Ning Xu | Signal Transduction Mechanisms | Best Research Article Award

Dr. Ning Xu | Signal Transduction Mechanisms | Best Research Article Award

Dr. Ning Xu , China Agricultural University , China

Ning Xu is an accomplished scientist specializing in plant immunity and plant-pathogen interactions. Currently, he serves as an Associate Professor at the College of Plant Protection, China Agricultural University. With a strong academic background and a wealth of research experience, he has significantly contributed to understanding plant defense mechanisms, particularly in relation to bacterial and fungal pathogens. His work, published in top-tier journals, explores how plants perceive and respond to pathogens at the molecular level, with a focus on lectin receptor-like kinases, autophagy, and signaling pathways in plant immunity. His research is pivotal in enhancing crop protection strategies, particularly in rice and other key crops.

Publication Profile: 

Orcid

Strengths for the Award:

Dr. Ning Xu’s research portfolio demonstrates significant contributions to plant immunity and pathogen interactions, showcasing both depth and innovation. His publications address critical aspects of plant-pathogen interactions and the molecular mechanisms that govern plant immune responses. For example, his recent work on the role of lectin receptor-like kinases (LRKs) in plant immunity and his exploration of plant autophagy and protein signaling pathways are highly impactful. The non-invasive Raman spectroscopy method for detecting bacterial leaf blight and streak is a standout, as it offers practical, cutting-edge solutions for real-time monitoring of plant diseases. Dr. Xu’s consistent publication in high-impact journals and his cross-disciplinary research further highlight his ability to contribute to agricultural and environmental advancements.

Areas for Improvement:

While Dr. Xu’s research is impressive in its scope and application, it could benefit from increased collaborative studies across diverse agricultural systems and crop species. Future work that expands into more field-based studies would provide valuable insights into how laboratory-based findings translate to real-world agricultural scenarios. Furthermore, continued exploration of plant-microbe interactions with other crop diseases outside rice, including leguminous plants, could broaden the impact of his work.

Education:

Ning Xu pursued a Bachelor’s degree in Biotechnology at Qingdao University (2002-2006). He then completed a Ph.D. in Genetics at the Institute of Microbiology, Chinese Academy of Sciences (2006-2012), where he focused on molecular genetics and plant immunity. During his Ph.D. studies, he developed a strong foundation in understanding complex plant-pathogen interactions, which set the stage for his future research career. His education has been complemented by his extensive professional experience, allowing him to bridge theoretical knowledge with practical, cutting-edge research in plant protection.

Experience:

Dr. Ning Xu began his professional journey as an Assistant Researcher at the Institute of Microbiology, Chinese Academy of Sciences (2012-2020), where he honed his skills in molecular genetics and plant pathology. He was promoted to Associate Researcher from 2020 to 2021, where he continued to expand his research on plant immune responses and bacterial pathogens. In 2021, he transitioned to his current role as Associate Professor at the College of Plant Protection, China Agricultural University. His career has been marked by a commitment to advancing plant defense research, with a focus on improving agricultural practices and crop resilience against diseases.

Research Focus:

Ning Xu’s research primarily focuses on plant immunity, particularly how plants detect and respond to pathogens. His work delves into the molecular mechanisms underlying plant immune responses, such as the role of lectin receptor-like kinases in pathogen recognition, autophagy in plant defense, and how bacterial effectors manipulate plant signaling pathways. Xu also investigates non-invasive techniques for disease detection, such as Raman spectroscopy, to improve early diagnosis and intervention. His contributions to understanding the interplay between plants and pathogens aim to improve crop protection strategies and enhance agricultural productivity, particularly in the face of rising global food security challenges.

