to applied research, linking basic science with clinical and nutritional applications—an approach that he has continued to emphasize throughout his career. His strong educational background plays a pivotal role in his current research endeavors and professional development.

💼 Experience:

Dr. Naoki Harada began his academic career in 2008 as an Assistant Professor at the Graduate School of Life and Environmental Sciences, Osaka Prefecture University. He was promoted to Lecturer in 2015, and subsequently to Associate Professor in 2019. Since 2022, he has served as Associate Professor at the Graduate School of Agriculture, Osaka Metropolitan University. Harada has consistently combined teaching with intensive research, mentoring graduate students while advancing his lab’s focus on metabolic diseases and endocrine physiology. His experience includes leading 14 research projects, consulting on 5 industry-linked nutrition initiatives, and co-authoring over 75 scientific papers. His experience reflects a blend of academic leadership, scientific innovation, and multidisciplinary collaboration. Notably, Harada’s role in identifying REDD2 as a therapeutic target exemplifies his contribution to translational science. He maintains strong academic partnerships and actively contributes to several professional societies, making him a respected figure in Japan’s scientific community.

🔬 Research Focus:

Naoki Harada’s research is at the intersection of molecular biology, endocrinology, and nutrition science, with a particular focus on pancreatic β-cell physiology and glucose metabolism. He investigates how oxidative stress, hormonal signals, and metabolic regulators influence insulin secretion and β-cell viability. One of his pivotal contributions is identifying the REDD2 gene as a negative regulator of β-cell function, offering novel therapeutic targets for type 2 diabetes mellitus. His studies also explore nutrient-sensing pathways, G-protein-coupled receptors, and hormonal modulation of energy metabolism. Harada’s recent work delves into the effects of dietary compounds like mogrol and oleamide on metabolic health, linking molecular mechanisms to real-world dietary interventions. His ability to bridge bench science with clinical and nutritional applications sets his research apart. Through collaborations with leading experts and high-impact publications, Harada continues to advance knowledge in the prevention and treatment of metabolic disorders.

📚 Publications Top Notes:

  • 🧬 REDD2 confers pancreatic β-cell dysfunction in high-fat diet-fed miceJournal of Biological Chemistry, 2025

  • 🦷 Androgens suppress ST3GAL1/4, modulating mucin glycosylation and microbiota in miceBioscience, Biotechnology, and Biochemistry, 2025

  • 🍟 CRTC1 in MC4R cells regulates dietary fat intakeFASEB BioAdvances, 2024

  • 💉 Insulin reduces ER stress-induced apoptosis in INS-1 β-cellsPhysiological Reports, 2024

  • 🍬 Mogrol activates GPBAR1 and insulin secretion, alleviates hyperglycemiaScientific Reports, 2024

  • 🔥 Androgen receptor suppresses β-adrenoceptor-mediated thermogenesisJournal of Biological Chemistry, 2022

  • 🏥 Age-dependent sex differences in NAFLD in TSOD and db/db micePLOS ONE, 2022

  • 🐭 Dietary oleamide attenuates obesity in caged miceBioscience, Biotechnology, and Biochemistry, 2022

  • 🌿 Curcumin targets GPR55 receptornpj Science of Food, 2022

  • 💪 Oleamide rescues muscle atrophy in small-caged miceBritish Journal of Nutrition, 2021

🧾 Conclusion:

Dr. Naoki Harada demonstrates a clear trajectory of research excellence, grounded in scientific rigor and driven by impactful biomedical questions. His ability to identify molecular mechanisms (e.g., REDD2’s role in β-cell dysfunction) and propose therapeutic directions sets him apart as a leading academic in metabolic disease research. His publication record, industry collaborations, and professional memberships underscore a mature and influential academic career.

