ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN | Molecular Mechanisms Signaling | Signal Transduction Award

Prof. Dr. ASLI CEYLAN , Ankara Yildirim Beyazit University , Turkey

Dr. Aslı F. Ceylan is an accomplished pharmacologist and academic with a strong foundation in medical pharmacology and translational research. Born in Ankara, Turkey, in 1977, she has dedicated over two decades to advancing our understanding of cellular signaling pathways in disease states. After earning her degrees from Ankara University, she completed a prestigious postdoctoral fellowship at the University of Wyoming, where she began her international research journey. Currently serving at Ankara Yıldırım Beyazıt University School of Medicine, she contributes to both research and education. Fluent in Turkish, English, and Spanish, Dr. Ceylan bridges global scientific collaborations. Her work spans oxidative stress, inflammation, and cellular mechanisms in cardiovascular, metabolic, and neurodegenerative diseases. She is a prolific author and recipient of several international fellowships and project grants. Dr. Ceylan stands out as a dedicated scientist whose work contributes meaningfully to the field of signal transduction and molecular pharmacology.

Publication profile:

Orcid

✅ Strengths for the Award:

  1. Extensive Research in Signal Transduction Pathways
    Dr. Ceylan’s body of work demonstrates a consistent and high-impact focus on key signal transduction pathways—including NLRP3 inflammasome activation, mitophagy, ferroptosis, oxidative stress, and autophagy—across cardiovascular, metabolic, and neurological disease models.

  2. International Research Recognition
    She has held prestigious fellowships from NIH, the American Heart Association, and INBRE, contributing to globally relevant research while collaborating with international teams, especially in the U.S. and Europe.

  3. Strong Translational Relevance
    Her research links molecular mechanisms to potential therapies, such as her exploration of aldose reductase inhibitors, natural antioxidants, and neuroprotective compounds (e.g., rosemary extracts), bridging the gap between basic science and clinical relevance.

  4. Consistent Publication Record
    Dr. Ceylan has co-authored over a dozen peer-reviewed publications in the past three years alone, with topics directly tied to signal transduction, and published in reputable journals (e.g., Biochimica et Biophysica Acta, JACC: Basic to Translational Science).

  5. Leadership and Mentorship
    As a Principal Investigator for NIH-funded thematic research projects and an academic at a medical university, she demonstrates strong leadership, mentoring capabilities, and a sustained contribution to the scientific community.

🛠️ Areas for Improvement:

  1. Greater Focus on Human Clinical Studies
    While her animal model work is comprehensive, integrating more human cell or clinical data would increase the translational applicability of her research.

  2. Expanded Thematic Clarity in Signal Transduction
    Some of her recent works, while impactful, focus broadly on pharmacological effects of natural compounds. More thematic emphasis on specific intracellular signaling cascades (e.g., MAPK, PI3K/Akt, or JAK/STAT) could strengthen her profile specifically for a signal transduction-focused award.

  3. Visibility in Global Scientific Forums
    Increased participation as a speaker, panelist, or chair in international conferences focused on signal transduction would enhance her global academic footprint.

📘 Education:

Dr. Aslı F. Ceylan completed her entire academic training in Pharmacology at the prestigious Ankara University Faculty of Pharmacy. She earned her Bachelor of Science (B.Sc.) in Pharmacy in 1998, followed by a Master of Science (M.Sc.) in Pharmacology in 2001. Her strong interest in cellular mechanisms and drug interactions led her to pursue a Ph.D. in Pharmacology, which she successfully completed in 2007. Her doctoral research was further enhanced by a research fellowship at the National Institutes of Health (NIH) during 2004-2005, providing her hands-on experience in internationally recognized labs. This rigorous academic journey solidified her expertise in pharmacological mechanisms and preclinical modeling. Her academic training was consistently supported by competitive scholarships from the Turkish Scientific and Research Council (TÜBİTAK). Dr. Ceylan’s academic path reflects a deep commitment to understanding complex cellular systems and contributes significantly to her current role as a leader in molecular pharmacology and signal transduction.

