Florêncio Oliveira | Signal Transduction Networks | Best Researcher Award

Dr. Florêncio Oliveira | Signal Transduction Networks | Best Researcher Award

Dr. Florêncio Oliveira , Senai Cimatec University , Brazil

Florêncio Mendes Oliveira Filho is a Brazilian researcher and professor at SENAI CIMATEC University in Salvador, Bahia. With a deep interest in computational modeling and industrial technology, Florêncio’s research has focused on the analysis of physiological signals such as EEG, as well as time series analysis in diverse areas. He holds a Master’s and Ph.D. in Computational Modeling and Industrial Technology from SENAI CIMATEC University and completed a post-doctorate in 2023 at the State University of Feira de Santana. Florêncio has contributed to numerous publications in leading journals and has developed various patented programs related to EEG signal analysis. He actively collaborates with academic and research institutions, focusing on advancing methodologies in time series analysis, mathematical modeling, and computational applications in health, climate, and industrial technology.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Expertise in Interdisciplinary Research: Florêncio Mendes Oliveira Filho demonstrates a solid understanding and expertise in the computational analysis of physiological signals, with a specialized focus on EEG signals. This work spans across multiple fields, including computational modeling, neurobiology, time series analysis, and climate data, showcasing a diverse and multi-disciplinary approach.

  2. Strong Publication Record: Florêncio has a remarkable number of publications in well-regarded journals like Biomedical Signal Processing and Control, Scientific Reports, and PLoS One, highlighting his contributions to the scientific community in recent years. These publications, especially in high-impact journals, reinforce his credibility as a leading researcher in his domain.

  3. Innovative Contributions to Signal Analysis: His contributions to developing new methodologies for analyzing EEG signals, such as the Detrended Fluctuation Analysis (DFA) and cross-correlation techniques like DCCA and ΔρDCCA, are pioneering. These contributions are vital for understanding complex physiological phenomena, such as the effects of L-dopa in neurological conditions (Deep Brain Stimulation) and seizures in epileptic patients.

  4. Patents and Technology Innovation: Florêncio’s work in patenting computer programs for EEG signal analysis and statistical methods, as seen with his multiple patent registrations, further underscores his contributions to advancing practical applications in biomedical and computational technology. His patents indicate a forward-thinking approach that integrates research with real-world applications, enhancing the clinical and technological landscapes.

  5. Collaboration and Academic Contributions: His active collaborations with leading universities and research institutions in Brazil, such as UEFS, SENAI CIMATEC UNIVERSITY, and UFBA, demonstrate his strong network in the research community. His leadership in postgraduate programs and mentorship to students further strengthens his impact on the next generation of researchers.

  6. Research Impact and Recognition: Florêncio has earned significant recognition within his field, reflected not only in his extensive list of publications but also in his growing influence within interdisciplinary research. His work on EEG signal analysis, particularly in relation to motor tasks, epilepsy, and Parkinson’s disease, offers valuable insights into medical applications.

Areas for Improvements:

  1. Broader International Collaboration: While Florêncio has established a robust academic network within Brazil, expanding collaborations internationally, particularly with leading research institutions in Europe and North America, could further elevate his visibility and impact. This could also facilitate the exchange of ideas and foster more innovative solutions in his areas of expertise.

  2. Research on Broader Clinical Applications: His focus on neurological diseases like Parkinson’s and epilepsy is commendable; however, exploring other clinical areas such as Alzheimer’s disease or mental health disorders might provide a more comprehensive understanding of EEG signal applications. Extending his work to include a wider array of neurological and psychiatric conditions could lead to broader clinical applications.

  3. Focus on Public Outreach: While Florêncio’s research has significant academic merit, increasing public engagement—such as in popular science communications, workshops, or collaborations with healthcare providers—could improve the broader societal impact of his work. Presenting his findings in more accessible formats could lead to greater public awareness of the importance of EEG signal analysis and its potential for improving healthcare.

  4. Integration of Machine Learning: The integration of machine learning models with his current methodologies, such as DFA and DCCA, could provide more robust and scalable tools for analyzing complex physiological data. This could involve automating the detection of patterns in EEG signals and improving predictions related to neurological disorders.

