Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Cell Adhesion Mechanisms | Best Researcher Award

Prof. Yuxin Peng | Zhejiang University | China

Dr. Yuxin Peng is a distinguished researcher and educator in the field of biomedical and exercise science engineering. Currently serving as a ZJU 100 Young Professor at Zhejiang University, China, he has made significant strides in developing flexible sensors, smart wearable systems, and human–machine interaction technologies. With a Ph.D. and postdoctoral training at the National University of Singapore, his research integrates cutting-edge materials science, biomechanics, and AI-driven health monitoring systems. His work has been consistently published in high-impact journals like Science Advances, Advanced Science, IEEE Transactions, and Soft Robotics, reflecting both depth and innovation. Dr. Peng’s contributions are not only academic but also practical, with several of his innovations applied in rehabilitation, sports science, and robotics. His dedication and cross-disciplinary expertise make him a strong candidate for recognition such as the Best Researcher Award.

Publication Profiles: 

Orcid
Scopus

Education:

Dr. Yuxin Peng received his doctoral degree (Ph.D.) in an engineering-related discipline, laying a strong foundation in biomedical engineering, biomechanics, and sensor technologies. His early academic pursuits were rooted in multidisciplinary innovation, merging engineering principles with human physiology and robotics. To further deepen his scientific understanding, he pursued postdoctoral research at the prestigious National University of Singapore, focusing on biomedical systems and smart rehabilitation. During his academic training, Dr. Peng built expertise in wearable sensors, motion tracking systems, and soft robotics—technologies that play a crucial role in personalized healthcare and intelligent rehabilitation. His education trajectory demonstrates both depth and diversity, preparing him to address complex biomedical challenges with integrated, high-tech solutions. It also laid the groundwork for his future leadership roles and impactful research career at Zhejiang University, where he now mentors young researchers and leads innovation in health engineering.

Experience:

Dr. Yuxin Peng has built an impressive academic and research career spanning over a decade. He has been a ZJU 100 Young Professor at Zhejiang University, affiliated with the Institute of Exercise Science and Health Engineering. In this role, he leads interdisciplinary research projects in wearable technology, flexible sensors, and human motion analysis. Prior to this, he served as a Research Fellow at the Department of Biomedical Engineering, National University of Singapore, where he focused on intelligent health systems and rehabilitation technologies. His hands-on experience in global, high-tech research environments has allowed him to develop collaborations with experts in robotics, materials science, and medical engineering. He has supervised numerous projects and students, while continuously publishing in high-impact journals. His experience demonstrates a rare blend of academic rigor and real-world application, making him a leader in human-centered biomedical innovation and smart rehabilitation systems.

Research Focus:

Dr. Yuxin Peng’s research focuses on wearable systems, smart sensors, soft robotics, and biomedical signal processing for human motion monitoring and rehabilitation. His work addresses real-world problems such as gait analysis, joint motion detection, force sensing, and rehabilitation assistance. By integrating AI, flexible electronics, and biocompatible materials, he develops high-performance sensors and intelligent exosuits for applications in sports science, elderly care, and physical therapy. Notable innovations include graphene-based aerogels, hydrogel biosensors, and multi-feature neural networks for gesture recognition. His lab has also contributed to optical waveguide sensors, virtual reality rehabilitation, and MI-controlled exoskeletons. The overarching goal of his work is to enable non-invasive, real-time, and personalized health monitoring through smart technology. By pushing the boundaries of soft, adaptive, and human-interactive systems, Dr. Peng’s research is at the forefront of the next generation of intelligent biomedical engineering solutions.

Publications Top Notes:

  1. Hydroplastic Foaming of Graphene Aerogels and AI Tactile SensorsScience Advances

  2. Underwater Instant Adhesive Hydrogel Interfaces for Robust BiosensingAdvanced Science

  3. Flexible Segmented Assemblable Fiber Optic Sensor for Multi-Joint MonitoringSoft Robotics (Accepted)

  4. Calibration-Free Optical Waveguide Bending Sensor for Soft RobotsSoft Science

  5. Distributed Plantar 3D Force Measurement SystemSensors and Actuators A

  6. Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign LanguageSmall

  7. Omnidirectional Soft Bending Sensor for Joint MonitoringIEEE TIE

  8. Shank-RIO: Ranging-Inertial Odometry for Gait and PositioningIEEE TIM

  9. Exosuit with Bidirectional Hand Support via Gesture RecognitionIEEE TNSRE

  10.  Advances in Flexible Bending Sensors and ApplicationsIJ Smart & Nano Materials

Conclusion:

