Chang Feng | Cancer Cell Biology | Best Researcher Award

Dr. Chang Feng | Cancer Cell Biology | Best Researcher Award

Dr. Chang Feng , Shanghai University , China

Chang Feng is a distinguished researcher in the fields of tumor molecular diagnosis, biosensing, and intelligent DNA. Born in Shanghai, China, on January 1, 1988, Chang Feng pursued a rigorous academic journey, completing his Ph.D. at Nanjing University (2015-2019) after earning his M.D. from Shanghai University (2012-2015). He is currently a lecturer at Shanghai University since 2019. Feng has contributed significantly to scientific advancements in cancer diagnostics, molecular biosensors, and cutting-edge DNA research. His works often involve the development of innovative detection techniques and the creation of novel DNA-based diagnostic systems. Feng has a collaborative approach, working with multiple researchers to achieve groundbreaking results. His publications in prestigious journals highlight his expertise in developing biosensors, RNA origami, and catalytic DNAzymes for biomedical applications.

Publication Profile: 

Scopus

Strengths for the Award:

Chang Feng’s research is exceptional and well-suited for the Best Researcher Award. His expertise spans across tumor molecular diagnosis, biosensor development, and intelligent DNA systems. His contributions to cancer diagnostics, bioimaging, and biosensing technologies are groundbreaking. Feng has published several high-impact articles in leading journals, demonstrating significant advancements in DNAzymes, electrochemical biosensing, and RNA origami. His work in designing innovative DNA-based diagnostic platforms and cancer therapies reflects his ability to integrate chemistry, biology, and engineering, providing novel solutions for clinical applications. Feng’s interdisciplinary approach and leadership in the field have earned him numerous collaborations with researchers and institutions globally, further enhancing his credibility as a top-tier researcher.

Areas for Improvements:

While Feng has made remarkable contributions to scientific research, one area for improvement is expanding his focus to more clinical applications of his findings. Commercializing his biosensing technologies for real-world healthcare implementation would increase the practical impact of his work. Additionally, improving outreach through public science communication could help raise awareness of his advancements and engage a broader audience.

Education:

Chang Feng received his M.D. from Shanghai University in 2015, where he developed a strong foundation in molecular biology, diagnostics, and bioengineering. His doctoral journey continued at Nanjing University (2015-2019), where he obtained his Ph.D. focusing on tumor molecular diagnosis and biosensing technologies. During his time at Nanjing University, Feng’s research concentrated on the development of DNA-based biosensors and new methodologies for cancer detection. His education at these esteemed institutions provided him with the technical expertise necessary to pioneer groundbreaking research in the field of molecular diagnostics. Feng’s academic training involved rigorous coursework in molecular biology, chemical engineering, and bioinformatics, contributing significantly to his current work in bioimaging, biosensing, and the development of intelligent DNA systems.

Experience:

Chang Feng has a strong academic and research career, currently serving as a lecturer at Shanghai University since 2019. Prior to his current role, he earned his Ph.D. at Nanjing University (2015-2019) and M.D. from Shanghai University (2012-2015). Throughout his career, Feng has collaborated with leading researchers, contributing to the development of innovative biosensing technologies and cancer diagnostics. His work includes advancing DNA-based biosensors, DNAzyme probes, and other cutting-edge diagnostic tools. As a lecturer, Feng mentors graduate students and participates in academic teaching and research projects. He has been involved in several collaborative publications that have furthered the field of molecular biosensors, focusing on intelligent DNA-based systems and tumor detection methodologies. Feng’s research experience combines theoretical knowledge with practical applications, making him a recognized figure in the field of biosensor research and molecular diagnostics.

Research Focus:

Chang Feng’s primary research focus lies in tumor molecular diagnosis, biosensor development, and intelligent DNA systems. He is particularly interested in advancing technologies for cancer detection through the application of molecular biosensors, bioimaging, and intelligent DNA devices. His research explores the use of DNAzymes, catalytic DNA molecules, and RNA origami for targeted molecular detection, with a focus on enhancing the sensitivity and specificity of cancer diagnostics. Feng’s work also investigates the use of biosensors for the detection of small molecules, leveraging innovative electrochemical and fluorescence-based platforms. His interdisciplinary approach combines elements of chemistry, biology, and engineering to create advanced diagnostic systems with potential clinical applications. Feng is dedicated to improving the efficiency of diagnostic tools and is committed to developing more accurate and faster methods for early cancer detection and molecular analysis.