Education:

Florêncio graduated in 2021 from the Catholic University of Salvador (UCSAL). He holds a Specialist degree in Mathematics and New Technologies (2006) from UCSAL, a Master’s degree (2011-2013), and a Ph.D. (2015-2019) in Computational Modeling and Industrial Technology from SENAI CIMATEC University. His postdoctoral research in 2023, funded by the National Council for Scientific and Technological Development (CNPq), was carried out at the State University of Feira de Santana (UEFS). His academic journey blends computational mathematics, modeling, and physiological data analysis, which has shaped his innovative approach to analyzing EEG signals and applying advanced computational techniques.

Experience:

Florêncio has over a decade of experience in academic and research roles, having served as a professor and researcher at SENAI CIMATEC University. His work spans various fields, including computational modeling, time series analysis, and the study of physiological signals, particularly EEG. As a postdoctoral researcher at UEFS, he focused on advancing statistical methods to interpret complex data. Florêncio has contributed to both the scientific community and industry by developing patented computer programs that apply his research in analyzing physiological and climate data. His expertise also extends to collaborations with several Brazilian institutions, such as the State University of Southwest Bahia (UESB), the University of Bahia (UFBA), and the State University of Bahia (UNEB). He is also a member of various research groups, including the Computational Modeling and Industrial Technology Program and the Biosystems Modeling and Simulation Program.

Research Focus:

Florêncio’s primary research focus is on analyzing physiological signals, particularly EEG, to study neurological conditions such as epilepsy and Parkinson’s disease. He employs advanced techniques, including Detrended Fluctuation Analysis (DFA), cross-correlation coefficients (ρDCCA), and multi-cross-correlation methods (DCCA), to explore motor learning and the effects of Deep Brain Stimulation (DBS) on Parkinson’s patients. His research also extends to time series analysis, where he applies these techniques to climate data. A unique aspect of his research is the interdisciplinary approach, bridging computational modeling with neuroscience and environmental sciences. Through his work, Florêncio aims to enhance the understanding of physiological systems and contribute to the development of tools that improve diagnostics and treatment of neurological disorders.

Publication Top Notes:

  1. Cross-Correlation in Motor Learning: A Study with EEG Signals via Signal Statistics 📖🧠

  2. Spatial-Temporal Modeling of Diabetes Mellitus Cases in Bahia 🌍💉

  3. Modeling of the Differentiation of the Cross-Coefficient Without Trend 🚗🔍

  4. Comparative Evaluation Between Methods for Measuring Moisture Content in Reduced Wooden Pieces 🌲📊

  5. Networks Analysis of Brazilian Climate Data Based on the DCCA Cross-Correlation Coefficient 🌦️🌍

  6. Statistical Study of the EEG in Motor Tasks (Real and Imaginary) 🧠🏃‍♂️

  7. Detection of Crossover Points in Detrended Fluctuation Analysis: An Application to EEG Signals of Patients with Epilepsy 🔬💡

  8. Analysis of the EEG Bio-Signals During the Reading Task by DFA Method 📚🧠

  9. The Domany-Kinzel Cellular Automaton Phase Diagram 🧩📊

Conclusion:

Florêncio Mendes Oliveira Filho is highly deserving of the “Best Researcher Award.” His significant contributions to computational modeling and signal analysis, particularly in relation to EEG signals, have advanced our understanding of complex physiological processes and their implications in medical science. His interdisciplinary work in combining mathematical techniques with real-world clinical problems sets him apart as an innovative researcher. Although there is room for improvement in expanding his international collaborations and exploring broader clinical applications, his impactful publications, patents, and academic leadership make him an ideal candidate for this prestigious recognition.

Xueru Li | Molecular Mechanisms Signaling | Cell Microenvironment Award

Ms. Xueru Li | Molecular Mechanisms Signaling | Cell Microenvironment Award

Ms. Xueru Li , Chongqing Medical University , China

Li Xueru is an accomplished researcher and scientist with expertise in clinical laboratory diagnostics. He obtained his Ph.D. in Clinical Laboratory Diagnostics from Chongqing Medical University. Xueru has contributed extensively to scientific research, particularly in the field of cell microenvironment, fibrosis, and oxidative stress. His research has involved collaborations with prestigious organizations, such as the Chongqing Education Commission and Chongqing Natural Science Foundation. Through his academic journey, he has demonstrated a strong commitment to advancing knowledge in biomedical sciences, particularly in the areas of lung fibrosis and cellular response to environmental stress. Li Xueru is an active participant in research projects and has co-authored several influential publications that have contributed to the advancement of molecular biology and clinical diagnostics.