💼 Experience:

Dr. Aslı F. Ceylan is currently a faculty member at Ankara Yıldırım Beyazıt University School of Medicine, where she serves in the Department of Medical Pharmacology. She has extensive academic and research experience spanning over 20 years. Her postdoctoral research at the University of Wyoming School of Pharmacy (2008–2009) focused on cardiovascular research, where she worked on signal transduction pathways involved in heart failure and metabolic disease. She also held a Principal Investigator (PI) role in NIH-funded INBRE research projects in the U.S. from 2011 to 2020. Dr. Ceylan has consistently contributed to multi-disciplinary research projects and collaborative studies, mentoring young researchers and postgraduate students. She has a solid background in oxidative stress, inflammation, and cellular apoptosis. Her translational approach, blending basic science with therapeutic innovation, aligns perfectly with the goals of signal transduction research. Her international exposure and consistent academic productivity make her a valuable asset to any scientific initiative.

🏆 Awards and Honors:

Dr. Aslı F. Ceylan has earned numerous national and international fellowships and honors throughout her career. She was awarded the Postdoctoral Fellowship by the American Heart Association and the University of Wyoming in 2008, which significantly propelled her research on cardiovascular signaling. She also received a Ph.D. research fellowship from the NIH (2004–2005), supporting her studies in cell signaling and oxidative stress. Domestically, she was funded by TÜBİTAK (Turkish Scientific and Research Council) for both her master’s and Ph.D. degrees. Most notably, she served as Principal Investigator for NIH INBRE Thematic Research Projects from 2011 to 2020, underlining her leadership and innovation in biomedical research. These accolades reflect her ongoing commitment to excellence in pharmacological science and her impact on the field of signal transduction, particularly in cardiovascular and neurodegenerative diseases. Her strong track record of competitive funding and recognition underscores her eligibility for the Signal Transduction Award.

🔬 Research Focus:

Dr. Ceylan’s research is centered on signal transduction pathways involved in oxidative stress, inflammation, mitophagy, and ferroptosis. Her work delves into the molecular mechanisms underlying cardiovascular diseases, diabetic complications, neurodegenerative disorders, and cancer, with a particular focus on mitochondrial function and cellular defense systems. She employs both in vivo and in vitro models to study how specific pharmacological agents modulate pathways like NLRP3 inflammasome activation, aldose reductase inhibition, and autophagy. Additionally, her recent research explores the therapeutic potential of natural compounds such as carnosol, carnosic acid, and rosemary extract in modulating redox balance and apoptotic pathways. Her interdisciplinary approach links natural product pharmacology with molecular signaling, making her contributions relevant across multiple domains. The translational value of her research, aiming to bridge the gap between bench and bedside, aligns directly with the core objectives of signal transduction studies and reinforces her eligibility for this distinguished award.

📚 Publications Top Notes:

  1. 🧬 Cardiomyocyte-specific deletion of endothelin receptor A obliterates cardiac aging via mitophagy and ferroptosis (2024)

  2. 🧫 Tackling chronic wound healing using nanomaterials: Advancements and future perspectives (2023)

  3. 🧪 Dual-acting aldose reductase inhibitor impedes oxidative stress in diabetic rat tissues (2023)

  4. 👁️ Cemtirestat induces ocular defense against glycotoxic stress in diabetic rats (2023)

  5. 🍷 NLRP3 inhibition protects against ethanol-induced cardiotoxicity in FBXL2-dependent manner (2023)

  6. 💉 Oxytocin and enalapril reduce epidural fibrosis post-laminectomy in rats (2023)

  7. 🧠 Calcium dobesilate therapy in cerebral hypoxia/reperfusion injury in rats (2023)

  8. 🧬 Beclin1 deficiency attenuates alcohol-induced cardiac dysfunction via ferroptosis inhibition (2022)

  9. 💓 Parkin insufficiency exacerbates cardiac remodeling through mitochondrial Ca2+ overload (2022)

  10. ❤️‍🩹 Beclin 1 haplosufficiency compromises stem-cell cardioprotection post-MI (2022)

🧾 Conclusion:

Dr. Aslı F. Ceylan is a highly qualified, internationally active, and academically productive researcher whose expertise lies in elucidating molecular mechanisms of disease through signal transduction pathways. Her deep involvement in studies on oxidative stress, mitochondrial dynamics, inflammation, and natural product pharmacology positions her as a valuable contributor to the advancement of molecular medicine.