In conclusion, Dr. Yuxin Peng exhibits all the qualities of a top-tier, award-worthy researcher. His work is characterized by scientific rigor, high-impact publication, and a vision for solving real-world healthcare challenges using cutting-edge sensor and robotics technologies. As a respected academic at Zhejiang University with a solid international research background, Dr. Peng has already contributed significantly to wearable health tech and rehabilitation sciences. His ability to combine soft material innovation, artificial intelligence, and biomechanics into novel human-machine interaction systems places him at the forefront of biomedical engineering research. While there is room for growth in the areas of commercialization and global academic engagement, his career trajectory, research excellence, and societal relevance of his innovations make him a highly deserving candidate for the Best Researcher Award.

Alaka Sahoo | Immunology Cellular Interactions | Young Researcher Award

Mrs. Alaka Sahoo | Immunology Cellular Interactions | Young Researcher Award

Mrs. Alaka Sahoo, Siksha’O’ Anusandhan University, India

Dr. Alaka Sahoo is a dedicated young researcher in the field of Biotechnology with a focus on translational and clinical research. She holds a Ph.D. in Biotechnology from Siksha ‘O’ Anusandhan University, Odisha, with a CGPA of 8.90. With over 17 publications, including 11 research articles and 3 high-impact reviews, Dr. Sahoo has significantly contributed to oral disease therapeutics and antimicrobial studies. She demonstrates expertise in multi-omics analysis, drug discovery, and natural product-based therapy. A recipient of prestigious awards such as the Lalchand Women Entrepreneurs Award (2024), she is also a life member of reputed organizations like the British Society for Antimicrobial Chemotherapy. Her innovative approach to disease management using phytochemicals and peptides sets her apart as a rising talent in biomedical research.

Publication Profile: 

Google Scholar

Scopus

Orcid

✅ Strengths for the Award:

  1. Strong Publication Record:

    • 17 publications including 11 original research, 3 reviews, and 2 book chapters, showcasing depth and breadth.

    • 7 papers as first or corresponding author—indicating independent research capability.

    • Research in high-impact journals like Frontiers in Microbiology, Journal of Ethnopharmacology, Nanomaterials, and Chemistry & Biodiversity.

  2. Innovative & Multidisciplinary Research:

    • Integrates multi-omics, computational modeling, clinical dermatology, and natural products.

    • Focus on oral inflammatory diseases, antimicrobial peptides, and drug delivery systems.

  3. Academic Excellence & Research Training:

    • Ph.D. with 8.90 CGPA, and M.Sc. with 87.07% marks.

    • Expertise in BSL-2+ lab work, PCR, ELISA, microbial culture, and molecular docking.

  4. Awards & Recognition:

    • Lalchand Women Entrepreneurs Award (2024).

    • MSME-Idea Hackathon Innovation Award, Govt. of India.

  5. Global and National Engagement:

    • Life member of the British Society for Antimicrobial Chemotherapy (UK).

    • Demonstrates leadership in science entrepreneurship and women in research.

🛠️ Areas for Improvement:

  1. Expanded International Collaboration:

    • Building long-term research partnerships with international labs could increase global visibility.

  2. Patent/Technology Transfer Efforts:

    • While publications are strong, translating research into patents or commercial products will further strengthen applied impact.

  3. Focused Project Leadership:

    • Leading large interdisciplinary projects or acquiring independent grants will showcase funding leadership.

🎓 Education:

Dr. Alaka Sahoo has pursued a progressive academic path in Biotechnology. She earned her Ph.D. in Biotechnology from the School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan Deemed University, Odisha, completing her research with a notable 8.90 CGPA. Her thesis focused on “Therapeutic Opportunities for Oral Lichen Planus: An Integrated Multi-Omics Approach to Drug Discovery” under the guidance of Prof. (Dr.) Maitreyee Panda. Prior to this, she completed her M.Sc. in Biotechnology (87.07%) from the College of Basic Science and Humanities, OUAT, Bhubaneswar in 2018 and a B.Sc. in Biotechnology with distinction (75%) from Ramadevi Women’s College, Utkal University in 2016. Her academic journey showcases a strong foundation in both theoretical and applied aspects of biosciences.

