Eunmiri Roh | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Eunmiri Roh | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Eunmiri Roh, Department of Cosmetic Science, Kwangju Women’s University, South Korea

Dr. Eunmiri Roh is an accomplished biomedical scientist and Assistant Professor in the Department of Cosmetic Science at Kwangju Women’s University, Republic of Korea. With a strong foundation in microbiology and pharmaceutical sciences, Dr. Roh has established herself in the field of skin cancer biology and cosmetic science. Her research explores cellular and molecular pathways in skin carcinogenesis, melanogenesis, photoaging, and chemoprevention, emphasizing UV-induced damage and pigmentation disorders. She has published extensively in top-tier international journals and has collaborated with leading institutions, including the University of Minnesota. Dr. Roh’s dedication to integrating science with practical beauty and health solutions positions her as a leading figure in her field. Her exceptional contributions have earned her multiple research honors, and she continues to innovate at the intersection of pharmaceutical science and cosmetology.

Publication Profile:

Google Scholar

Orcid

✅ Strengths for the Award:

  1. High-Impact Research Portfolio
    Dr. Roh has produced a consistent stream of peer-reviewed publications in high-impact international journals, such as Biochemical Pharmacology, Cancer Research, Journal of Investigative Dermatology, and Cells, reflecting her solid global research presence.

  2. Focused and Societally Relevant Research
    Her primary focus—UV-induced skin carcinogenesis, pigmentation disorders, and chemoprevention—addresses pressing issues in dermatology and cosmetic health, aligning with public health interests and the cosmetic industry’s innovation goals.

  3. Interdisciplinary Expertise
    Dr. Roh’s training in biochemistry, pharmacy, and microbiology supports a multidisciplinary research approach, which is evident in her collaboration with dermatologists, chemists, and pharmacologists.

  4. Award-Winning Excellence
    She has earned multiple national and international research awards, including from the Korean Society of Microbiology and Biotechnology, the Korean Society of Cancer Prevention, and The Hormel Institute (USA), validating her scientific merit.

  5. Strong International Collaboration
    Collaboration with globally recognized institutions like the University of Minnesota and The Hormel Institute reflects the international relevance and applicability of her research.

  6. Translational Research Impact
    Dr. Roh’s research bridges basic science and application—discovering bioactives for cosmetics and drug delivery systems, highlighting practical impact in dermatology and consumer health.

⚙️ Areas for Improvement:

  1. Leadership in Independent Grants
    While publication output is impressive, securing independent competitive research funding (e.g., national research grants, PI-led international projects) would further reinforce her research leadership.

  2. Mentorship and Academic Development
    Enhanced documentation of her mentorship role—particularly training graduate students, Ph.D. candidates, or postdoctoral researchers—would highlight her academic influence beyond publications.

  3. Commercial Translation or Patents
    Filing patents or commercializing products/formulations related to her discoveries (e.g., natural anti-pigmentation agents or UV protectants) could amplify her impact and innovation metrics.

  4. Greater Engagement in Scientific Leadership
    Increased visibility in scientific committees, editorial boards, or as a conference keynote speaker would establish her as a thought leader in her field.

📘 Education:

Dr. Roh’s academic journey began with a Bachelor of Science in Microbiology from the College of Natural Sciences at Chungbuk National University (2007). Motivated to delve deeper into biomedical research, she pursued her Master’s degree in Life Pharmacy (2009), followed by a Ph.D. in Pharmaceutical Function with a focus on biochemistry (2012) at the College of Pharmacy in the same university. Her graduate and doctoral training provided her with a robust understanding of molecular biology, pharmacology, and biochemical mechanisms, forming the backbone of her current work in dermatological science and cosmetic pharmacology. The interdisciplinary nature of her studies laid the groundwork for her specialization in skin biology, UV-induced skin damage, and pigmentation-related drug discovery. Her academic foundation is both broad and deep, equipping her with the necessary tools to explore innovative solutions for skin health through cosmetic science.