Given her research output, grant leadership, and commitment to translational science, she is highly suitable for the Signal Transduction Award. Her work not only contributes to the understanding of intracellular signaling but also bridges basic research with therapeutic potential, making her a standout candidate for this recognition.

Raphaël Rodriguez | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Raphaël Rodriguez | Molecular Mechanisms Signaling | Best Researcher Award

Prof. Raphaël Rodriguez , CNRS, Institut Curie, France

Raphaël Rodriguez, born October 27, 1978, in Avignon, France, is a pioneering chemical biologist and Research Director at CNRS, Principal Investigator at Institut Curie, and holder of the Skłodowska-Curie Chair of Chemical Biology. A French citizen with two children, Lucía del Mar and Aramis, Rodriguez is renowned for bridging chemistry and biology to unlock the molecular secrets of cancer and inflammation. Trained in the UK under legendary scientists Sir J. E. Baldwin, Sir S. Balasubramanian, and Sir S. P. Jackson, he returned to France to launch groundbreaking research on ferroptosis and metal regulation in cell adaptation. His entrepreneurial and academic excellence earned him numerous accolades, including the National Order of Merit. With more than 130 publications and several successful biotech ventures, Rodriguez continues to shape the future of medical science with bioactive molecules like Ironomycin and Pyridostatin. He is an editorial board member, reviewer, teacher, and a public voice on science.

Publication Profile:

Google Scholar

✅ Strengths for the Award:

  1. Pioneering Scientific Impact:
    Dr. Rodriguez has contributed over 130 high-impact publications in top-tier journals like Nature, Science, JACS, Nature Chemistry, and Cell Metabolism. His work has helped define ferroptosis, a form of programmed cell death, and metal regulation in cancer—a game-changing area in molecular medicine.

  2. Innovation & Translation:
    He discovered and commercialized small molecules such as Pyridostatin, Ironomycin, and Supformin, directly impacting both science and therapeutics. His work bridges fundamental science and drug discovery.

  3. Leadership & Mentorship:
    From mentoring under renowned scientists to leading his own lab at Institut Curie, he has shaped France’s next generation of researchers in chemical biology.

  4. Recognition & Awards:
    His extensive list of prestigious awards, including the CNRS Silver Medal, Liliane Bettencourt Prize, and Knight of the National Order of Merit, reflect peer recognition on national and international levels.

  5. Entrepreneurship:
    As a co-founder of biotech companies (e.g., Adrestia Therapeutics, later acquired), he has demonstrated a rare capacity to translate discoveries into clinical and commercial value.

  6. Scientific Influence:
    Editorial board memberships and frequent invitations to over 160 major conferences show his reputation as a global thought leader in his field.

🔧 Areas for Improvement:

  1. Public Engagement Scaling:
    Although Dr. Rodriguez is active in media (radio, TV, print), expanding international science outreach (e.g., global science festivals, public lectures, social media presence) could help further democratize his scientific message.

  2. Clinical Translation:
    While several molecules from his lab are commercialized, more direct clinical trials or FDA approvals tied to his molecules would elevate his impact from bench to bedside.

  3. Collaborative Diversity:
    Encouraging more global South collaborations or mentorships could help broaden his lab’s international footprint and contribute to equitable science capacity building.

🎓 Education:

Raphaël Rodriguez’s academic journey is marked by elite training and impactful credentials across Europe. He earned his PhD in Chemistry (2002–2005) through a joint program between Marseille and Oxford. He then pursued postdoctoral research as a Senior Research Associate at Cambridge’s Department of Chemistry and Gurdon Institute (2005–2012), where he developed skills at the interface of chemistry and biology. In 2012, he obtained the prestigious Habilitation à Diriger des Recherches from the University of Paris-Saclay, enabling him to supervise PhD candidates and lead independent research. His rise through the academic ranks was rapid: he became a CNRS Group Leader in 2012, then Principal Investigator at Institut Curie in 2015. In 2017, he was promoted to Research Director (DR1) at CNRS. In 2020, he was awarded the Skłodowska-Curie Chair of Chemical Biology at Institut Curie. His interdisciplinary training under world-renowned mentors has uniquely positioned him at the forefront of chemical biology research.