Publications Top Notes:

  1. Single-cell and spatial transcriptomics reveals a stereoscopic response of rice leaf cells to Magnaporthe oryzae infection 🌾🔬

  2. Noninvasive Raman Spectroscopy for the Detection of Rice Bacterial Leaf Blight and Bacterial Leaf Streak 🌾🔍

  3. Coronatine orchestrates ABI1-mediated stomatal opening to facilitate bacterial pathogen infection through importin β protein SAD2 🌱💧

  4. The cocoon into a butterfly: why the HVA22 family proteins turned out to be the reticulophagy receptors in plants? 🐛🦋

  5. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity 🌿🔑

  6. The Pseudomonas syringae effector AvrPtoB targets abscisic acid signaling pathway to promote its virulence in Arabidopsis 🌾🦠

  7. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization 🍂🦠

  8. A plant lectin receptor-like kinase phosphorylates the bacterial effector AvrPtoB to dampen its virulence in Arabidopsis 🌱⚡

  9. A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling 🌿🔬

  10. The bacterial effector AvrB-induced RIN4 hyperphosphorylation is mediated by receptor-like cytoplasmic kinase complex in Arabidopsis 🌿💡

  11. Identification and Characterization of Small RNAs in the Hyperthermophilic Archaeon Sulfolobus solfataricus 🔬🧬

Conclusion:

Dr. Ning Xu is undoubtedly a leading figure in the field of plant immunology. His innovative research on molecular mechanisms in plant defense, especially in the context of bacterial and fungal diseases, positions him as an ideal candidate for the Best Research Article Award. His research not only pushes the boundaries of basic science but also offers practical applications that could benefit global agriculture by improving disease detection, prevention, and crop resilience.

 

 

 

Zahoor Ahmad | Crop Physiology | Best Researcher Award

Assoc Prof Dr Zahoor Ahmad |  Crop Physiology |  Best Researcher Award

Associate Professor at  University of Central Punjab, Pakistan

Associate Professor, Campus Coordinator University of Central Punjab, Constituent Punjab College Bahawalpur.

Profile:

Academic Qualifications:

  • Post-Doctorate: Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey (January 17 – September 17, 2020)
  • Ph.D. in Crop Physiology: University of Agriculture Faisalabad, Punjab, Pakistan (Completed on December 13, 2015)
    • Thesis Title: Maize (Zea mays L.) Responses to Supplemental Foliar Applied Phosphorus under Drought Stress
  • M.Sc. (Hons.) in Agriculture (Agronomy/Crop Physiology): University of Agriculture Faisalabad, Punjab, Pakistan (2011)
    • Thesis Title: Response of Cotton (Gossypium hirsutum L.) to Foliar Applied Potassium Sulphate (K2SO4)
  • B.Sc. (Hons.) in Agriculture (Agronomy/Crop Physiology): University of Agriculture Faisalabad, Punjab, Pakistan (2009)
  • Intermediate (F.Sc. Pre-medical): BISE Bahawalpur (2005)
  • Matric (Science): BISE Bahawalpur (2002)

Professional Experience:

  • Assistant Professor, Head of Botany Department: Constituent College of University of Central Punjab, Bahawalpur (October 2, 2020 – Present)
  • Post-Doctoral Researcher: Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey (January 17 – September 17, 2020)
  • Visiting Faculty Member: Department of Life Sciences (Botany), The Islamia University of Bahawalpur (October 4, 2017 – January 10, 2020)
  • Lecturer: Allama Iqbal College Bahawalpur (September 15, 2017 – December 31, 2019)
  • Assistant Professor: Cholistan Institute of Desert Studies (CIDS), The Islamia University of Bahawalpur, Punjab, Pakistan (July 19, 2016 – July 18, 2017)

Research Interests:

  • Understanding the physiological limitations to crop productivity under field and controlled conditions.
  • Exploring abiotic stress tolerance (drought, salinity, heavy metals, heat) through foliar application of nutrients and trace elements.
  • Identifying morphological, physiological, and biochemical traits for enhanced stress tolerance in crops.
  • Screening germplasm for stress tolerance traits and developing methodologies for productivity enhancement under abiotic stress conditions.