Publication Profile:

Scopus

Strengths for the Award:

Li Xueru’s expertise in clinical laboratory diagnostics, combined with his research in the field of cell microenvironment and fibrosis, positions him as a strong candidate for the Research for Cell Microenvironment Award. His work, especially the study on “Pharmaceutical targeting of succinate dehydrogenase in fibroblasts to control bleomycin-induced lung fibrosis,” highlights his contributions to understanding cellular mechanisms in fibrosis and oxidative stress. His involvement in high-impact research funded by organizations like the Chongqing Education Commission and the Chongqing Natural Science Foundation shows a commitment to advancing scientific knowledge and contributing to both academic and practical advancements in biomedical sciences. Moreover, his ability to bridge fundamental research with clinical applications demonstrates a strength that aligns with the goals of the Research for Cell Microenvironment Award.

Areas for Improvements:

While Li Xueru’s research focus is promising, there is potential to expand his exploration of cellular microenvironment to include other disease models and extend beyond lung fibrosis. Diversifying his research topics could provide a broader understanding of cellular behavior across different tissues and disease states. Additionally, there could be more emphasis on the development of therapeutic interventions, potentially accelerating the translation of his discoveries into clinical practices. Increasing collaboration with international research teams may also offer new perspectives and further enhance the impact of his work.

Education:

Li Xueru earned his Ph.D. degree in Clinical Laboratory Diagnostics from Chongqing Medical University, one of China’s leading medical institutions. His academic background has provided him with in-depth knowledge of diagnostic technologies, clinical pathology, and molecular biology. During his doctoral studies, he developed expertise in understanding cellular behavior and disease mechanisms at the molecular level, with a particular focus on how environmental stress impacts cellular functions. This education laid the foundation for his career in the biomedical field. He has further strengthened his research skills by participating in various projects funded by the Chongqing Education Commission and the Chongqing Natural Science Foundation. His education has been instrumental in shaping his approach to scientific inquiry, fostering a comprehensive understanding of clinical diagnostics, and equipping him to lead innovative research in the cellular microenvironment and disease mechanisms.

Experience:

Li Xueru’s experience spans a wide range of research activities focused on clinical laboratory diagnostics and cell microenvironment. His involvement in multiple high-impact research projects, supported by institutions like the Chongqing Education Commission and the Chongqing Natural Science Foundation, showcases his leadership in advancing scientific knowledge. Xueru has worked closely with interdisciplinary teams to address complex problems in the biomedical field, particularly lung fibrosis and oxidative stress. His research contributions include identifying novel cellular mechanisms involved in disease pathogenesis, improving diagnostic methodologies, and exploring therapeutic strategies for disease management. He has demonstrated a remarkable ability to apply scientific research in real-world contexts, ensuring that his findings have practical applications in medical diagnostics and treatment. His collaborative approach and innovative thinking have positioned him as a key figure in his field, contributing significantly to both academic literature and clinical advancements.

Research Focus:

Li Xueru’s primary research focus revolves around the molecular mechanisms of diseases, particularly lung fibrosis and cellular responses to environmental stressors. He is dedicated to understanding the impact of oxidative stress on cellular functions and its role in disease progression. His research explores the microenvironment of cells in response to various stimuli, including chemical agents like bleomycin. A significant area of his research is the role of succinate dehydrogenase in fibroblasts and its potential as a pharmaceutical target to control lung fibrosis. Through his work, Xueru has contributed to a better understanding of how cells interact with their microenvironment, which is crucial for developing new diagnostic and therapeutic approaches. His innovative studies on cell signaling pathways, fibrosis, and oxidative stress have the potential to transform treatment strategies for diseases related to chronic inflammation and tissue fibrosis.

Publications Top Notes:

  • Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis 🧬

  • Corrigendum to “Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis” 🔬

Conclusion:

Li Xueru is a promising candidate for the Research for Cell Microenvironment Award. His significant contributions to the understanding of cellular mechanisms in fibrosis and oxidative stress have led to valuable insights into the pathophysiology of diseases. By focusing on the cell microenvironment and its role in disease progression, his work is advancing scientific knowledge with important implications for diagnostics and therapy. With further diversification of his research and expanded collaborations, Li Xueru has the potential to make even greater strides in the field, ultimately improving patient outcomes and advancing the application of his findings in clinical settings.