Noureddine Allouche | Molecular Mechanisms Signaling | Best Research Article Award

Prof. Noureddine Allouche | Molecular Mechanisms Signaling | Best Research Article Award

Prof. Noureddine Allouche , Faculty of Sciences of Sfax, University of Sfax , Tunisia

Professor Noureddine Allouche, born in 1971, is a Full Professor of Chemistry at the Faculty of Sciences of Sfax (FSS), Tunisia. He is the Head of the Natural Substances Team in the Laboratory of Organic Chemistry. With over 150 peer-reviewed publications, an h-index of 35, and more than 4500 citations, he is recognized for his impactful research on natural products and environmental valorization. He has led and contributed to multiple national and European research projects, including FP7, H2020, Erasmus+, and ARIMNET. His work focuses on extraction, isolation, and bioactivity of plant-based compounds and sustainable management of industrial waste. Prof. Allouche has supervised 20 Ph.D. theses and 42 M.Sc. students, contributing significantly to scientific advancement in Tunisia and beyond. He is also involved in applied research in green chemistry and cosmetic sciences. His collaborative work and leadership have earned him recognition in the academic and research communities.

Publication Profile: 

Orcid

✅ Strengths for the Award:

  1. High Research Productivity and Impact

    • Over 150 peer-reviewed scientific articles with a h-index of 35 and 4,500+ citations, which reflect sustained academic influence and quality.

    • Contributor to top-tier journals such as Plants, Biomolecules, and Molecules.

  2. Strong Focus on Societal Relevance

    • Work addresses critical environmental issues such as olive mill waste valorisation, bioconversion, and sustainable resource use.

    • Research applied in green chemistry, natural product-based pharmaceuticals, and eco-cosmetics.

  3. International Collaboration and Leadership

    • Coordinator of six major European and international research projects (FP7, H2020, Erasmus+, ARIMNET).

    • Active partnerships with institutions in France, Germany, and the Mediterranean region, showcasing leadership in multidisciplinary and multinational research.

  4. Methodological Rigor and Innovation

    • Use of advanced analytical techniques (e.g., HPLC-HESI-MS/MS, LC-MS/MS, ESI-MS/MS).

    • Integration of green technologies for natural substance extraction.

  5. Mentorship and Academic Development

    • Supervised 20 Ph.D. theses (plus 4 ongoing), 42 Master’s theses, and numerous diploma projects, especially in applied fields like cosmetic science.

🛠️ Areas for Improvement:

  1. Broader International Recognition

    • While highly active in regional and EU collaborations, increased visibility in global North America/Asia-led consortia or global forums could enhance recognition.

  2. Science Communication and Outreach

    • Publishing in public engagement platforms or delivering talks/webinars to non-specialist audiences could expand the impact of his research beyond academia.

  3. Open Access and Data Sharing

    • Encouraging open data practices and reproducibility of extraction and formulation protocols could enhance scientific transparency and citations.

🎓 Education:

Professor Noureddine Allouche earned his Ph.D. in Chemistry from the University of Sfax between 2000 and 2005, focusing on the treatment and valorisation of olive mill waste, a subject that would lay the foundation for his future research career. Following this, he undertook a prestigious postdoctoral training (2006–2007) at the Institute of Natural Products Chemistry of CNRS in Gif-sur-Yvette, France, enhancing his expertise in natural substances and analytical chemistry. His academic foundation was built on rigorous training in organic chemistry, natural products, and environmental biotechnology. These experiences equipped him with robust research methodologies and an interdisciplinary approach, especially in the extraction and biological evaluation of phytochemicals. His educational path reflects a strong commitment to green and sustainable chemistry, positioning him well for leading high-impact research on natural product development and eco-friendly industrial applications.

💼 Experience:

Professor Allouche has over 20 years of academic and research experience. He currently leads the Natural Substances Team at the Faculty of Sciences of Sfax and supervises a group of over 20 researchers. He has played a vital role in international research collaborations, serving as the national coordinator of six European-funded projects under FP7, ARIMNET, H2020, Erasmus+, and PHC-Maghreb. His experience also includes participation in the INCO-MED project on detoxification and recovery from olive mill wastewater. Prof. Allouche has an extensive mentoring portfolio, having supervised 20 Ph.D. theses (with 4 ongoing) and 42 M.Sc. students. He has authored 150+ articles, two book chapters, and holds two patents. His career reflects a blend of scientific innovation and applied industrial research, particularly in green technologies, bioactive compounds, and waste valorisation. He is also a regular collaborator with European institutions, reflecting his global outlook and leadership in sustainable science.