Publications Top Notes:

  1. Single-cell analysis of highly metastatic circulating tumor cells by combining a self-folding induced release reaction with a cell capture microchip 🧬🔬 (Anal. Chem., 2021)
  2. Hierarchical biomarkers detection via a universal polydopamine probe catalyzed by a hexagonal star-nanostructured DNAzyme 🔬🧪 (Sensor. Actuat. B-Chem., 2022)
  3. Construction of a ternary complex based DNA logic nanomachine for a highly accurate imaging analysis of cancer cells 🧬💡 (ACS Sens., 2020)
  4. Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer 🧬🦠 (Nat. Commun., 2023)
  5. Liquid-colloid-solid modular assembly for three-dimensional electrochemical biosensing of small molecules 💧⚡ (Biosens. Bioelectron., 2024)
  6. Dual-targets binding protection mediated rolling circle transcription with tandem fluorescent RNA aptamers for label-free detection of liver cancer biomarkers 🧬🦠 (Sensor. Actuat. B-Chem., 2024)
  7. Cell-Free Biosensing Genetic Circuit Coupled with Ribozyme Cleavage Reaction for Rapid and Sensitive Detection of Small Molecules 🧬⚡ (ACS Synth. Biol., 2023)
  8. A portable and partitioned DNA hydrogel chip for multitarget detection 💧🧬 (Lab Chip., 2023)

Conclusion:

Chang Feng’s research in tumor molecular diagnostics, biosensors, and intelligent DNA is truly cutting-edge. His scientific rigor, collaboration with top researchers, and groundbreaking discoveries in cancer detection and biosensing technologies make him a deserving candidate for the Best Researcher Award. By continuing to bridge the gap between laboratory research and clinical applications, Feng will likely have an even greater impact in advancing medical diagnostics and therapeutic strategies.

Jacob Wekalao | Cancer Cell Biology | Best Researcher Award

Mr. Jacob Wekalao | Cancer Cell Biology | Best Researcher Award

Mr. Jacob Wekalao , USTC CHINA , China

Jacob Wekalao is a Physics professional and researcher with extensive experience in both academia and industry. He holds a Doctor of Philosophy from the University of Science and Technology and a Master of Science in Physics from Marwadi University, India. Jacob has worked as a physics teacher, leading the physics department at Kwale High School, Kenya, and is currently a software expert at Eujim Solutions, where he specializes in creating innovative business solutions. He is also a Research Assistant at Marwadi University, contributing to advanced research in physics and nanotechnology. His expertise spans across terahertz sensors, graphene-based biosensors, and surface plasmon resonance techniques. In addition to his academic endeavors, Jacob has authored several peer-reviewed publications, showcasing his contributions to forensic science, health, and biomedical applications. Jacob is passionate about research, mentoring, and leveraging technology to solve real-world problems.

Publication Profile:

Orcid

Strengths for the Award:

Jacob Wekalao is an exceptional researcher in the field of experimental physics, particularly in the areas of nanotechnology, terahertz sensors, and biosensing. His work integrates cutting-edge research with practical applications, demonstrating a high level of innovation and expertise. Jacob’s contributions to the development of graphene-based sensors for various applications, including healthcare, forensic science, and security, have positioned him as a thought leader in his field. His published works in prestigious journals and his active role in research projects, such as designing biosensors for early disease detection, highlight his proficiency in both theoretical and applied physics. Additionally, Jacob’s ability to collaborate internationally and present at major conferences reflects his commitment to advancing scientific knowledge and networking within the global research community.

Areas for Improvement:

While Jacob excels in his research and technological expertise, expanding his focus on interdisciplinary collaborations could further elevate his work. Engaging more with industry experts in areas like artificial intelligence or machine learning could also open doors for more transformative innovations, especially in optimizing sensor technologies. Further involvement in policy or public science initiatives could help bridge the gap between research and broader societal applications.