Alma Burlingame | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Alma Burlingame | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Alma Burlingame , UCSF , United States

Alma L. Burlingame is a distinguished Professor of Chemistry and Pharmaceutical Chemistry at the University of California, San Francisco. She has over five decades of experience in the fields of mass spectrometry, proteomics, and systems biology. With expertise in the identification and study of unknown proteins and post-translational modifications like phosphorylation, acetylation, and glycosylation, her work has contributed significantly to understanding protein dynamics. Dr. Burlingame has been a pioneer in proximity-biotin labeling for protein complex discovery and has earned widespread recognition for her interdisciplinary contributions to molecular biology and chemistry. Her long-standing collaboration with various international research institutions has fostered advancements in protein interaction and cellular signaling pathways, marking her as a leader in her field.

Publication Profile:

Scopus

Strengths for the Award:

  1. Innovative Contributions: Dr. Burlingame has made significant contributions to mass spectrometry, proteomics, and systems biology, especially in the development of new methodologies for protein analysis and post-translational modifications. Her work in identifying and studying unknown proteins and their modifications has broadened the scope of proteomics.

  2. Multidisciplinary Expertise: Her expertise spans across various fields including chemistry, physics, biological sciences, and medicine, demonstrating her versatility and depth of knowledge in complex scientific issues.

  3. Impact on the Scientific Community: Through her extensive publication record and influential research, Dr. Burlingame has advanced our understanding of protein dynamics, cell signaling, and the role of glycosylation and phosphorylation in health and disease.

  4. Leadership and Mentorship: Dr. Burlingame’s leadership roles, particularly as a co-chair of major international symposia, reflect her stature in the scientific community. Additionally, her mentorship of students and postdocs has helped shape the next generation of scientists in proteomics and systems biology.

Areas for Improvement:

  1. Broader Collaboration with Clinical Applications: While Dr. Burlingame’s research is foundational in proteomics, further expansion of collaborative work with clinical researchers could enhance the practical application of her discoveries, particularly in disease diagnosis and therapeutics.

  2. Public Outreach: Given the complexity of her research, efforts to communicate her findings to broader audiences could help bridge the gap between academic research and public understanding of the significance of proteomics in health.

Education:

Dr. Burlingame earned her Bachelor of Science degree from the University of Rhode Island in 1959. She went on to complete her PhD in Chemistry and Physics at the Massachusetts Institute of Technology (MIT) in 1962. She further honed her scientific expertise as a Guggenheim Fellow at the Karolinska Institute in Stockholm, Sweden, in 1972, specializing in Physiological Chemistry. Over the years, Dr. Burlingame has continued to advance her education, conducting cutting-edge research in the realms of mass spectrometry, proteomics, and the study of post-translational modifications. Her rigorous academic background, combined with her groundbreaking work, has made her a respected figure in biochemistry and molecular biology.

Experience:

Dr. Burlingame has held several prominent positions throughout her distinguished career. She currently serves as a Professor of Chemistry and Pharmaceutical Chemistry at the University of California, San Francisco. She has also held significant roles such as a University Fellow at Hong Kong Baptist University and Professor of Biochemistry at University College London. Dr. Burlingame has been recognized by the American Association for the Advancement of Science and has been an elected Fellow since 1990. Her professional journey includes visiting professorships at leading institutions such as the Ludwig Institute for Cancer Research. Additionally, she has co-chaired major international symposia on mass spectrometry, enhancing her reputation in the global scientific community. Her leadership and influence in research have made her a pivotal figure in mass spectrometry and proteomics.

Awards and Honors:

Dr. Burlingame has earned numerous prestigious honors throughout her career. In 2018, she was awarded the Albert Nelson Marquis Lifetime Achievement Award for her long-standing contributions to scientific research. She was named a Fellow of the American Society of Biochemistry and Molecular Biology in 2022. Her significant achievements were further recognized when she received the MCP Lectureship Plenary Award at the Society for Glycobiology in 2013. Additionally, she was honored with the Achievement Award from the International Forum of Proteomics in 2012 for her impactful work in proteomics. Her longstanding contributions to the field of mass spectrometry have made her an internationally respected leader, and she continues to inspire future generations of scientists.