🔍 Research Focus:

Prof. Noureddine Allouche’s research centers on natural substances chemistry, green extraction methods, and biotechnological valorisation of industrial wastes, particularly from agro-food sources. He has made significant contributions to the identification and biological evaluation of bioactive compounds such as phenolics, flavonoids, and essential oils. His team is particularly active in analyzing plant extracts for their antioxidant, antimicrobial, cytotoxic, and anti-aging activities, often employing advanced techniques like HPLC, LC-MS/MS, and ESI-MS/MS. Another pillar of his work includes developing biopesticides and bio-cosmetics through green and eco-sustainable approaches. He contributes to nanoformulation research and the design of nature-based products aligned with circular economy principles. His interdisciplinary projects bridge chemistry, pharmacology, environmental science, and cosmetic formulation, making his research highly relevant for addressing current scientific and industrial challenges. His recent involvement in projects like GreenCosmIn and 25MAG23 reflects his leading role in European research on sustainable innovation.

📚 Publications Top Notes:

  1. 🌿 HPLC-HESI-MS/MS Analysis of Phenolic Compounds from Cynoglossum tubiflorus Leaf Extracts (Plants, 2024)

  2. 🫒 Intensification of Biophenols Extraction Yield from Olive Pomace Using Innovative Green Technologies (Biomolecules, 2022)

  3. 🌸 Antioxidant and Antimicrobial Activities of Erodium arborescens Extracts Characterized by LC-HESI-MS² (Molecules, 2022)

  4. 🌿 ESI-MS/MS Analysis of Aeonium arboreum Leaf Extracts and Evaluation of Antioxidant and Antimicrobial Activities (Molecules, 2021)

  5. 🍇 Novel Natural Products for Healthy Ageing from Mediterranean Diet – The MediHealth Project (Molecules, 2018)

🧾 Conclusion:

Professor Noureddine Allouche stands out as a highly qualified and deserving candidate for the Best Research Article Award. His impressive record in sustainable chemistry, natural products research, international project coordination, and scholarly mentorship underlines his academic excellence and real-world impact. His research directly contributes to health, environmental sustainability, and circular economy principles, aligning well with the goals of high-impact, solution-driven science.

Lijuan Deng | Molecular Mechanisms Signaling | Molecular Cell Biology Award

Mrs. Lijuan Deng | Molecular Mechanisms Signaling | Molecular Cell Biology Award

Mrs. Lijuan Deng , Zhongshan Institute for Drug Discovery , China

Lijuan Deng is a passionate graduate student researcher at the Zhongshan Institute for Drug Discovery in China, specializing in the molecular mechanisms underlying metabolic diseases. Her scientific curiosity centers on gene regulation, signaling pathways, and metabolic dysregulation in disease progression, particularly metabolic-associated fatty liver disease (MASLD). Her translational approach blends experimental models and bioinformatics to bridge basic science and therapeutic innovation. Lijuan has already co-authored a publication in The FASEB Journal, identifying CDKN1A as a key regulator in MASLD. She is also the inventor of a patent-pending technique for nascent RNA labeling in extracellular vesicles. Through collaborations with clinical researchers and a solid foundation in molecular biology techniques, she is positioning herself as a rising talent in cell biology. Her work promises to advance understanding and treatment of metabolic diseases.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Innovative Research: Lijuan Deng has significantly contributed to the understanding of MASLD (Metabolic-Associated Steatotic Liver Disease) by identifying CDKN1A as a key regulatory gene through integrated transcriptomic analysis and experimental validation.

  2. Translational Focus: Her research bridges molecular biology and clinical application, enhancing its impact in drug discovery and disease diagnostics.

  3. Publication Record: She is the first author of a peer-reviewed article published in The FASEB Journal (SCI-indexed), showcasing her ability to conduct and communicate high-quality research.