💼 Experience:

Dr. Alaka Sahoo brings rich hands-on research experience in clinical and experimental biotechnology. She is skilled in BSL-2+ lab practices, molecular techniques like PCR, gel electrophoresis, microbial culture, ELISA-based diagnostics, and bioinformatics. Her doctoral work integrated multi-omics and computational biology to study inflammatory oral diseases, and her postdoctoral research spans drug delivery and antimicrobial drug discovery. As first or corresponding author in 7 out of 17 publications, she has led collaborative studies with both national and international partners. Dr. Sahoo’s cross-disciplinary knowledge in microbiology, pharmacology, and nanomedicine enhances her problem-solving abilities, making her a versatile researcher. Her ability to bridge clinical dermatology with biotechnology research positions her as an impactful contributor in both healthcare and academic environments.

🏆 Awards & Honors:

Dr. Alaka Sahoo has received notable accolades for her innovation and leadership in science. In 2024, she was awarded the Lalchand Women Entrepreneurs Award by the Odisha Corporate Foundation, recognizing her outstanding contributions in biotech innovation. She also earned the MSME-Idea Hackathon 3.0 (Women) Innovation Award by the Government of India, honoring her practical scientific advancements with societal impact. These awards reflect her dedication to translational research and her vision to develop cost-effective, natural therapies. Dr. Sahoo is also a life member of two esteemed organizations: the British Society for Antimicrobial Chemotherapy (UK) and Bioclues Innovation, Research and Development (India). Her achievements signify her rising prominence in the field and her commitment to addressing public health challenges through integrative research.

🔬 Research Focus:

Dr. Alaka Sahoo’s research focuses on oral inflammatory diseases, natural product therapeutics, and insect-derived peptides as alternatives to conventional antimicrobials. Her Ph.D. thesis explored multi-omics approaches for drug discovery in Oral Lichen Planus, integrating in vitro, in silico, and clinical data. Her work spans immunomodulation, anti-inflammatory drug screening, and nanodrug delivery systems, with cross-functional expertise in dermatology, pharmacology, and microbiology. She combines computational modeling, molecular docking, and wet-lab validation to develop target-specific therapies. Her studies on biofilm inhibition, antifungal peptides, and phytosteroids hold promise for tackling antimicrobial resistance. Through collaborations across academia and healthcare, she aims to translate her lab findings into clinically viable solutions. Her contributions to systematic reviews and molecular simulations further demonstrate her analytical rigor and commitment to evidence-based research.

📚 Publications Top Notes:

  1. 📘 Experimental and clinical trial investigations of phytoextracts in Oral Lichen Planus: A systematic review – J Ethnopharmacol (2022)

  2. 🐞 Insect-derived antimicrobial peptides as novel anti-biofilm agents: A systematic review – Front. Microbiol. (2021)

  3. 💊 Ultraflexible liposome nanocargo for dermal drug delivery – Nanomaterials (2021)

  4. 🌿 Phytochemicals for Oral Lichen Planus: A multi-omics and experimental study – Chem Biodivers (2025)

  5. ⚗️ Carbohydrate-derived N-benzyl aminocyclopentitols with anticancer properties – Carbohydr Res. (2025)

  6. 🧬 Target-specific screening of anti-inflammatory phytosteroids using molecular docking – Steroids (2025)

  7. 🧪 Insect-derived antifungal peptides in Candida management – Int. J. Mol. Sci. (2025)

  8. 🧫 Azo-coumarin-Co(II)-galangin hybrids for multipotential activities – J. Biomol. Struct. Dyn. (2024)

  9. 🧒 Pediatric dermatology case analysis in Eastern India – Indian J. Paediatr. Dermatol. (2024)

  10. 🔬 Schiff/Mannich coumarin derivatives: Antibacterial and anti-biofilm evaluation – RSC Adv. (2024)

🧾 Conclusion:

Dr. Alaka Sahoo is highly suitable for the Research for Young Researcher Award. Her multi-disciplinary expertise, robust research record, and recognition through national awards highlight her as a promising early-career scientist. She combines academic rigor with innovation, and her work has meaningful implications for public health, especially in oral disease therapy, biofilm inhibition, and phytochemical-based drug development.