Research Focus:

Dr. Burlingame’s research focuses on mass spectrometry, proteomics, and systems biology, with a specific emphasis on protein sequencing, identification, and the dynamics of post-translational modifications (PTMs). She has made significant contributions to understanding the site-specific dynamics of PTMs like phosphorylation, acetylation, and glycosylation, and their roles in cell signaling and differentiation. Her group is particularly known for its work in proximity-biotin labeling, a technique used for protein complex discovery and interactomics. She has also studied the dynamic nature of proteins involved in cellular processes such as protein synthesis, cell signaling, and differentiation. By studying how PTMs influence cellular functions, Dr. Burlingame’s work helps to uncover mechanisms underlying diseases like cancer and neurological disorders. Her innovative approaches in mass spectrometry and proteomics continue to influence the understanding of complex biological systems.

Publications Top Notes:

  1. Revealing nascent proteomics in signaling pathways and cell differentiation 🧬🔬

  2. Locally translated mTOR controls axonal local translation in nerve injury 🧠💥

  3. Mapping axon initial segment structure and function by multiplexed proximity biotinylation 🧬⚡

  4. Capture, release, and identification of newly synthesized proteins for improved profiling of functional translatomes 🔍🔬

  5. Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma 💉🧠

  6. Functional screen identifies RBM42 as a mediator of oncogenic mRNA translation specificity 🧬🔍

  7. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation 🔑🧬

  8. TRIM46 Is Required for Microtubule Fasciculation In Vivo But Not Axon Specification or Axon Initial Segment Formation 🧠⚙️

  9. RAPIDASH: Tag-free enrichment of ribosome-associated proteins reveals composition dynamics in embryonic tissue, cancer cells, and macrophages 🧬📊

  10. Remodelling of the translatome controls diet and its impact on tumorigenesis 🥗🎯

Conclusion:

Dr. Alma Burlingame is undoubtedly a leading figure in the fields of mass spectrometry and proteomics. Her innovative research, mentorship, and contributions to the understanding of protein modifications and their implications for health make her a highly deserving candidate for the Best Researcher Award. Her work has had a profound and lasting impact on molecular biology, and she continues to be a driving force in scientific discovery.

 

 

 

Sunita Pokhrel Bhattarai | Signal Transduction Mechanisms | Women Researcher Award

MS. Sunita Pokhrel Bhattarai | Signal Transduction Mechanisms | Women Researcher Award

Ms. Sunita Pokhrel Bhattarai  , Ohio State University , United States

Sunita Pokhrel Bhattarai, PhD, RN, is an accomplished cardiovascular nurse researcher currently pursuing a doctorate at the University of Rochester, New York. Her research focuses on improving the estimation of Left Ventricular Ejection Fraction using ECGs in acute heart failure patients. With a background in emergency and critical care nursing from multiple international institutions, she is committed to advancing healthcare quality, particularly in heart failure care. Dr. Pokhrel Bhattarai’s work is widely published, showcasing expertise in clinical trials, big data analysis, and electrocardiographic assessments in heart failure. She has also contributed significantly to nursing education as a lecturer at Purbanchal University, Nepal. Passionate about reducing healthcare discrepancies, she actively participates in academic and clinical research collaborations, making significant strides in her field.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Sunita Pokhrel Bhattarai is an exceptional researcher with a clear commitment to advancing cardiovascular nursing and improving healthcare outcomes for acute heart failure patients. Her research on estimating Left Ventricular Ejection Fraction using ECGs demonstrates innovation and clinical relevance. Her ability to bridge clinical practice with advanced research methodologies, including big data analysis and electrocardiographic assessment, sets her apart. Moreover, her international academic background and diverse professional experience in countries like Nepal, Spain, and the United States highlight her versatility and ability to contribute globally to healthcare solutions. Dr. Pokhrel Bhattarai’s consistent publication record in top-tier journals and her involvement in prestigious research projects further underscores her dedication to advancing nursing knowledge.

Areas for Improvement:

While Dr. Pokhrel Bhattarai has an outstanding academic and research profile, expanding her research to explore broader healthcare disparities, particularly in rural or underserved populations, could enhance the impact of her work. Additionally, pursuing interdisciplinary collaborations with engineers, statisticians, and other healthcare professionals could provide opportunities for more cutting-edge innovations, particularly in ECG-based diagnostic technology and AI integration.