💼 Experience:

Raphaël Rodriguez’s professional experience is a blend of high-level research, leadership, and innovation. He began his postdoctoral career at the University of Cambridge (2005–2012), working in the Department of Chemistry and the Gurdon Institute. In 2012, he became a CNRS Group Leader at ICSN, Gif-sur-Yvette, launching his independent research career. In 2015, he transitioned to Institut Curie as a Principal Investigator, where he deepened his focus on cancer and inflammation. His promotion to Research Director (DR1) at CNRS in 2017 reflects his impact and leadership. Awarded the Skłodowska-Curie Chair of Chemical Biology in 2020, Rodriguez oversees a productive lab that investigates ferroptosis, DNA structure, and metal ion regulation in disease. He is also an entrepreneur, co-founding Adrestia Therapeutics and OrbiThera. He teaches at PSL University, organizes international conferences, and contributes to editorial boards and scientific advisory boards worldwide, maintaining a strong presence in both academia and biotech.

🏆 Awards and Honors:

Raphaël Rodriguez has received an impressive array of honors, showcasing his impact on science and innovation. In 2024 alone, he won the CNRS Silver Medal and the Ligue Contre le Cancer Duquesne Prize. His earlier recognition includes the prestigious Liliane Bettencourt Prize for Life Sciences (2023), the Knight of the National Order of Merit (2022, presented by Nobel Laureate Jean-Marie Lehn), and the Klaus Grohe Prize (2022). He has also been awarded the Antoine Lacassagne Prize (Collège de France, 2019), the Sunrise Cancer Stem Cell Award (2019), the Charles Defforey–Institut de France Prize (2019), and the Tetrahedron Young Investigator Award (2019). Rodriguez is a Fellow of the Royal Society of Chemistry (2018) and won the Pierre Fabre Award for Therapeutic Innovation (2015). These accolades affirm his contributions across cancer research, chemical biology, and molecular therapeutics, as well as his success in translating science into societal benefit through entrepreneurship.

🔍 Research Focus:

Raphaël Rodriguez’s research lies at the cutting edge of chemical biology, with a focus on understanding how cells adapt to stress, particularly in the contexts of cancer and inflammation. His laboratory explores the role of metal ions—especially iron—as regulators of cellular plasticity and fate. Notably, his team discovered mechanisms underlying ferroptosis, a form of regulated cell death linked to iron metabolism, and how this can be exploited for anti-cancer therapies. He also investigates non-canonical DNA structures like G-quadruplexes, using small molecules to study and manipulate gene regulation. His lab has developed and commercialized several potent bioactive compounds, including Pyridostatin, Remodelin, Ironomycin, and Supformin, which are used both as research tools and potential therapeutics. Rodriguez combines molecular design, cell biology, and translational strategies, making his work a blueprint for chemical biology-driven precision medicine. He continues to raise significant research funding and actively collaborates across academia and biotech.

📚 Publications Top Notes:

  1. 🧬 Small-molecule–induced DNA damage identifies alternative DNA structures in human genesNature Chemical Biology

  2. ⚙️ Salinomycin kills cancer stem cells by sequestering iron in lysosomesNature Chemistry

  3. 🛡️ A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeresJACS

  4. 🧫 Chemical inhibition of NAT10 corrects defects of laminopathic cellsScience

  5. 🧠 The transcription factor FOXM1 is a cellular target of the natural product thiostreptonNature Chemistry

  6. 🧪 Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligandsJACS

  7. 🔥 PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancersCell Metabolism

  8. 🔬 A single-molecule platform for investigation of G-quadruplex interactions with small-molecule ligandsNature Chemistry

  9. 🧲 Small-molecule-mediated G-quadruplex isolation from human cellsNature Chemistry

  10. 🧬 CD44 regulates epigenetic plasticity by mediating iron endocytosisNature Chemistry

  11. 🧷 Selective RNA vs DNA G-Quadruplex Targeting by In Situ Click ChemistryAngewandte Chemie

  12. 🧬 G-Quadruplex-Binding Benzo[a]phenoxazines Down-Regulate c-KIT Expression in Gastric Carcinoma CellsJournal of Medicinal Chemistry

🧾 Conclusion:

Dr. Raphaël Rodriguez exhibits exceptional merit and impact across the entire research ecosystem—fundamental science, innovation, mentorship, and commercialization. His trailblazing work in chemical biology, coupled with a record of scientific leadership and entrepreneurship, makes him highly deserving of the Best Researcher Award. His career reflects a rare blend of depth, vision, and cross-disciplinary innovation. Minor enhancements in global public engagement and clinical integration could further elevate his already stellar profile.