RAJU KUMAR SHARMA | Cell Adhesion Mechanisms | Best Researcher Award

Dr. RAJU KUMAR SHARMA | Cell Adhesion Mechanisms | Best Researcher Award

Dr. RAJU KUMAR SHARMA , National Chung Cheng University , Taiwan

Dr. Raju Kumar Sharma is an Assistant Research Fellow at National Chung Cheng University, Taiwan, specializing in Chemistry and Biochemistry. Born on January 27, 1993, in India, he holds a Ph.D. from National Chung Cheng University, Taiwan (2019-2023), and an M.Sc. in Analytical Chemistry from National Institute of Technology, Warangal, India. With a strong academic foundation, Dr. Sharma’s research focuses on environmental nanotechnology, water purification, and the development of sustainable materials. His multidisciplinary research has led to over 20 publications in high-impact journals. Dr. Sharma is also actively engaged in several international research collaborations across Taiwan, India, the USA, Japan, and more. He contributes significantly to both academic advancements and practical solutions to environmental challenges. In addition to his research, he serves as a reviewer for reputed journals, showcasing his expertise and commitment to the scientific community.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Extensive Research Contributions: Dr. Sharma has made substantial contributions to the field of Chemistry and Biochemistry, with several high-impact publications in prestigious journals such as Separation and Purification Technology, Marine Pollution Bulletin, and Environmental Technology & Innovation. His papers consistently address crucial issues such as water purification, nanotechnology, and bioremediation, reflecting an innovative approach to solving pressing environmental challenges.

  2. Diverse and Collaborative Research: He has demonstrated remarkable versatility in his research, exploring a wide range of topics, including the development of biosynthetic nanoparticles, heavy metal remediation, and environmental health. His research is not only theoretical but also highly practical, contributing to the design of sustainable solutions for environmental protection. Additionally, he has collaborated with top-tier institutions worldwide, such as National Chung Cheng University, University of California Berkeley, University of Malaya, and more. These collaborations underline his global network and recognition in his field.

  3. Innovation and Application: Dr. Sharma’s work on biologically synthesized mesoporous silica nanoparticles (BMSN) and microbial-induced synthesis of nanoparticles exhibits cutting-edge innovation. His focus on eco-friendly, cost-effective, and sustainable materials for water treatment and the development of nanomaterials with diverse applications shows his potential to drive significant impact in both environmental and industrial sectors.

  4. Recognition and High Citation Count: His work has been widely recognized with numerous citations, indicating a broad impact on the academic community. For example, his publications in high-impact journals (Q1) and recent patents demonstrate that his research is not only academically rigorous but also highly relevant to industry applications.

  5. Leadership in Research: As an Assistant Research Fellow at National Chung Cheng University, he holds a leadership role in advancing scientific research. His participation as a reviewer for esteemed journals like Earth Systems and Environment and Chemosphere further illustrates his influence and expertise.

  6. Multilingual Skills: His proficiency in English and Hindi allows him to communicate effectively in a global research environment, enhancing his ability to collaborate internationally.

Areas for Improvement:

  1. Broader Outreach of Research: While Dr. Sharma has contributed significantly to various academic journals, there may be room for increasing public engagement and outreach related to his research. This could involve publishing in open-access platforms or conducting outreach activities to share his work with non-academic audiences, enhancing the social impact of his research.

  2. Further Strengthening Research Impact: While his publications are well-cited, there is potential to extend his research to address larger interdisciplinary themes, particularly in policy and regulatory arenas. Participating in or leading policy discussions and innovations could enhance the real-world impact of his work.

  3. Increased Focus on Interdisciplinary Integration: Dr. Sharma’s research could benefit from deeper integration with interdisciplinary fields such as environmental engineering, material science, or urban development. This might open more opportunities for innovative solutions in various sectors and increase cross-sectoral impact.

Education:

Dr. Raju Kumar Sharma earned his Ph.D. in Chemistry and Biochemistry from National Chung Cheng University, Taiwan (2019-2023), where he developed expertise in nanotechnology, environmental chemistry, and biochemistry. His doctoral work focused on the biosynthesis of mesoporous silica nanoparticles and their environmental applications, particularly in water treatment. Before that, Dr. Sharma completed his M.Sc. in Analytical Chemistry from the National Institute of Technology, Warangal, India (2015-2017), where he studied the analytical techniques used in environmental chemistry and materials science. He obtained his B.Sc. (Hons.) in Chemistry from the University of Delhi, India (2012-2015). His academic background in both chemistry and biochemistry has laid a strong foundation for his multidisciplinary research endeavors, allowing him to make substantial contributions to environmental sustainability and nanomaterials.