Conclusion:

Considering Dr. Zahoor Ahmad’s research focus, academic background, professional experience, publication record, and contribution to crop physiology under abiotic stress conditions, he seems to be a suitable candidate for the “Best Researcher Award.” His work is significant for improving crop resilience and productivity, making him a valuable contributor to agricultural sciences.

Citations:

  • 1,729 Citations from 1,395 documents
  • 91 Documents authored
  • h-index of 22

Publication Top Notes:

  • Modulating Physiological and Antioxidant Responses in Wheat Cultivars via Foliar Application of Silicon Nanoparticles (SiNPs) Under Arsenic Stress Conditions
    Ahmad, Z., Younis, R., Ahmad, T., Alharby, H.F., Alsamadany, H. (2024). Silicon, 16(12), 5199–5211.
  • Silicon-Mediated Improvement in Maize (Zea mays L.) Resilience: Unrevealing Morpho-Physiological, Biochemical, and Root Attributes Against Cadmium and Drought Stress
    Sabir, A., Waraich, E.A., Ahmad, M., Ahmad, Z., Bibi, S. (2024). Silicon, 16(7), 3095–3109. (1 Citation)
  • Improving Alkaline Stress Tolerance in Maize through Seed Priming with Silicon Nanoparticles: A Comprehensive Investigation of Growth, Photosynthetic Pigments, Antioxidants, and Ion Balance
    Alsamadany, H., Alharby, H.F., Ahmad, Z., Alzahrani, Y.M., Almaghamsi, A. (2024). Silicon, 16(5), 2233–2244.
  • Enhancing the Physiological and Biochemical Potential of Praecitrullus fistulosus L. through Synergistic Action of Biochar and Zinc Oxide Nanoparticles
    Sana, S., Binyamin, A., Ramzan, M., Avila-Quezada, G.D., Abd-Allah, E.F. (2024). Journal of Soil Science and Plant Nutrition.
  • Perspectives of Nanoparticles as Priming Agents for Amelioration of Abiotic Stresses in Crops
    Ahmad, Z., Waraich, E.A., Iqbal, M.A., Ahmed, S., Bano, S. (2024). In The Nanotechnology Driven Agriculture: The Future Ahead (pp. 117–137).
  • Prospects of Nanotechnology for Abiotic and Biotic Stresses Amelioration in Field Crops
    Ahmad, Z., Waraich, E.A., Barutçular, C., Ahmad, M., Bano, S. (2024). In The Nanotechnology Driven Agriculture: The Future Ahead (pp. 67–84).
  • Effect of Form of Silicon and the Timing of a Single Foliar Application on Sugar Beet Yield
    Siuda, A., Artyszak, A., Gozdowski, D., Ahmad, Z. (2024). Agriculture (Switzerland), 14(1), 86.
  • Ecofriendly Management of Insect Pests for Sustainable Agriculture
    Abbasi, A., Asif, A., Ahmad, Z., Saleha, A., Zafar, Z. (2023). In Climate-Resilient Agriculture, Volume 2, pp. 931–957. (1 Citation)
  • Climate Change and Global Crop Production
    Ahmad, Z., Ahmad, T., Abbasi, A., Sana, S., Jameel, J. (2023). In Climate-Resilient Agriculture, Volume 1, pp. 27–56. (1 Citation)
  • Silicon-Mediated Growth, Physiological, Biochemical and Root Alterations to Confer Drought and Nickel Stress Tolerance in Maize (Zea mays L.)
    Ishaq, H., Waraich, E.A., Hussain, S., Ahmad, Z., Saifullah. (2023). Silicon, 15(15), 6579–6589. (1 Citation)

 

 

Yucheng Wang | Plant Physiology | Best Researcher Award

Prof Yucheng Wang | Plant Physiology |  Best Researcher Award

Dean of the College of Forestry at  Shenyang Agricultural University, China

Yucheng Wang is the Dean of the College of Forestry at Shenyang Agricultural University. He has a rich academic and professional background, having served as an assistant professor, lecturer, associate professor, and professor at the School of Forestry, Northeast Forestry University in Harbin, China from 2000 to 2019. Since 2019, he has been a professor at Shenyang Agricultural University. Dr. Wang’s research focuses on plant stress physiology and molecular biology, particularly the functional characterization of genes involved in salt or drought tolerance. He has developed technologies for DNA-protein interaction studies and CRISPR-related technologies. Dr. Wang has led several major research projects funded by the National Natural Science Foundation of China (NSFC) and the Liaoning Province Leading Talent Project in Science and Technology Innovation.