Education:

Jacob Wekalao has an impressive educational background that supports his expertise in physics and technology. He is currently pursuing a Doctor of Philosophy at the University of Science and Technology, China. His academic journey began with a Bachelor of Education in Science with a focus on Physics and Mathematics from the University of Embu, Kenya (2016-2020). This solid foundation propelled him to obtain a Master of Science in Physics from Marwadi University, Rajkot, Gujarat, India (2021-2023). During his time at Marwadi University, Jacob excelled academically, earning an Academic Gold Medal in November 2023 for his outstanding performance. His commitment to learning is also reflected in certifications from institutions like KAIST and the Israel Institute of Technology. Jacob’s education is characterized by a blend of theoretical knowledge and practical skills, which has enabled him to contribute significantly to the fields of experimental physics and applied technology.

Experience:

Jacob Wekalao has diverse experience spanning education, research, and industry. From September 2019 to August 2021, he worked as a Physics teacher at Kwale High School, Kenya, where he led the physics department, developed curriculum materials, and managed science projects. This role enabled him to foster critical thinking and scientific inquiry among students. In addition to his teaching experience, Jacob is currently employed as a Software Expert at Eujim Solutions, Kenya (July 2023 – Present), where he provides tailored software solutions, improves business efficiency, and implements cutting-edge technologies. Furthermore, he works as a Research Assistant at Marwadi University, collaborating on various physics research projects focused on terahertz sensors and biosensors. His involvement in multiple projects and publications has established him as a valuable contributor to advancements in technology and scientific research. Jacob’s work showcases a seamless integration of theoretical physics and practical application in technology.

Awards and Honors:

Jacob Wekalao’s dedication to academic excellence and research has earned him notable awards and honors. He received the prestigious Academic Gold Medal from Marwadi University, Rajkot, India, in November 2023, recognizing his exceptional performance in the Master of Science in Physics program. Jacob’s achievements are further validated by his numerous peer-reviewed publications, which have contributed to the global scientific community. His research in the fields of biosensing, terahertz technology, and nanomaterials has earned him recognition at various international platforms. In addition to academic awards, Jacob’s work has been presented at leading conferences, such as the International Conference on Chemical Safety and Security for Health and Environment (ICCSSHE), held in India in December 2023. His strong academic performance, leadership in research, and contributions to technological advancements continue to set him apart as an outstanding professional in his field.

Research Focus:

Jacob Wekalao’s research focuses on experimental physics, particularly in the areas of terahertz technology, biosensing, and nanomaterials. His work has significant implications for applications in healthcare, security, and forensic science. Jacob has developed and optimized graphene-based terahertz surface plasmon resonance sensors for the detection of various biomolecules, including hemoglobin and illicit drugs. His research has extended to the design of graphene metasurfaces for efficient detection of diseases like malaria and COVID-19. Jacob’s research in biosensors has led to highly sensitive, cost-effective solutions that hold promise for point-of-care diagnostics and environmental monitoring. Additionally, his work on the use of metasurfaces for explosive detection has practical implications for security. Through his research, Jacob combines advanced theoretical physics with real-world applications, contributing to the fields of biomedical technology, environmental monitoring, and security. His interest in machine learning also aids in optimizing these sensor technologies for better precision and performance.

Publications Top Notes:

  1. “Graphene-based THz surface plasmon resonance biosensor for hemoglobin detection applicable in forensic science.” 📖🔬
  2. “Design of ring and cross-shaped graphene metasurface sensor for efficient detection of malaria and 2-bit encoding applications.” 🦠🔍
  3. “Waterborne bacteria detecting highly sensitive graphene metasurface-based cost-efficient and efficient refractive index sensors.” 💧🔬
  4. “Design of graphene metasurface sensor for efficient detection of COVID-19.” 🦠💡
  5. “Graphene biosensor design based on glass substrate for forensic detection of illicit drugs.” 💊🔍
  6. “Graphene and Gold Metasurface-Based Terahertz Surface Plasmon Resonance Sensor for Explosive Detection.” 💥🛡️
  7. “Terahertz Optical Ultrasensitive Glucose Detection Using Graphene and Silver Surface Plasmon Resonance Metasurfaces for Biomedical Applications.” 🩺🔬
  8. “High-Sensitivity Graphene-Gold Metasurface Optical Biosensor for Early Melanoma Detection Optimized with Machine Learning Using a One-Dimensional Convolutional Neural Network and Binary Encoding.” 🧬🔬