🧪 Experience:

Dr. Eunmiri Roh currently serves as an Assistant Professor at the Department of Cosmetic Science, Kwangju Women’s University, where she leads research on cosmetic pharmacology, focusing on skin cancer prevention and pigmentation disorders. Before joining academia, she gained valuable research experience at globally recognized institutions such as The Hormel Institute, University of Minnesota, where she was awarded for outstanding scientific contributions. She has collaborated in multidisciplinary teams working on skin photoaging, UV protection, anti-inflammatory pathways, and novel cosmetic drug formulations. Her work spans in vitro and in vivo studies, biochemical analysis, and formulation science. Dr. Roh also contributes to educational excellence, guiding undergraduate and graduate students in research methodologies and scientific writing. Her blend of practical, clinical, and research experience strengthens her impact in both the cosmetic and biomedical sectors. She is known for her rigorous scientific approach and her drive to translate laboratory findings into real-world applications.

🏅 Awards and Honors:

Dr. Roh has received numerous accolades for her pioneering research in molecular pharmacology and cosmetic science. She was honored with the Outstanding Poster Presentation Award from the Korean Society of Microbiology and Biotechnology in June 2022, recognizing her innovative insights into skin-related biochemical mechanisms. Similarly, she earned the Outstanding Poster Presentation Award from the Korean Society of Cancer Prevention in November 2021 for her work on chemopreventive agents. Earlier, in 2019, she received the Summer Research Retreat Award (2nd place) from The Hormel Institute, University of Minnesota—an acknowledgment of her collaborative contributions to cancer biology. These awards underscore her reputation for research excellence, innovation, and dedication to advancing the fields of dermatology and cosmetology. Her consistent recognition at both national and international levels reflects her commitment to impactful science and her growing influence in molecular dermatology and cosmetic formulation research.

🔬 Research Focus:

Dr. Roh’s research primarily focuses on molecular and cellular targets involved in carcinogenesis, skin aging, and pigmentation. Her studies aim to understand the biochemical pathways influenced by solar UV radiation, and their role in inducing skin cancer and photoaging. She also explores mechanisms of melanogenesis, contributing to the discovery of anti-hyperpigmentation agents. A distinctive element of her work is the translation of pharmacological findings into cosmetic applications, bridging the gap between biochemistry and skincare innovation. Her recent work includes green tea polyphenols, sesame glycoproteins, and natural bioactives for UV protection. She also investigates novel formulations for transdermal drug delivery and anti-inflammatory responses in skin cells. Her holistic approach encompasses in vitro, in vivo, and 3D skin models, emphasizing both efficacy and safety. Her contributions are instrumental in developing scientifically validated cosmetics and preventive strategies against UV-induced damage and pigment disorders.

📚 Publications Top Notes:

  1. 🧴 Evaluation and analysis of major competency achievement in beauty and cosmetics students – J Korean Soc Cosmetol (2024)

  2. 🌿 Protective Effects of Sesame Glycoproteins on UV-Induced Skin Aging – Pharmaceuticals (2024)

  3. ☀️ Orobol suppresses development of cutaneous SCC – Biochem Pharmacol (2023)

  4. 💊 Topical Rocuronium Bromide Formulation for Skin Delivery – Int J Mol Sci (2023)

  5. 🧪 Higenamine reduces fine-dust-induced MMP-1 in keratinocytes – Plants (2023)

  6. 🔥 Targeting IKKβ in acetaminophen-induced hepatotoxicity – Pharmaceutics (2023)

  7. 🌸 Lotusine inhibits UV-induced MMP-1 – Plants (2022)

  8. 🔍 Structural basis of multifunctional roles of Ints3 C-terminal domain – J Biol Chem (2021)

  9. 🧬 GSK3β and WT1 in tumor progression – Cancer Res (2021)

  10. 🌞 Effectiveness of FDA-approved sunscreens against UV damage – Cells (2020)

🔚 Conclusion:

Dr. Eunmiri Roh is a highly qualified and outstanding researcher whose scientific contributions to dermatological pharmacology, cosmetic biochemistry, and skin health are both innovative and impactful. Her robust publication record, research awards, and international collaborations indicate that she is well-positioned to receive recognition such as the Best Researcher Award. With minor enhancements in grant leadership, mentorship roles, and translational outcomes, her academic profile could rise even further.

ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN , Ankara Yildirim Beyazit University , Turkey

Dr. Aslı F. Ceylan is an accomplished pharmacologist and academic with a strong foundation in medical pharmacology and translational research. Born in Ankara, Turkey, in 1977, she has dedicated over two decades to advancing our understanding of cellular signaling pathways in disease states. After earning her degrees from Ankara University, she completed a prestigious postdoctoral fellowship at the University of Wyoming, where she began her international research journey. Currently serving at Ankara Yıldırım Beyazıt University School of Medicine, she contributes to both research and education. Fluent in Turkish, English, and Spanish, Dr. Ceylan bridges global scientific collaborations. Her work spans oxidative stress, inflammation, and cellular mechanisms in cardiovascular, metabolic, and neurodegenerative diseases. She is a prolific author and recipient of several international fellowships and project grants. Dr. Ceylan stands out as a dedicated scientist whose work contributes meaningfully to the field of signal transduction and molecular pharmacology.

Publication profile:

Orcid

✅ Strengths for the Award:

  1. Extensive Research in Signal Transduction Pathways
    Dr. Ceylan’s body of work demonstrates a consistent and high-impact focus on key signal transduction pathways—including NLRP3 inflammasome activation, mitophagy, ferroptosis, oxidative stress, and autophagy—across cardiovascular, metabolic, and neurological disease models.

  2. International Research Recognition
    She has held prestigious fellowships from NIH, the American Heart Association, and INBRE, contributing to globally relevant research while collaborating with international teams, especially in the U.S. and Europe.

  3. Strong Translational Relevance
    Her research links molecular mechanisms to potential therapies, such as her exploration of aldose reductase inhibitors, natural antioxidants, and neuroprotective compounds (e.g., rosemary extracts), bridging the gap between basic science and clinical relevance.

  4. Consistent Publication Record
    Dr. Ceylan has co-authored over a dozen peer-reviewed publications in the past three years alone, with topics directly tied to signal transduction, and published in reputable journals (e.g., Biochimica et Biophysica Acta, JACC: Basic to Translational Science).

  5. Leadership and Mentorship
    As a Principal Investigator for NIH-funded thematic research projects and an academic at a medical university, she demonstrates strong leadership, mentoring capabilities, and a sustained contribution to the scientific community.

🛠️ Areas for Improvement:

  1. Greater Focus on Human Clinical Studies
    While her animal model work is comprehensive, integrating more human cell or clinical data would increase the translational applicability of her research.

  2. Expanded Thematic Clarity in Signal Transduction
    Some of her recent works, while impactful, focus broadly on pharmacological effects of natural compounds. More thematic emphasis on specific intracellular signaling cascades (e.g., MAPK, PI3K/Akt, or JAK/STAT) could strengthen her profile specifically for a signal transduction-focused award.

  3. Visibility in Global Scientific Forums
    Increased participation as a speaker, panelist, or chair in international conferences focused on signal transduction would enhance her global academic footprint.

📘 Education:

Dr. Aslı F. Ceylan completed her entire academic training in Pharmacology at the prestigious Ankara University Faculty of Pharmacy. She earned her Bachelor of Science (B.Sc.) in Pharmacy in 1998, followed by a Master of Science (M.Sc.) in Pharmacology in 2001. Her strong interest in cellular mechanisms and drug interactions led her to pursue a Ph.D. in Pharmacology, which she successfully completed in 2007. Her doctoral research was further enhanced by a research fellowship at the National Institutes of Health (NIH) during 2004-2005, providing her hands-on experience in internationally recognized labs. This rigorous academic journey solidified her expertise in pharmacological mechanisms and preclinical modeling. Her academic training was consistently supported by competitive scholarships from the Turkish Scientific and Research Council (TÜBİTAK). Dr. Ceylan’s academic path reflects a deep commitment to understanding complex cellular systems and contributes significantly to her current role as a leader in molecular pharmacology and signal transduction.