Profile:

Academic and Professional Background:

Prof. Yucheng Wang has a comprehensive academic career spanning over two decades, with progressive roles from Assistant Professor to Dean at prominent forestry institutions in China. His experience reflects a strong foundation in forestry and plant molecular biology.

Research and Innovations:

  • Research Projects: Prof. Wang has led significant projects funded by the National Natural Science Foundation of China, demonstrating his ability to secure competitive research grants.
  • Citation Index: With an H-index of 54, Prof. Wang’s work is widely cited, indicating a high impact in his field.
  • Publications: He has published 91 SCI-indexed articles, showcasing his prolific contribution to scientific literature.
  • Patents: Holding 5 patents highlights his innovative approach and contribution to applied research.
  • Books: Authoring 3 books further solidifies his expertise and thought leadership in forestry and plant molecular biology.
  • Editorial Roles: Serving on the Editorial Advisory Board of “Environmental and Experimental Botany” indicates recognition by peers and involvement in advancing the scientific community.

Research Focus and Contributions:

Prof. Wang’s research centers on plant stress physiology and molecular biology, particularly the genetic mechanisms underlying salt and drought tolerance. His development of novel CRISPR-related technologies for gene editing and protein-DNA interaction studies underscores his innovative contributions to plant biotechnology.

Professional Engagement:

  • Collaborations: Prof. Wang collaborates with leading researchers and institutions, enhancing the quality and scope of his research.
  • Professional Memberships: As Deputy Director of the Saline-alkali Land Branch of the Chinese Forestry Society, he plays a crucial role in promoting research and knowledge dissemination in forestry.

Conclusion:

Prof. Yucheng Wang’s extensive research contributions, high citation index, leadership roles, and innovative developments in plant molecular biology make him a compelling candidate for the Best Researcher Award. His work not only advances scientific understanding but also has practical implications for forestry and environmental sustainability.

Considering these factors, Prof. Wang is highly suitable for the Research for Best Researcher Award, given his impactful and sustained contributions to his field.

Publication Top Notes:

  • Acetylation of Transcription Factor BpTCP20 by Acetyltransferase BpPDCE23 Modulates Salt Tolerance in Birch
    Journal: Plant Physiology
    DOI: 10.1093/plphys/kiae168
    Contributors: Zhujun Liu, Xinxin Shi, Zhibo Wang, Ming Qu, Caiqiu Gao, Chao Wang, Yucheng Wang
  • Birch WRKY Transcription Factor, BpWRKY32, Confers Salt Tolerance by Mediating Stomatal Closing, Proline Accumulation, and Reactive Oxygen Species Scavenging
    Journal: Plant Physiology and Biochemistry
    DOI: 10.1016/j.plaphy.2024.108599
    Contributors: Zhujun Liu, Pengyu Wang, Zhibo Wang, Chao Wang, Yucheng Wang
  • Phosphorylation of Birch BpNAC90 Improves the Activation of Gene Expression to Confer Drought Tolerance
    Journal: Horticulture Research
    DOI: 10.1093/hr/uhae061
    Contributors: Zhibo Wang, Zihang He, Caiqiu Gao, Chao Wang, Xingshun Song, Yucheng Wang
  • Bp-miR408a Participates in Osmotic and Salt Stress Responses by Regulating BpBCP1 in Betula platyphylla
    Journal: Tree Physiology
    DOI: 10.1093/treephys/tpad159
    Contributors: Zhongyuan Liu, Ruiting Xu, Yingbo Fan, Wenfang Dong, Yating Han, Qingjun Xie, Jinghang Li, Baichao Liu, Chao Wang, Yucheng Wang
  • Long Noncoding RNA from Betula platyphylla, BplncSIR1, Confers Salt Tolerance by Regulating BpNAC2 to Mediate Reactive Oxygen Species Scavenging and Stomatal Movement
    Journal: Plant Biotechnology Journal
    DOI: 10.1111/pbi.14164
    Contributors: Yaqi Jia, Huimin Zhao, Yani Niu, Yucheng Wang
  • A DNA-binding Protein Capture Technology That Purifies Proteins by Directly Isolating the Target DNA
    Journal: Plant Science
    DOI: 10.1016/j.plantsci.2023.111796
    Contributors: Zhibo Wang, Zihang He, Jingxin Wang, Chao Wang, Caiqiu Gao, Yucheng Wang
  • Generation of CRISPR-edited Birch Plants without DNA Integration Using Agrobacterium-mediated Transformation Technology
    Preprint Date: 2023-10-11
    DOI: 10.1101/2023.10.09.561573
    Contributors: Shilin Sun, Xue Han, Ruoxuan Jin, Junbo Jiao, Jingwen Wang, Siyuan Niu, Ziyao Yang, Di Wu, Yucheng Wang
  • Exploration of the Regulatory Pathways and Key Genes Involved in the Response to Saline-Alkali Stress in Betula platyphylla via RNA-Seq Analysis
    Journal: Plants
    DOI: 10.3390/plants12132435
    Contributors: Jukun Xue, Hu Sun, Xuemei Zhou, Huiyan Guo, Yucheng Wang
  • Characterization of lncRNAs Involved in Drought Response in Betula platyphylla
    Journal: Trees
    DOI: 10.1007/s00468-022-02361-6
    Contributors: Yiming Zhang, Li Li, Chao Wang, Yanmin Wang, Tengqian Zhang, Yucheng Wang
  • A Reverse Chromatin Immunoprecipitation Technique Based on the CRISPR–dCas9 System
    Journal: Plant Physiology
    DOI: 10.1093/plphys/kiac506
    Contributors: Zhibo Wang, Zihang He, Zhujun Liu, Ming Qu, Caiqiu Gao, Chao Wang, Yucheng Wang
  • Tissue Metabolic Responses to Artificial Bending and Gravitation Stimuli in Betula platyphylla
    Journal: Forests
    DOI: 10.3390/f14030457
    Contributors: Yao Chi, Nan Zhang, Ao Zou, Ying Yu, Yucheng Wang, Chao Wang