Education:

Dr. Sunita Pokhrel Bhattarai has an extensive academic background. She is currently pursuing a PhD in Health Science and Nursing at the University of Rochester (2020-2024), under the mentorship of Dr. Mary G Carey. Her research explores estimating Left Ventricular Ejection Fraction using ECGs for acute heart failure patients. Dr. Pokhrel Bhattarai earned her MS in Nursing (2015-2017), specializing in Emergency and Critical Care Nursing, from institutions across Spain, Portugal, and Finland. Her research during this time focused on Advanced Cardiac Life Support knowledge among critical care nurses. She completed her BS in Nursing in 2012 from Maharajgunj Nursing Campus, Nepal, with a focus on Community Health Nursing. Throughout her academic career, she has demonstrated a commitment to advancing nursing knowledge and improving healthcare outcomes in cardiovascular care.

Experience:

Dr. Sunita Pokhrel Bhattarai has diverse professional experience across multiple countries. She has worked as a Nursing Lecturer at Purbanchal University in Kathmandu, Nepal (2017-2020), where she educated future nurses in critical care and advanced cardiovascular practices. As a registered nurse at Shahid Gangalal National Heart Centre, Kathmandu, Nepal (2009-2015), she gained hands-on experience in cardiovascular care, particularly in heart failure management. Additionally, she has been involved in research coordination and manuscript review, demonstrating expertise in big data analysis and clinical trials. Dr. Pokhrel Bhattarai has also held positions as a Research Lead Coordinator and Associate, collaborating with international researchers and contributing to advancing healthcare outcomes, particularly in cardiovascular nursing.

Awards and Honors:

Dr. Sunita Pokhrel Bhattarai has received numerous prestigious awards, highlighting her excellence in research and commitment to healthcare. In 2023, she was awarded the Travel Grant by the Council on Cardiovascular and Stroke Nursing Early Career, American Heart Association, and received the Presidential Stronger as One Diversity Award from the University of Rochester. She also secured a research grant from the International Society for Computerized Electrocardiology Conference. Dr. Pokhrel Bhattarai’s accomplishments include the Ireta Neumann Scholarship for International Nurses, providing $5,000 to support her research endeavors. These awards emphasize her leadership and contributions to cardiovascular nursing, both academically and clinically.

Research Focus:

Dr. Sunita Pokhrel Bhattarai’s research focus lies in the intersection of acute heart failure, ECG technology, and cardiovascular nursing. Her PhD dissertation explores estimating Left Ventricular Ejection Fraction using ECGs, aiming to provide accurate, non-invasive diagnostic tools for acute heart failure. She is passionate about identifying self-care strategies for heart failure patients and improving healthcare implementation strategies. Additionally, her work involves big data analysis, electrocardiographic assessment, and clinical trials to better understand heart failure progression and outcomes. Dr. Pokhrel Bhattarai is dedicated to addressing healthcare discrepancies, particularly in global cardiovascular health, and advancing evidence-based nursing practices through innovative research.

Publications Top Notes:

  1. Association Between Increased Serum Albumin and the Length of Hospital Stay among Acute Heart Failure 🏥
  2. Delays in Door-to-Diuretic Time and 1-Year Mortality among Patients with Heart Failure ⏳❤️
  3. Signs and Symptoms Clusters Among Patients With Acute Heart Failure 🔍💓
  4. Integrative Review of Electrocardiographic Characteristics in Patients with Reduced, Mildly Reduced, and Preserved Heart Failure 📊📈
  5. Knowledge and Practices on Prevention of Coronary Artery Diseases in Nepalese Community 🇳🇵💓
  6. Estimating Ejection Fraction from the 12 Lead ECG among Patients with Acute Heart Failure 💖📉
  7. Door-to-Diuretic Time is Related to Length of Hospital Stay Independent of Diuretic Dose ⏰💊
  8. Estimating Very Low Ejection Fraction from the 12 Lead ECG among Patients with Acute Heart Failure ❤️📉
  9. Association Between Serum Albumin and the Length of Hospital Stay Among Patients With Acute Heart Failure 🧑‍⚕️⏱
  10. Estimating Ejection Fraction from the 12 Lead ECG in Acute Heart Failure 💓📝

Conclusion:

Dr. Sunita Pokhrel Bhattarai’s combination of innovative cardiovascular research, global nursing expertise, and dedication to improving patient outcomes makes her an excellent candidate for the Research for Best Researcher Award. Her strong track record in research, awards, and contributions to cardiovascular nursing makes her deserving of this recognition, and her future endeavors hold great potential to further elevate the field of health science and nursing.