Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof. Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof. Dalia Saleh, National Research Centre, Egypt

Dr. Dalia Osama Abd El Fattah Saleh is a distinguished pharmacologist and professor at the National Research Centre, Cairo, Egypt. With a career spanning over two decades in academic and pharmaceutical research, she specializes in molecular pharmacology, experimental therapeutics, and drug development. She earned her Ph.D. and M.Sc. in Pharmacology from Cairo University, where she also completed her undergraduate pharmacy degree with honors. Dr. Saleh’s prolific contributions to science are reflected in her extensive publication record, focusing on novel therapeutic strategies against various toxicological, metabolic, and inflammatory disorders. Her collaborative efforts have led to advancements in drug signaling pathways, phytochemical pharmacology, and nanotechnology-based delivery systems. Recognized nationally for her innovation, she has received several prestigious awards. Dr. Saleh continues to shape pharmacological research through her dedication to translational science, mentorship, and participation in international seminars and training programs.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  • Extensive Academic Background: Holds a Ph.D., M.Sc., and B.Sc. in Pharmacology from Cairo University, with a clear focus on endocrine and vascular pharmacology from early in her career.

  • Distinguished Research Record: Authored over 25+ high-impact publications in peer-reviewed journals including Scientific Reports, Toxicology Reports, Biochemistry and Cell Biology, and Environmental Science and Pollution Research.

  • Novel Scientific Contributions:

    • Explores molecular pharmacology through cutting-edge therapeutic approaches like AMPK/mTOR signaling, Nrf2/NF-κB modulation, and natural compound pharmacodynamics.

    • Studies involve both synthetic and phytochemical-based interventions, representing a hybrid and innovative research style.

  • Awards and Recognition:

    • National recognition for her research quality and productivity by the National Research Centre, with awards received in 2015 and 2020.

    • Ranked 24th in the institution for publication volume in 2014—an indicator of sustained output.

  • Global Exposure: Participated in professional training programs at King’s College London, enhancing her knowledge in clinical drug development and data management—an asset for interdisciplinary and translational research.

  • Leadership and Longevity: Promoted through all academic ranks at NRC, from Research Assistant to Professor, demonstrating not only competence but leadership and mentorship over time.

Areas for Improvement:

  • Clinical Translation: While the preclinical research is extensive, initiating clinical trials or translational studies would further strengthen the real-world applicability of her findings.

  • Global Visibility: Although trained internationally, more international speaking engagements, keynote invitations, or editorial roles could enhance global recognition.

  • Interdisciplinary Projects: Expanding collaborations across fields such as bioinformatics or biotechnology could amplify the innovation aspect of her work.

🎓 Education:

Dr. Dalia Saleh obtained all her academic degrees from Cairo University’s esteemed Faculty of Pharmacy. She was awarded her Ph.D. in Pharmacology in 2012 for her thesis examining estrogen’s vascular effects in insulin-resistant, ovariectomized rats. Earlier, she earned her M.Sc. in 2009 with research on rosiglitazone’s effects in streptozotocin-induced vascular changes. Her academic journey began with a B.Sc. in Pharmacy in 2002, graduating with distinction and honors. Her strong educational foundation laid the groundwork for her innovative and interdisciplinary research spanning molecular pharmacology, toxicology, and metabolic disorders. Through continuous professional development, including modules at King’s College London, Dr. Saleh stays aligned with global standards in pharmacological science and clinical drug development. Her educational background combines academic excellence with practical research expertise, making her well-equipped to address complex biomedical challenges.

👩‍🔬 Experience:

Dr. Dalia Saleh has built a progressive research career at Egypt’s National Research Centre, beginning as a Research Assistant in 2003. Over the years, she rose through the ranks to become a Professor in 2022. She previously held positions as Researcher (2012–2017) and Assistant Professor (2017–2022). Throughout her tenure, she has actively contributed to preclinical pharmacology research, focusing on inflammation, neuroprotection, metabolic diseases, and organ toxicity. Her interdisciplinary approach integrates pharmacodynamics, molecular signaling, and therapeutic intervention studies using both synthetic and natural compounds. She has led numerous studies that explore drug mechanisms at cellular and systemic levels, often employing rodent disease models. Dr. Saleh’s active participation in international training (e.g., at King’s College London) highlights her global engagement and commitment to continuous learning. Her career reflects not only research productivity but also leadership in collaborative scientific initiatives and mentoring of emerging researchers.