  • Identification of Birch lncRNAs and mRNAs Responding to Salt Stress and Characterization of Functions of lncRNA
    Journal: Horticulture Research
    DOI: 10.1093/hr/uhac277
    Contributors: Yaqi Jia, Huimin Zhao, Yani Niu, Yucheng Wang
  • Construction of a Hierarchical Gene Regulatory Network to Reveal the Drought Tolerance Mechanism of Shanxin Poplar
    Journal: International Journal of Molecular Sciences
    DOI: 10.3390/ijms24010384
    Contributors: Pengyu Wang, Jingxin Wang, Xiaomeng Sun, Xue Yang, Shilin Sun, Xue Han, Dandan Li, Yucheng Wang
  • Tamarix hispida NAC Transcription Factor ThNAC4 Confers Salt and Drought Stress Tolerance to Transgenic Tamarix and Arabidopsis
    Journal: Plants
    DOI: 10.3390/plants11192647
    Contributors: Meiheriguli Mijiti, Yucheng Wang, Liuqiang Wang, Xugela Habuding
  • The Mechanism of Bud Dehyperhydricity by the Method of ‘Starvation Drying Combined with AgNO3’ in Lycium ruthenicum
    Journal: Tree Physiology
    DOI: 10.1093/treephys/tpac047
    Contributors: Lujia Li, Qinxia An, Qin-Mei Wang, Wen Liu, Xinyu Qi, Jianguo Cui, Yucheng Wang, Haifeng Ke, Isabel Allona
  • UNFERTILIZED EMBRYO SAC 12 Phosphorylation Plays a Crucial Role in Conferring Salt Tolerance
    Journal: Plant Physiology
    DOI: 10.1093/plphys/kiab549
    Contributors: Zihang He, Zhibo Wang, Xianguang Nie, Ming Qu, Huimin Zhao, Xiaoyu Ji, Yucheng Wang
  • Poplar PsnICE1 Enhances Cold Tolerance by Binding to Different cis-acting Elements to Improve Reactive Oxygen Species-scavenging Capability
    Journal: Tree Physiology
    DOI: 10.1093/treephys/tpab084
    Contributors: Yan-Min Wang, Yi-Ming Zhang, Xin Zhang, Xin Zhao, Yu Zhang, Chao Wang, Yu-Cheng Wang, Liu-Qiang Wang, Amy Brunner
  • Reverse Chromatin Immunoprecipitation (R-ChIP) Enables Investigation of the Upstream Regulators of Plant Genes
    Journal: Communications Biology
    DOI: 10.1038/s42003-020-01500-4
    Contributors: Xuejing Wen, Jingxin Wang, Daoyuan Zhang, Yu Ding, Xiaoyu Ji, Zilong Tan, Yucheng Wang
  • Building a Robust Chromatin Immunoprecipitation Method with Substantially Improved Efficiency
    Journal: Plant Physiology
    DOI: 10.1104/pp.20.00392
    Contributors: Huimin Zhao, Hongyan Li, Yaqi Jia, Xuejing Wen, Huiyan Guo, Hongyun Xu, Yucheng Wang
  • Expression Analysis of the BpARF Genes in Betula platyphylla Under Drought Stress
    Journal: Plant Physiology and Biochemistry
    DOI: 10.1016/j.plaphy.2020.01.028
    Contributors: Hongyan Li, Xin Zhang, Botong Tong, Yucheng Wang, Chuanping Yang
  • Building a Robust Chromatin Immunoprecipitation (ChIP) Method with Substantially Improved Efficiency
    Preprint Date: 2020-02-20
    DOI: 10.1101/2020.02.20.958330
    Contributors: Huimin Zhao, Hongyan Li, Yaqi Jia, Xuejing Wen, Huiyan Guo, Hongyun Xu, Yucheng Wang
  • Arabidopsis Heat Shock Transcription Factor HSFA7b Positively Mediates Salt Stress Tolerance by Binding to an E-box-like Motif to Regulate Gene Expression
    Journal: Journal of Experimental Botany
    DOI: 10.1093/jxb/erz261
    Contributors: Dandan Zang, Jingxin Wang, Xin Zhang, Zhujun Liu, Yucheng