💼 Experience:

Dr. Aslı F. Ceylan is currently a faculty member at Ankara Yıldırım Beyazıt University School of Medicine, where she serves in the Department of Medical Pharmacology. She has extensive academic and research experience spanning over 20 years. Her postdoctoral research at the University of Wyoming School of Pharmacy (2008–2009) focused on cardiovascular research, where she worked on signal transduction pathways involved in heart failure and metabolic disease. She also held a Principal Investigator (PI) role in NIH-funded INBRE research projects in the U.S. from 2011 to 2020. Dr. Ceylan has consistently contributed to multi-disciplinary research projects and collaborative studies, mentoring young researchers and postgraduate students. She has a solid background in oxidative stress, inflammation, and cellular apoptosis. Her translational approach, blending basic science with therapeutic innovation, aligns perfectly with the goals of signal transduction research. Her international exposure and consistent academic productivity make her a valuable asset to any scientific initiative.

🏆 Awards and Honors:

Dr. Aslı F. Ceylan has earned numerous national and international fellowships and honors throughout her career. She was awarded the Postdoctoral Fellowship by the American Heart Association and the University of Wyoming in 2008, which significantly propelled her research on cardiovascular signaling. She also received a Ph.D. research fellowship from the NIH (2004–2005), supporting her studies in cell signaling and oxidative stress. Domestically, she was funded by TÜBİTAK (Turkish Scientific and Research Council) for both her master’s and Ph.D. degrees. Most notably, she served as Principal Investigator for NIH INBRE Thematic Research Projects from 2011 to 2020, underlining her leadership and innovation in biomedical research. These accolades reflect her ongoing commitment to excellence in pharmacological science and her impact on the field of signal transduction, particularly in cardiovascular and neurodegenerative diseases. Her strong track record of competitive funding and recognition underscores her eligibility for the Signal Transduction Award.

🔬 Research Focus:

Dr. Ceylan’s research is centered on signal transduction pathways involved in oxidative stress, inflammation, mitophagy, and ferroptosis. Her work delves into the molecular mechanisms underlying cardiovascular diseases, diabetic complications, neurodegenerative disorders, and cancer, with a particular focus on mitochondrial function and cellular defense systems. She employs both in vivo and in vitro models to study how specific pharmacological agents modulate pathways like NLRP3 inflammasome activation, aldose reductase inhibition, and autophagy. Additionally, her recent research explores the therapeutic potential of natural compounds such as carnosol, carnosic acid, and rosemary extract in modulating redox balance and apoptotic pathways. Her interdisciplinary approach links natural product pharmacology with molecular signaling, making her contributions relevant across multiple domains. The translational value of her research, aiming to bridge the gap between bench and bedside, aligns directly with the core objectives of signal transduction studies and reinforces her eligibility for this distinguished award.

📚 Publications Top Notes:

  1. 🧬 Cardiomyocyte-specific deletion of endothelin receptor A obliterates cardiac aging via mitophagy and ferroptosis (2024)

  2. 🧫 Tackling chronic wound healing using nanomaterials: Advancements and future perspectives (2023)

  3. 🧪 Dual-acting aldose reductase inhibitor impedes oxidative stress in diabetic rat tissues (2023)

  4. 👁️ Cemtirestat induces ocular defense against glycotoxic stress in diabetic rats (2023)

  5. 🍷 NLRP3 inhibition protects against ethanol-induced cardiotoxicity in FBXL2-dependent manner (2023)

  6. 💉 Oxytocin and enalapril reduce epidural fibrosis post-laminectomy in rats (2023)

  7. 🧠 Calcium dobesilate therapy in cerebral hypoxia/reperfusion injury in rats (2023)

  8. 🧬 Beclin1 deficiency attenuates alcohol-induced cardiac dysfunction via ferroptosis inhibition (2022)

  9. 💓 Parkin insufficiency exacerbates cardiac remodeling through mitochondrial Ca2+ overload (2022)

  10. ❤️‍🩹 Beclin 1 haplosufficiency compromises stem-cell cardioprotection post-MI (2022)

🧾 Conclusion:

Dr. Aslı F. Ceylan is a highly qualified, internationally active, and academically productive researcher whose expertise lies in elucidating molecular mechanisms of disease through signal transduction pathways. Her deep involvement in studies on oxidative stress, mitochondrial dynamics, inflammation, and natural product pharmacology positions her as a valuable contributor to the advancement of molecular medicine.

Given her research output, grant leadership, and commitment to translational science, she is highly suitable for the Signal Transduction Award. Her work not only contributes to the understanding of intracellular signaling but also bridges basic research with therapeutic potential, making her a standout candidate for this recognition.