Ning Xu | Signal Transduction Mechanisms | Best Research Article Award

Dr. Ning Xu | Signal Transduction Mechanisms | Best Research Article Award

Dr. Ning Xu , China Agricultural University , China

Ning Xu is an accomplished scientist specializing in plant immunity and plant-pathogen interactions. Currently, he serves as an Associate Professor at the College of Plant Protection, China Agricultural University. With a strong academic background and a wealth of research experience, he has significantly contributed to understanding plant defense mechanisms, particularly in relation to bacterial and fungal pathogens. His work, published in top-tier journals, explores how plants perceive and respond to pathogens at the molecular level, with a focus on lectin receptor-like kinases, autophagy, and signaling pathways in plant immunity. His research is pivotal in enhancing crop protection strategies, particularly in rice and other key crops.

Publication Profile: 

Orcid

Strengths for the Award:

Dr. Ning Xu’s research portfolio demonstrates significant contributions to plant immunity and pathogen interactions, showcasing both depth and innovation. His publications address critical aspects of plant-pathogen interactions and the molecular mechanisms that govern plant immune responses. For example, his recent work on the role of lectin receptor-like kinases (LRKs) in plant immunity and his exploration of plant autophagy and protein signaling pathways are highly impactful. The non-invasive Raman spectroscopy method for detecting bacterial leaf blight and streak is a standout, as it offers practical, cutting-edge solutions for real-time monitoring of plant diseases. Dr. Xu’s consistent publication in high-impact journals and his cross-disciplinary research further highlight his ability to contribute to agricultural and environmental advancements.

Areas for Improvement:

While Dr. Xu’s research is impressive in its scope and application, it could benefit from increased collaborative studies across diverse agricultural systems and crop species. Future work that expands into more field-based studies would provide valuable insights into how laboratory-based findings translate to real-world agricultural scenarios. Furthermore, continued exploration of plant-microbe interactions with other crop diseases outside rice, including leguminous plants, could broaden the impact of his work.

Education:

Ning Xu pursued a Bachelor’s degree in Biotechnology at Qingdao University (2002-2006). He then completed a Ph.D. in Genetics at the Institute of Microbiology, Chinese Academy of Sciences (2006-2012), where he focused on molecular genetics and plant immunity. During his Ph.D. studies, he developed a strong foundation in understanding complex plant-pathogen interactions, which set the stage for his future research career. His education has been complemented by his extensive professional experience, allowing him to bridge theoretical knowledge with practical, cutting-edge research in plant protection.

Experience:

Dr. Ning Xu began his professional journey as an Assistant Researcher at the Institute of Microbiology, Chinese Academy of Sciences (2012-2020), where he honed his skills in molecular genetics and plant pathology. He was promoted to Associate Researcher from 2020 to 2021, where he continued to expand his research on plant immune responses and bacterial pathogens. In 2021, he transitioned to his current role as Associate Professor at the College of Plant Protection, China Agricultural University. His career has been marked by a commitment to advancing plant defense research, with a focus on improving agricultural practices and crop resilience against diseases.

Research Focus:

Ning Xu’s research primarily focuses on plant immunity, particularly how plants detect and respond to pathogens. His work delves into the molecular mechanisms underlying plant immune responses, such as the role of lectin receptor-like kinases in pathogen recognition, autophagy in plant defense, and how bacterial effectors manipulate plant signaling pathways. Xu also investigates non-invasive techniques for disease detection, such as Raman spectroscopy, to improve early diagnosis and intervention. His contributions to understanding the interplay between plants and pathogens aim to improve crop protection strategies and enhance agricultural productivity, particularly in the face of rising global food security challenges.