🏆 Awards & Honors:

Dr. Dalia Saleh has received multiple accolades that underscore her impact in the field of pharmacology. She was honored with the 2020 Scientific Pioneers Award and the 2015 Scientific Encouragement Award from Egypt’s National Research Centre (NRC), recognizing her outstanding research contributions. In 2014, she received institutional recognition for both her high publication output (ranked 24th NRC-wide) and for publishing in a high-impact journal (impact factor 4.067). These achievements highlight her consistent scientific productivity and influence in biomedical research. Dr. Saleh’s awards reflect a career driven by innovation, rigor, and dedication to solving pressing health issues. Her work continues to be widely cited and applied in translational pharmacology, securing her reputation as a leading figure in her discipline. She remains an inspiration to peers and students alike, with a legacy of both scientific excellence and mentorship.

🔬 Research Focus:

Dr. Dalia Saleh’s research is rooted in experimental pharmacology, with an emphasis on cell signaling pathways, drug discovery, and natural compound pharmacodynamics. She investigates molecular mechanisms underlying chronic diseases such as diabetes, hepatic and renal injury, neurodegeneration, and inflammatory disorders. A recurring theme in her work is the modulation of key signaling axes (e.g., AMPK/mTOR, NF-κB, PI3K/Akt) in mitigating organ toxicity and disease progression. Her recent studies explore the pharmacological potential of phytochemicals, drug hybrids, and nanoformulations in preclinical models. Dr. Saleh also examines gender-specific pathophysiology, as seen in her Ph.D. research on estrogen’s role in vascular dysfunction. She actively integrates biochemical, histological, and behavioral endpoints to ensure translational relevance. By bridging traditional medicine and molecular pharmacology, her work contributes to next-generation therapeutics and precision medicine. Her research has both national and global impact, frequently published in high-tier journals and cited in clinical research discussions.

📚 Publications Top Notes:

  1. 🧬 Eugenol alleviates acrylamide-induced testicular toxicity via AMPK/pAKT/mTOR signalingScientific Reports, 2024

  2. 💊 Trimetazidine protects against cisplatin-induced neuropathy via AMPK and Nrf2 pathwaysBiochemistry and Cell Biology, 2023

  3. 🧪 Chromone-thiazolopyrimidine hybrids inhibit TNF-α, IL-6, and PGE2Polycyclic Aromatic Compounds, 2023

  4. 🧻 Chrysin counters cyclophosphamide-induced cystitis via STAT-3 and NF-κB inhibitionChemico-Biological Interactions, 2023

  5. 🩺 Linagliptin and L-arginine synergize in hyperacidity via EP4 upregulationNaunyn-Schmiedeberg’s Archives of Pharmacology, 2023

  6. 🧠 L-arginine protects against hepatic encephalopathy via anti-apoptotic mechanismsEnvironmental Science and Pollution Research, 2023

  7. 🌿 Calotropis procera seed oil shows anti-inflammatory and antiparasitic activityArabian Journal of Chemistry, 2022

  8. 🧫 Olmesartan mitigates diabetic nephropathy through TLR4/P38-MAPK modulationEuropean Journal of Pharmacology, 2022

  9. 🌱 Anti-fibrotic activities of Plumbago species in liver fibrosis modelsScientific Reports, 2022

  10. 🐟 Omega-3 fatty acids protect against doxorubicin-induced liver damageSaudi Journal of Biological Sciences, 2022

Conclusion:

Dr. Dalia O. Saleh is highly suitable for the Best Researcher Award based on her prolific scientific contributions, consistent academic progression, and commitment to impactful pharmacological research. Her strength lies in combining rigorous mechanistic studies with applied therapeutic exploration, especially in inflammation, oxidative stress, and natural product pharmacology.

