Meenakshi | Signal Transduction Networks | Research Excellence Award

Assoc. Prof. Dr. Meenakshi | Signal Transduction Networks | Research Excellence Award

Chandigarh University | India

Dr. Meenakshi Munjal is an active researcher in the field of wireless communication, contributing extensively to advancements in emerging communication technologies. Over the past several years, she has maintained a strong research trajectory, completing one funded research project and producing a substantial body of scholarly work. Her research output includes more than 30 Scopus-indexed publications and a total citation count of 100, reflecting the growing impact of her contributions within the scientific community. She has authored one book with an ISBN and has two patents published or under process, demonstrating her commitment to innovation and applied research in communication systems. In addition to her publications, she has published eight peer-reviewed journal articles across SCI and Scopus-indexed platforms, strengthening the scientific understanding of wireless networks, signal processing, and communication technologies. Her work aligns with contemporary challenges in wireless systems, contributing to enhanced network performance, reliability, and efficiency. She also holds three professional memberships, supporting collaborative engagement within the research ecosystem. Overall, her research contributions highlight a sustained focus on innovation, scholarly excellence, and the advancement of wireless communication technologies

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Munjal, M., & Singh, N. P. (2018). Utility aware network selection in small cell. Wireless Networks, 1–14.

Munjal, M., & Singh, N. P. (2019). Group mobility by cooperative communication for high speed railway. Wireless Networks, 25(7), 3857–3866.

Gupta, S. (2014). A review and comprehensive comparison of image denoising techniques. Proceedings of the International Conference on Computing for Sustainable Global Development, 1–6.

Munjal, M., & Singh, N. P. (2019). QoS and cost-aware protocol selection for next generation wireless network. Journal of Network and Systems Management, 27(2), 327–350.

Munjal, M., & Singh, N. P. (2017). Improved network selection for multimedia applications. Transactions on Emerging Telecommunications Technologies, 28(5), e3121.

Munjal, M., & Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. Computational Techniques in Information and Communication Technologies Conference Proceedings, 1–5.

Meenakshi, G., & Gupta, S. (2014). Advanced level cyclic gray codes with application. International Journal of Electronics Communication and Computer Technology, 1–6.

Munjal, M., & Singh, N. P. (2020). Low cost communication for high speed railway. Wireless Personal Communications, 111(1), 163–178.

Munjal, M. (2024). A comprehensive review of wireless body area network in medical applications. AIP Conference Proceedings, 3100(1), 040013.

Munjal, M., & Dev, S. (2021). Utility based handoff decision for Internet of Everything (IoE). Photonics & Electromagnetics Research Symposium (PIERS) Proceedings, 1396–1405.

Singh, I., & Munjal, M. (2025). Intelligent network selection mechanisms in the Internet of Everything system. IEEE Access.

Munjal, M., Kaistha, K., Gupta, P., Sardana, L., Verma, R., & Verma, S. (2024). Handoff management using RSS in a heterogeneous system. AIP Conference Proceedings, 3072(1), 030003.

Esmaa Bouhamida | Molecular and Cellular Biology | Cell Biology Research Award

Dr. Esmaa Bouhamida | Molecular and Cellular Biology | Cell Biology Research Award

Fondazione Ricerca Biomedica Avanzata (VIMM) | Italy

The candidate’s research centers on understanding how mitochondrial signaling, hypoxia-responsive pathways, and cell-cycle regulatory networks collectively influence cardiac regeneration and cardiovascular disease. Their work investigates how hypoxia-inducible factors, particularly HIF-1α, modulate mitochondrial function during ischemic injury, with the broader goal of identifying mechanisms that could restore or enhance the regenerative potential of adult cardiac tissue. Through advanced molecular and cellular approaches, their studies explore how metabolic rewiring, mitochondrial stress responses, and oxygen-sensing pathways govern cardiomyocyte survival, proliferation, and reprogramming.

Building on expertise in molecular biology, signal transduction, and genetics, the researcher has expanded their focus to include the interplay between mitochondrial homeostasis and protein-quality control mechanisms in muscle tissues. Their postdoctoral work examines signaling pathways that regulate proteostasis and their impact on muscle integrity under physiological and pathological conditions. This integrated approach bridges cardiac regeneration, mitochondrial dynamics, and muscle biology, enabling the identification of therapeutic targets relevant to heart failure, ischemia, and degenerative muscle disorders.

Their long-term vision is to develop interventions that combine mitochondrial modulation, gene therapy, and cellular reprogramming strategies to promote tissue repair and functional recovery in cardiovascular disease. Their contributions have been recognized through competitive scientific evaluations at international cardiovascular and stem-cell research forums.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications:

Bouhamida, E., Vadakke-Madathil, S., Mathiyalagan, P., Ranjan, A. K., Khan, A., Sherman, M. P., & others. (2025). Single nucleus transcriptomics supports a role for CCNA2-induced human adult cardiomyocyte cytokinesis. bioRxiv.

Bouhamida, E., Vadakke-Madathil, S., Mathiyalagan, P., Ranjan, A. K., Sherman, M. P., & others. (2025). Cyclin A2 induces cytokinesis in human adult cardiomyocytes and drives reprogramming in mice. npj Regenerative Medicine, 10(1), 47.