  4. Patent Innovation: She holds a pending patent for a novel method involving nascent RNA labeling in extracellular vesicles, showing her drive toward technological advancement and biomedical innovation.

  5. Collaborative Approach: Active collaboration with the Department of Endocrinology at Shenzhen Second People’s Hospital reflects strong interdisciplinary and clinical integration.

🧩 Areas for Improvement:

  1. Expanded Publication Portfolio: Increasing the number of peer-reviewed articles will strengthen her academic visibility and impact.

  2. Professional Networking: Engagement in international cell biology societies or conferences and obtaining professional memberships can support broader recognition and growth.

  3. Editorial/Leadership Roles: Participation in editorial boards, review panels, or student leadership roles can enrich her professional development profile.

🎓 Education:

Lijuan Deng is currently pursuing her graduate studies in molecular biology at the Zhongshan Institute for Drug Discovery, where she focuses on translational biomedical research. Her academic foundation includes advanced coursework in biochemistry, molecular genetics, and cellular signaling. Through structured academic training, she has acquired proficiency in modern laboratory methods, including RNA sequencing, qPCR, western blotting, and exosome analysis. Her education emphasizes critical thinking and scientific rigor, enabling her to design experiments, analyze data, and interpret biological outcomes. She regularly participates in academic seminars, journal clubs, and collaborative workshops to refine her scientific acumen. Her thesis research is centered around identifying novel molecular targets in MASLD, a field gaining global relevance. Lijuan’s education is not only shaping her technical capabilities but also nurturing her ambition to contribute to impactful, real-world medical solutions through cell biology research.

💼 Experience:

Lijuan Deng has gained extensive laboratory experience as a graduate student researcher at the Zhongshan Institute for Drug Discovery. Her hands-on work includes both cellular and animal models, with a strong focus on metabolic disease mechanisms. She played a key role in identifying CDKN1A as a potential MASLD progression factor, combining transcriptomic data analysis with molecular validation. Additionally, she has worked on exosome-based biomarker discovery and developed a patent-pending method for nascent RNA labeling. She collaborates with the Department of Endocrinology at Shenzhen Second People’s Hospital, providing a clinical dimension to her work. Though early in her career, her contributions to translational research are already making an impact. She is skilled in molecular biology, gene expression profiling, and therapeutic target screening. Her research experience has been shaped by interdisciplinary collaboration, scientific publications, and the ambition to innovate within the field of molecular cell biology.

🧬 Research Focus:

Lijuan Deng’s research is primarily focused on the molecular underpinnings of metabolic-associated fatty liver disease (MASLD), a key manifestation of metabolic syndrome. She investigates how dysregulated genes, signaling networks, and lipid metabolism contribute to disease initiation and progression. A major highlight of her work is identifying CDKN1A as a potential risk factor in MASLD using integrated bioinformatics and experimental techniques. Additionally, she explores the utility of extracellular vesicles as carriers of diagnostic biomarkers and therapeutic molecules. Her patent-pending work involves a novel method for labeling nascent RNA within exosomes, opening possibilities for tracking dynamic RNA communication in disease contexts. Her research strategy merges molecular biology with disease modeling, aiming to bridge laboratory discoveries with potential therapeutic strategies. Through strong collaborations and a translational research outlook, Lijuan is dedicated to uncovering actionable insights that can inform drug development for complex metabolic disorders.

📚 Publications Top Notes:

  • 🧾 “Identification of CDKN1A as a potential key risk factor in MASLD progression.”The FASEB Journal, 2025. DOI: 10.1096/fj.202402942R

🧾 Conclusion:

Lijuan Deng stands out as an emerging researcher with strong foundations in molecular cell biology and a clear orientation toward translational science. Her innovative work in MASLD, combined with an SCI publication and a pending patent, make her a highly suitable and promising candidate for the Molecular Cell Biology Award. While she is in the early stages of her career, her achievements thus far indicate substantial potential for future contributions to the field.