Conclusion:

Jacob Wekalao’s contributions to the fields of physics and technology demonstrate an impressive combination of academic excellence, hands-on expertise, and innovative solutions. His drive to advance scientific knowledge and apply it for real-world impact, especially in healthcare and security, makes him a deserving candidate for the Best Researcher Award. Jacob’s ongoing work on high-sensitivity biosensors and his ability to stay ahead of technological trends make him a standout researcher in his field.

 

 

 

Annoor Awadasseid | Cancer Cell Biology | Best Researcher Award

Dr. Annoor Awadasseid | Cancer Cell Biology | Best Researcher Award

Dr. Annoor Awadasseid , Zhejiang University of Technology , Sudan

Dr. Annoor Awadasseid is a dedicated biochemist and molecular biologist specializing in medicinal chemistry, with a profound focus on cancer treatment. With a rich background in the exploration of novel small-molecule compounds, his research is at the forefront of developing potential therapeutic drugs for oncology. Dr. Awadasseid has made significant contributions to biochemistry, molecular biology, and cancer therapy, integrating his expertise to evaluate promising compounds. Passionate about enhancing patient outcomes, he collaborates extensively with interdisciplinary teams and mentors junior researchers. Currently, he is a Senior Researcher at Hangzhou Qingzhenghong Technology Co., Ltd., where he leads oncology-focused R&D initiatives, developing novel cancer therapies. He has authored numerous high-impact publications, showcasing his commitment to advancing therapeutic approaches for cancer care.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Annoor Awadasseid exhibits outstanding qualities as a researcher in the field of biochemistry and molecular biology, particularly within cancer therapeutics. His expertise in evaluating small-molecule compounds for cancer treatment is evident through his advanced knowledge of biochemical processes, medicinal chemistry, and molecular biology techniques. Dr. Awadasseid has significantly contributed to the design and development of novel therapeutic agents, particularly targeting the PD-1/PD-L1 immune checkpoint pathway, which is critical for cancer immunotherapy. His ability to collaborate with interdisciplinary teams and mentor junior researchers demonstrates a strong leadership role in advancing scientific knowledge and fostering innovation. His extensive publication record in prestigious journals, alongside the recognition he has received via multiple scholarships and awards, further attests to the high impact of his research and contributions to improving patient care.

Areas for Improvement:

While Dr. Awadasseid’s research is impressive and impactful, further diversification of research methodologies could enhance his work. For instance, incorporating more cutting-edge computational techniques and expanding collaborations with clinical research teams could accelerate the translation of his lab-based discoveries into clinical applications. Additionally, increasing visibility in international scientific conferences would allow Dr. Awadasseid to expand his professional network, share insights, and potentially collaborate on global-scale projects. Engaging in multidisciplinary research that spans beyond oncology could also create new avenues for discovery and broaden his research impact.

Education:

Dr. Awadasseid’s academic journey includes a Ph.D. in Medicinal Chemistry from the University of Chinese Academy of Sciences (2017-2020), where he specialized in the design and evaluation of therapeutic compounds. Prior to that, he earned another Ph.D. in Biochemistry and Molecular Biology from Dalian Medical University (2014-2017). His earlier studies culminated in a Master’s degree in Biochemistry and Molecular Biology from Northeast Normal University (2012-2014). These rigorous educational experiences have honed his skills in biochemical and molecular techniques, which form the foundation for his groundbreaking research in cancer therapy. Dr. Awadasseid’s extensive training across multiple renowned institutions equipped him with the tools to explore novel therapeutic pathways, ultimately paving the way for his contributions to drug discovery and cancer treatment.