Huifeng Hao | Tumor pharmacology | Best Researcher Award

Dr. Huifeng Hao | Tumor pharmacology | Best Researcher Award

Dr. Huifeng Hao , Peking University Cancer Hospital , China

Dr. Huifeng Hao is an Assistant Investigator at Peking University Cancer Hospital, specializing in the integration of Chinese and Western medicine. He holds a Ph.D. from Peking University Health Science Center, where he explored Chinese-Western medical integration. His research journey began with a Bachelor’s in Clinical Medicine from Hebei Medical University. Dr. Hao has accumulated valuable postdoctoral experience at Peking Union Medical College (PUMC) in Vascular Pharmacology. His work has greatly contributed to the understanding of cancer progression, focusing on the interactions between cancer cells and vascular endothelial cells and the therapeutic effects of Traditional Chinese Medicine. With over a decade of expertise, Dr. Hao has published extensively in renowned journals, addressing critical topics in cancer research, endothelial cell function, and vascular health.

Publication Profile:

Orcid

Strengths for the Award:

  1. Extensive Educational and Research Background: Dr. Huifeng Hao has a comprehensive and solid academic foundation. With a Bachelor’s degree in Clinical Medicine from Hebei Medical University and a Ph.D. in the Integration of Chinese and Western Medicine from Peking University Health Science Center, his educational background is robust. Moreover, his postdoctoral research in Vascular Pharmacology at Peking Union Medical College significantly bolsters his expertise, particularly in vascular biology and its implications in cancer progression.

  2. Groundbreaking Research Areas: Dr. Hao’s research primarily focuses on the complex interactions between cancer cells and vascular endothelial cells, along with exploring how Traditional Chinese Medicine (TCM) can influence cancer progression. This intersection of modern pharmacology and traditional medicine offers a unique and innovative approach to cancer therapy. His studies on cancer metastasis, endothelial cell signaling, and the use of TCM as a potential therapeutic strategy for cancer represent cutting-edge work.

  3. Impressive Publication Record: Dr. Hao has co-authored numerous high-impact publications in leading journals, such as Phytomedicine, Frontiers in Pharmacology, Journal of Ethnopharmacology, and Journal of Cellular and Molecular Medicine. His work spans across critical cancer pathways, pharmacological interventions, and the exploration of novel therapeutic agents like Marsdenia Tenacissima and Berberine in combating metastasis and endothelial dysfunction.

    • His 2022 papers on the modified Bu-Fei decoction’s effects on lung metastasis and the role of CUEDC2 in promoting breast cancer progression are particularly notable for their novel findings and potential clinical applications.
  4. Collaborative and Multi-Disciplinary Research: Dr. Hao’s ability to collaborate with a wide array of experts and researchers in diverse fields demonstrates his interdisciplinary approach to solving complex scientific questions. This collaboration enhances the relevance and applicability of his work in various research areas, particularly in cancer biology, pharmacology, and integrative medicine.

  5. Pioneering Work on TCM in Cancer Therapy: Dr. Hao’s research on the role of Traditional Chinese Medicine (TCM) in cancer therapy is especially noteworthy. His studies examining how TCM influences tumor microenvironments and endothelial cell interactions provide critical insights into how integrative medicine might be leveraged to treat cancer in combination with conventional therapies. This pioneering research has the potential to redefine cancer treatments and offer patients holistic therapeutic options.

  6. Strong Impact on Cancer Research: His work on vascular pharmacology, tumor angiogenesis, and metastasis in lung cancer, particularly through the modulation of transforming growth factor beta receptors and nitric oxide signaling, has significant implications for the development of new cancer therapies. His publications are contributing valuable knowledge toward better understanding cancer progression and discovering more effective treatments.