 

YiPing Li | Plants | Best Researcher Award

Professor at Northwest A&F University,  China

YiPing Li is a Professor at Northwest A&F University, specializing in sustainable agriculture and pest management. His research focuses on the interaction between insect midgut proteases and peritrophic membranes with host plants and Bt, as well as the green prevention and control technologies for pests affecting fruit trees, vegetables, edible fungi, and cotton. He has led multiple major research projects funded by the National Natural Science Foundation of China (NSFC) and other prominent organizations. His notable projects include studying peritrophic membrane proteins, pest control technologies, and monitoring techniques for fruit-eating worms. YiPing Li has made significant contributions to the field, including numerous publications in top journals and several patents. He has been recognized with awards such as the Shaanxi Provincial Science and Technology Progress Award and the Ministry of Agriculture China Agricultural Science and Technology Award. His work also extends to educational reforms, with numerous teaching achievements and published papers on the subject.

Profile:

🔬 Academic and Professional Background:

YiPing Li focuses on the interaction between insect midgut proteases and peritrophic membranes, and the green prevention and control of pests on various crops, including fruit trees, vegetables, edible fungi, and cotton.

🔍 Research and Innovations

  • NSFC Projects: Leading research on Bt synergism, midgut protease adaptation, and cotton bollworm resistance.
  • National Key Projects: Integration of technologies to reduce fertilizer and pesticide use in Xinjiang and Gansu.
  • Major Science and Technology Project: Studying pest occurrence patterns in apple and developing monitoring technologies.

🏆 Contributions & Awards:

Awarded for significant contributions to agricultural science, including the Shaanxi Provincial Science and Technology Progress Award and several teaching achievement awards.

📜 Editorial & Professional Memberships:

Active in the field of agricultural pest management, disaster mechanisms, and green technologies.

Research Focus: Plant

YiPing Li’s research primarily revolves around the interaction between insect pests and plants, with a special emphasis on:

  1. Insect Midgut Proteases and Peritrophic Membranes: Studying how these digestive enzymes and protective layers in insects interact with host plants and Bt (Bacillus thuringiensis) to develop effective pest control strategies.
  2. Pest Occurrence Patterns: Investigating the patterns and behaviors of pests on various crops including fruit trees, vegetables, edible fungi, and cotton, aiming to enhance green prevention and control technologies.
  3. Green Prevention and Control Technologies: Developing and integrating sustainable technologies to manage and mitigate pest impacts on plants, contributing to environmentally friendly agricultural practices.
  4. Adaptive Mechanisms of Midgut Proteases: Researching how midgut proteases adapt to different host plants and their potential as targets for pest control, focusing on pests like Grapholita molesta and cotton bollworm.

YiPing Li’s work is integral to advancing sustainable agriculture by improving pest management practices and reducing reliance on chemical controls.

Publication Top Notes:

  • “Trypsin‐encoding gene function of efficient star polycation nanomaterial‐mediated dsRNA feeding delivery system of Grapholita molesta”
    Pest Management Science
    July 5, 2024
    DOI: 10.1002/ps.8289
  • “Structural Characteristics of Mitochondrial Genomes of Eight Treehoppers (Hemiptera: Membracidae: Centrotinae) and Their Phylogenetic Implications”
    Genes
    July 24, 2023
    DOI: 10.3390/genes14071510
  • “Larval midgut protease activity of Illiberis pruni (Lepidoptera: Zygaenidae) feeding on multiple characteristic hosts”
    Phytoparasitica
    November 2022
    DOI: 10.1007/s12600-022-01019-w
  • “RNA Sequencing Reveals the Potential Adaptation Mechanism to Different Hosts of Grapholita molesta”
    Insects
    September 2022
    DOI: 10.3390/insects13100893
  • “Antibiotic Treatment Reduced the Gut Microbiota Diversity, Prolonged the Larval Development Period and Lessened Adult Fecundity of Grapholita molesta (Lepidoptera: Tortricidae)”
    Insects
    September 15, 2022
    DOI: 10.3390/insects13090838
  • “Comparison of Gut Bacterial Communities of Fall Armyworm (Spodoptera frugiperda) Reared on Different Host Plants”
    International Journal of Molecular Sciences
    October 2021
    DOI: 10.3390/ijms222011266
  • “Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants”
    International Journal of Molecular Sciences
    June 25, 2021
    DOI: 10.3390/ijms22136843
  • “Enhanced hydrolysis of β‐cypermethrin caused by deletions in the glycin‐rich region of carboxylesterase 001G from Helicoverpa armigera”
    Pest Management Science
    April 2021
    DOI: 10.1002/ps.6242
  • “Geographic variation in sexual communication in the cotton bollworm, Helicoverpa armigera”
    Pest Management Science
    November 2020
    DOI: 10.1002/ps.5893
  • “The effect of host plant on the development and larval midgut protease activity of Plutella xylostella (Lepidoptera: Plutellidae)”
    Phytoparasitica
    September 1, 2019
    DOI: 10.1007/s12600-019-00746-x
  • “Ultrastructure of antennal sensilla of three fruit borers (Lepidoptera: Crambidae or Tortricidae)”
    PLOS ONE
    October 11, 2018
    DOI: 10.1371/journal.pone.0205604