Publications Top Notes:

  1. Single-cell and spatial transcriptomics reveals a stereoscopic response of rice leaf cells to Magnaporthe oryzae infection 🌾🔬

  2. Noninvasive Raman Spectroscopy for the Detection of Rice Bacterial Leaf Blight and Bacterial Leaf Streak 🌾🔍

  3. Coronatine orchestrates ABI1-mediated stomatal opening to facilitate bacterial pathogen infection through importin β protein SAD2 🌱💧

  4. The cocoon into a butterfly: why the HVA22 family proteins turned out to be the reticulophagy receptors in plants? 🐛🦋

  5. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity 🌿🔑

  6. The Pseudomonas syringae effector AvrPtoB targets abscisic acid signaling pathway to promote its virulence in Arabidopsis 🌾🦠

  7. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization 🍂🦠

  8. A plant lectin receptor-like kinase phosphorylates the bacterial effector AvrPtoB to dampen its virulence in Arabidopsis 🌱⚡

  9. A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling 🌿🔬

  10. The bacterial effector AvrB-induced RIN4 hyperphosphorylation is mediated by receptor-like cytoplasmic kinase complex in Arabidopsis 🌿💡

  11. Identification and Characterization of Small RNAs in the Hyperthermophilic Archaeon Sulfolobus solfataricus 🔬🧬

Conclusion:

Dr. Ning Xu is undoubtedly a leading figure in the field of plant immunology. His innovative research on molecular mechanisms in plant defense, especially in the context of bacterial and fungal diseases, positions him as an ideal candidate for the Best Research Article Award. His research not only pushes the boundaries of basic science but also offers practical applications that could benefit global agriculture by improving disease detection, prevention, and crop resilience.

 

 

 

Sunita Pokhrel Bhattarai | Signal Transduction Mechanisms | Women Researcher Award

MS. Sunita Pokhrel Bhattarai | Signal Transduction Mechanisms | Women Researcher Award

Ms. Sunita Pokhrel Bhattarai  , Ohio State University , United States

Sunita Pokhrel Bhattarai, PhD, RN, is an accomplished cardiovascular nurse researcher currently pursuing a doctorate at the University of Rochester, New York. Her research focuses on improving the estimation of Left Ventricular Ejection Fraction using ECGs in acute heart failure patients. With a background in emergency and critical care nursing from multiple international institutions, she is committed to advancing healthcare quality, particularly in heart failure care. Dr. Pokhrel Bhattarai’s work is widely published, showcasing expertise in clinical trials, big data analysis, and electrocardiographic assessments in heart failure. She has also contributed significantly to nursing education as a lecturer at Purbanchal University, Nepal. Passionate about reducing healthcare discrepancies, she actively participates in academic and clinical research collaborations, making significant strides in her field.

Publication Profile:

Google Scholar

Strengths for the Award:

Dr. Sunita Pokhrel Bhattarai is an exceptional researcher with a clear commitment to advancing cardiovascular nursing and improving healthcare outcomes for acute heart failure patients. Her research on estimating Left Ventricular Ejection Fraction using ECGs demonstrates innovation and clinical relevance. Her ability to bridge clinical practice with advanced research methodologies, including big data analysis and electrocardiographic assessment, sets her apart. Moreover, her international academic background and diverse professional experience in countries like Nepal, Spain, and the United States highlight her versatility and ability to contribute globally to healthcare solutions. Dr. Pokhrel Bhattarai’s consistent publication record in top-tier journals and her involvement in prestigious research projects further underscores her dedication to advancing nursing knowledge.

Areas for Improvement:

While Dr. Pokhrel Bhattarai has an outstanding academic and research profile, expanding her research to explore broader healthcare disparities, particularly in rural or underserved populations, could enhance the impact of her work. Additionally, pursuing interdisciplinary collaborations with engineers, statisticians, and other healthcare professionals could provide opportunities for more cutting-edge innovations, particularly in ECG-based diagnostic technology and AI integration.