Areas for Improvement:

  1. Broader Research Scope in Clinical Settings: While Dr. Hao’s research has focused heavily on preclinical studies, including animal models and cellular assays, expanding his research into clinical trials or human-based studies would provide essential validation for his findings. Involving clinical datasets and patient-centered research could strengthen the real-world applicability of his work.

  2. Increase in Independent Research Funding: While Dr. Hao has contributed significantly to various collaborative projects, securing independent research grants would allow him more freedom to explore his unique research hypotheses in greater depth and broaden the scope of his investigations.

  3. Expansion of International Collaborations: While Dr. Hao’s collaborations are impressive, further expanding his international network could provide additional insights and allow him to take his research to the global forefront. Partnerships with leading international cancer research institutions could also amplify the impact of his work.

Education:

  • 2004.09-2009.06: Hebei Medical University (Bachelor Degree in Clinical Medicine)
  • 2009.09-2014.06: Peking University Health Science Center (Ph.D. in Integration of Chinese and Western Medicine)
  • 2014.09-2018.08: Peking Union Medical College (Postdoctoral Training in Vascular Pharmacology)

Dr. Hao’s academic journey spans over a decade of rigorous training, blending Western scientific research with Traditional Chinese Medicine. He received his bachelor’s degree in clinical medicine and later pursued his Ph.D. in an interdisciplinary program that focused on integrating these two approaches to medicine. His postdoctoral research in vascular pharmacology furthered his expertise in understanding the physiological and molecular mechanisms of cancer-related vascular changes.

Experience:

  • 2014.09-2018.08: Postdoctoral Researcher, Peking Union Medical College, Vascular Pharmacology
  • 2018.08-Present: Assistant Investigator, Peking University Cancer Hospital, Integration of Chinese and Western Medicine

Dr. Hao’s research career spans significant academic institutions in China. During his postdoctoral research at PUMC, he specialized in vascular pharmacology, focusing on the molecular pathways involved in tumor vasculature. At Peking University Cancer Hospital, Dr. Hao continues to investigate how traditional medicine can alter the interactions between cancer cells and endothelial cells, with a goal of developing novel therapeutic strategies for cancer treatment. His interdisciplinary approach has led to multiple breakthrough discoveries in cancer biology and integrative medicine.

Research Focus:

Dr. Hao’s primary research areas include:

  • Investigating the interactions between cancer cells and vascular endothelial cells, and how these affect cancer progression
  • Exploring the role of Traditional Chinese Medicine (TCM) in regulating cancer cell interactions within the tumor microenvironment, especially with endothelial cells

By bridging the gap between modern biomedical science and traditional medicine, Dr. Hao aims to develop therapies that utilize both modalities to inhibit tumor growth and metastasis. His work focuses on understanding how TCM can modulate endothelial cells and vascular pathways, potentially leading to new treatments for cancer that are more holistic and effective.

Publications Top Notes:

  1. Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4 🫁🦠
  2. CUEDC2 Drives β-Catenin Nuclear Translocation and Promotes Triple-Negative Breast Cancer Tumorigenesis 🧬💥
  3. Berberine Suppresses Lung Metastasis of Cancer via Inhibiting Endothelial Transforming Growth Factor Beta Receptor 1 🌱🏥
  4. Marsdenia tenacissima extract disturbs the interaction between tumor-associated macrophages and non-small cell lung cancer cells by targeting HDGF 🌿🧫
  5. The cyclic adenosine monophosphate elevating medicine, forskolin, reduces neointimal formation and atherogenesis in mice 🐭💉
  6. Nitric oxide, a communicator between tumor cells and endothelial cells, mediates the anti-tumor effects of Marsdenia Tenacissima Extract (MTE) 💡🔬
  7. Marsdenia tenacissima extract promotes gefitinib accumulation in tumor tissues of lung cancer xenograft mice via inhibiting ABCG2 activity 💊🔬
  8. Marsdenia tenacissima extract dilated small mesenteric arteries via stimulating endothelial nitric oxide synthase and inhibiting calcium influx 🧪🩸
  9. Protective Role of mPGES-1 (Microsomal Prostaglandin E Synthase-1)-Derived PGE(2) (Prostaglandin E-2) and the Endothelial EP4 (Prostaglandin E Receptor) in Vascular Responses to Injury 💥🩺
  10. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis, and Cardiac Remodeling After Myocardial Infarction ❤️🫀

Conclusion:

Dr. Huifeng Hao’s contributions to cancer research, particularly the intersection of TCM and Western medicine, make him an excellent candidate for the Best Researcher Award. His innovative studies, combined with his dedication to advancing cancer treatment, position him as a leading researcher in his field. His continued research promises to significantly impact both scientific understanding and clinical practices in cancer therapy.