Experience:

Dr. Raju Kumar Sharma is currently an Assistant Research Fellow at National Chung Cheng University, Taiwan, where he conducts groundbreaking research in nanomaterials, water purification, and environmental chemistry. His research experience spans the biosynthesis of nanoparticles and their application in heavy metal removal, water defluoridation, and drug removal. Prior to his Ph.D., Dr. Sharma worked as a research assistant in various projects at the National Institute of Technology, Warangal, India, and collaborated on several international projects related to nanotechnology and environmental sustainability. His research collaborations span across renowned institutions such as National Taiwan University, University of California Berkeley, University of Southern Queensland, and University of Malaya, among others. Dr. Sharma has published over 20 papers in peer-reviewed journals, contributing significantly to scientific advancements in the areas of chemistry, nanomaterials, and environmental science.

Awards and Honors:

Dr. Raju Kumar Sharma has received several accolades and recognition for his excellence in research. His outstanding contributions to the field of chemistry and biochemistry, especially in environmental nanotechnology, have earned him significant honors. As an early career researcher, he has been involved in high-impact research projects across multiple countries and institutions. His work on biosynthesis of mesoporous silica nanoparticles, water purification technologies, and environmental remediation has been widely recognized in academic circles. Dr. Sharma is frequently invited to present his work at international conferences and symposia. He has also served as a reviewer for high-ranking journals such as Earth Systems and Environment and Ecotoxicology and Environmental Safety. His collaborations with institutions like National Chung Cheng University, University of California, and University of Southern Queensland have further established his reputation as an emerging leader in his field.

Research Focus:

Dr. Raju Kumar Sharma’s research primarily focuses on the intersection of nanotechnology and environmental science, specifically in the areas of water purification and environmental remediation. He is actively engaged in the synthesis and functionalization of mesoporous silica nanoparticles (BMSNs) for applications in heavy metal removal, drug removal from wastewater, and defluoridation of contaminated water. His work on the microbial synthesis of nanoparticles and their application in sustainable environmental practices has positioned him at the forefront of eco-friendly nanomaterial design. Dr. Sharma’s research also explores the use of natural and agricultural waste-based adsorbents for water treatment, focusing on cost-effective and sustainable solutions for pollution control. His investigations into bio-surfactants, biopolymers, and microbial-mediated processes are integral to the development of next-generation materials that can be utilized for environmental sustainability. Dr. Sharma’s contributions to environmental nanotechnology are highly impactful and hold promise for addressing global water contamination issues.

Publications Top Notes:

  1. Optimization and surface functionalization of biologically synthesized mesoporous silica nanoparticles to remove ASA drug from water: Sorption and regeneration study 🌊💊📉
  2. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective 🌱🦠🌊
  3. Cost-effective microbial induced ZnO synthesis for building material: Antibacterial, photocatalytic, and mechanical characteristics 🏗️🦠💡
  4. Taiwan’s mysterious mollusks: a deep dive into the cryptic hybridization of Pomacea canaliculata and Pomacea maculata 🐌🔬🌍
  5. Transformative and sustainable insights of agricultural waste-based adsorbents for water defluoridation: Biosorption dynamics, economic viability, and spent adsorbent management 🌾💧💸
  6. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal 🧪🧫💧
  7. Microbial induced carbonate precipitation for remediation of heavy metals, ions, and radioactive elements: A comprehensive exploration 🦠🌍🛑
  8. A novel BMSN (biologically synthesized mesoporous silica nanoparticles) material: Synthesis using a bacteria-mediated biosurfactant and characterization 🦠⚗️🧪
  9. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: A review 🧫🔬💡
  10. The role of bacterial exopolysaccharides (EPS) in the synthesis of antimicrobial silver nanomaterials: A state-of-the-art review 🦠💎🔬

Conclusion:

Dr. Raju Kumar Sharma is undoubtedly a strong candidate for the Best Researcher Award. His contributions to environmental chemistry, biochemistry, and nanotechnology are groundbreaking. His research not only addresses environmental challenges but also provides practical solutions for water remediation and pollution control. His international collaborations, high citation count, and innovative approach to sustainable solutions position him as a thought leader in his field. By focusing on increasing the broader impact of his work, he can further solidify his standing as an academic and practical expert in environmental sciences.