Education:

Dr. Sunita Pokhrel Bhattarai has an extensive academic background. She is currently pursuing a PhD in Health Science and Nursing at the University of Rochester (2020-2024), under the mentorship of Dr. Mary G Carey. Her research explores estimating Left Ventricular Ejection Fraction using ECGs for acute heart failure patients. Dr. Pokhrel Bhattarai earned her MS in Nursing (2015-2017), specializing in Emergency and Critical Care Nursing, from institutions across Spain, Portugal, and Finland. Her research during this time focused on Advanced Cardiac Life Support knowledge among critical care nurses. She completed her BS in Nursing in 2012 from Maharajgunj Nursing Campus, Nepal, with a focus on Community Health Nursing. Throughout her academic career, she has demonstrated a commitment to advancing nursing knowledge and improving healthcare outcomes in cardiovascular care.

Experience:

Dr. Sunita Pokhrel Bhattarai has diverse professional experience across multiple countries. She has worked as a Nursing Lecturer at Purbanchal University in Kathmandu, Nepal (2017-2020), where she educated future nurses in critical care and advanced cardiovascular practices. As a registered nurse at Shahid Gangalal National Heart Centre, Kathmandu, Nepal (2009-2015), she gained hands-on experience in cardiovascular care, particularly in heart failure management. Additionally, she has been involved in research coordination and manuscript review, demonstrating expertise in big data analysis and clinical trials. Dr. Pokhrel Bhattarai has also held positions as a Research Lead Coordinator and Associate, collaborating with international researchers and contributing to advancing healthcare outcomes, particularly in cardiovascular nursing.

Awards and Honors:

Dr. Sunita Pokhrel Bhattarai has received numerous prestigious awards, highlighting her excellence in research and commitment to healthcare. In 2023, she was awarded the Travel Grant by the Council on Cardiovascular and Stroke Nursing Early Career, American Heart Association, and received the Presidential Stronger as One Diversity Award from the University of Rochester. She also secured a research grant from the International Society for Computerized Electrocardiology Conference. Dr. Pokhrel Bhattarai’s accomplishments include the Ireta Neumann Scholarship for International Nurses, providing $5,000 to support her research endeavors. These awards emphasize her leadership and contributions to cardiovascular nursing, both academically and clinically.

Research Focus:

Dr. Sunita Pokhrel Bhattarai’s research focus lies in the intersection of acute heart failure, ECG technology, and cardiovascular nursing. Her PhD dissertation explores estimating Left Ventricular Ejection Fraction using ECGs, aiming to provide accurate, non-invasive diagnostic tools for acute heart failure. She is passionate about identifying self-care strategies for heart failure patients and improving healthcare implementation strategies. Additionally, her work involves big data analysis, electrocardiographic assessment, and clinical trials to better understand heart failure progression and outcomes. Dr. Pokhrel Bhattarai is dedicated to addressing healthcare discrepancies, particularly in global cardiovascular health, and advancing evidence-based nursing practices through innovative research.

Publications Top Notes:

  1. Association Between Increased Serum Albumin and the Length of Hospital Stay among Acute Heart Failure 🏥
  2. Delays in Door-to-Diuretic Time and 1-Year Mortality among Patients with Heart Failure ⏳❤️
  3. Signs and Symptoms Clusters Among Patients With Acute Heart Failure 🔍💓
  4. Integrative Review of Electrocardiographic Characteristics in Patients with Reduced, Mildly Reduced, and Preserved Heart Failure 📊📈
  5. Knowledge and Practices on Prevention of Coronary Artery Diseases in Nepalese Community 🇳🇵💓
  6. Estimating Ejection Fraction from the 12 Lead ECG among Patients with Acute Heart Failure 💖📉
  7. Door-to-Diuretic Time is Related to Length of Hospital Stay Independent of Diuretic Dose ⏰💊
  8. Estimating Very Low Ejection Fraction from the 12 Lead ECG among Patients with Acute Heart Failure ❤️📉
  9. Association Between Serum Albumin and the Length of Hospital Stay Among Patients With Acute Heart Failure 🧑‍⚕️⏱
  10. Estimating Ejection Fraction from the 12 Lead ECG in Acute Heart Failure 💓📝

Conclusion:

Dr. Sunita Pokhrel Bhattarai’s combination of innovative cardiovascular research, global nursing expertise, and dedication to improving patient outcomes makes her an excellent candidate for the Research for Best Researcher Award. Her strong track record in research, awards, and contributions to cardiovascular nursing makes her deserving of this recognition, and her future endeavors hold great potential to further elevate the field of health science and nursing.