Experience:

Dr. Awadasseid has over a decade of experience in biochemistry, molecular biology, and medicinal chemistry. Following his postdoctoral fellowship at Zhejiang University of Technology (2020-2024), where he focused on small-molecule drug evaluation for cancer therapy, he became a Senior Researcher at Hangzhou Qingzhenghong Technology Co., Ltd. (2024-present). In this role, he leads R&D initiatives, specializing in the discovery and development of novel small-molecule compounds for oncology. His work includes evaluating drug efficacy through preclinical models, optimizing therapeutic candidates, and integrating interdisciplinary insights to drive advancements in targeted cancer therapies. Dr. Awadasseid’s expertise spans a variety of techniques, including CRISPR/Cas9 gene editing, flow cytometry, and qPCR, supporting his pivotal contributions to improving cancer treatment and patient outcomes. He also mentors junior researchers and contributes to intellectual property creation, including patents and publications in prestigious journals.

Awards and Honors:

Dr. Awadasseid has received prestigious accolades throughout his career. He was awarded the CAS-TWAS President’s Fellowship Programme (2017-2020) for his Ph.D. studies at the University of Chinese Academy of Sciences, recognizing his potential for significant scientific contributions. Additionally, he received the Liaoning Provincial Government Scholarship (2014-2017) while pursuing his Ph.D. at Dalian Medical University. The Chinese Government Scholarship (2012-2014) was awarded to him for his Master’s degree studies at Northeast Normal University, reflecting his academic excellence and commitment to advancing research in biochemistry and molecular biology. These scholarships and awards highlight Dr. Awadasseid’s dedication to his field, his research accomplishments, and his potential to make lasting impacts in the realm of cancer therapy and medicinal chemistry.

Research Focus:

Dr. Awadasseid’s research is centered on the development and evaluation of novel small-molecule compounds for cancer treatment, specifically focusing on their mechanisms and potential as therapeutic agents. His work aims to identify promising candidates that could enhance patient outcomes in oncology. He has a strong interest in the design and synthesis of therapeutic molecules, particularly those targeting the PD-1/PD-L1 pathway and other key molecules involved in cancer progression. Through extensive preclinical testing, Dr. Awadasseid evaluates the efficacy of these compounds, with a particular emphasis on their ability to target specific cancer pathways, including apoptosis, immune response modulation, and signal transduction. His research employs a wide range of molecular and biochemical techniques, including CRISPR/Cas9 gene editing, qPCR, flow cytometry, and various microscopy methods, to assess the therapeutic potential of novel compounds. Ultimately, Dr. Awadasseid aims to contribute to the development of more effective, targeted therapies for cancer patients.

Publication Top Notes:

  1. Design, synthesis and biological evaluation of novel TMPRSS2-PROTACs with florosubstituted 4-guanidino-N-phenylbenzamide derivative ligands. 🔬💊
  2. Design, synthesis, and evaluation of antitumor activity of 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives as PD-1/PD-L1 inhibitors. 🧬💥
  3. Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. 🔬🐭
  4. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. 💡📚
  5. Design, synthesis, anti-tumor activity and mechanism of novel PROTACs as degraders of PD-L1 and inhibitors of PD-1/PD-L1 interaction. 🔧🎯
  6. Current studies and future promises of PD-1 signal inhibitors in cervical cancer therapy. 🎗️🔬
  7. A Review on the Anticancer Activity of Carbazole-based Tricyclic Compounds. 📖🔍
  8. Design, Synthesis, and Antitumor Activity Evaluation of 2-Arylmethoxy-4-(2, 2′-dihalogen-substituted biphenyl-3-ylmethoxy) Benzylamine Derivatives as Potent PD-1/PD-L1 Inhibitors. 🧪🧫
  9. PD-L1 dimerisation induced by biphenyl derivatives mediates anti-breast cancer activity via the non-immune PD-L1–AKT–mTOR/Bcl2 pathway. 🧬💥
  10. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. 🧪⚡

Conclusion:

Dr. Awadasseid is undoubtedly a strong candidate for the Best Researcher Award due to his exceptional contributions to the field of cancer research. His innovative approach to discovering therapeutic small-molecule compounds, coupled with his ability to collaborate across disciplines, positions him as a leader in the biochemistry and molecular biology community. By continuing to refine his research techniques and expanding his collaborations, Dr. Awadasseid is likely to further enhance the scope and impact of his work. His ultimate goal of improving patient care and treatment modalities places him in alignment with the mission of the Best Researcher Award, making him a fitting candidate for this prestigious recognition.