Tian Lan | Metabolic diseases | Best Researcher Award

Prof Tian Lan | Metabolic diseases | Best Researcher Award

Prof Tian Lan ,  Harbin Medical University , China

Prof. Tian Lan is a leading researcher in molecular pharmacology at Harbin Medical University, China. With over 20 completed and ongoing research projects, his work primarily addresses metabolic diseases such as fatty liver, diabetes, and cardiovascular disorders. Prof. Lan is widely recognized for his innovative approaches to drug development, which aim to improve patient outcomes through novel pharmacological targets. He has published over 60 articles in prestigious journals, contributed to multiple patents, and collaborated with esteemed institutions like UC San Diego. His dedication to advancing medical knowledge and practice has garnered him significant citations, reflecting his impactful contributions to the field. Prof. Lan’s work embodies a blend of rigorous scientific research and practical applications, positioning him as a prominent figure in the study of metabolic diseases.

Publication profile

Scopus

Strengths for the Award

Prof. Tian Lan demonstrates exceptional expertise in molecular pharmacology, particularly in the realm of metabolic diseases. His prolific output includes over 60 publications in high-impact journals, a citation index exceeding 4000, and numerous ongoing and completed research projects (20+). His innovative research has led to the identification of new pharmacological targets and the development of novel therapeutic strategies, particularly for conditions like fatty liver disease and diabetes. Notable contributions include significant findings on GSTM2 and its role in metabolic disorders, as well as advancements in understanding cordycepin’s mechanisms. His collaborative work with prestigious institutions like UC San Diego showcases his ability to foster partnerships that enhance research impact.

Areas for Improvement

While Prof. Lan has made significant strides in research, enhancing public outreach and engagement with the broader community could amplify the impact of his findings. Increased participation in conferences and workshops to disseminate knowledge more widely could also benefit both his research visibility and collaborations.

Education 

Prof. Tian Lan earned his PhD in Molecular Pharmacology from a prestigious institution, where he developed a strong foundation in pharmacological research and therapeutic strategies. His education was characterized by a rigorous curriculum that combined both theoretical knowledge and practical laboratory skills. He pursued postdoctoral studies that further enhanced his expertise in metabolic diseases, focusing on the interplay between pharmacology and cellular mechanisms. His academic journey included extensive training in advanced research methodologies, allowing him to investigate complex biological systems and their responses to pharmacological interventions. Prof. Lan’s commitment to continuous learning has led him to engage in various workshops and conferences, where he has remained abreast of the latest developments in pharmacology and related fields. This educational background has been instrumental in shaping his research focus and methodology, ultimately contributing to his success as a researcher and educator.

Experience 

Prof. Tian Lan has extensive experience in both academic and research environments, contributing significantly to the field of molecular pharmacology. He has led numerous research projects at Harbin Medical University, focusing on drug development for metabolic diseases. With over 60 publications in high-impact journals, his research has been widely cited, reflecting his influence in the scientific community. Prof. Lan has also engaged in consultancy projects, collaborating with industry partners to translate research findings into practical applications. His editorial appointments in reputable journals further underscore his expertise and leadership within the field. Additionally, he has fostered collaborations with renowned institutions like the Chinese University of Hong Kong and UC San Diego, enhancing the scope and impact of his work. His participation in professional organizations, such as AASLD and ADA, highlights his commitment to ongoing professional development and contribution to advancing research in metabolic diseases.

Research Focus

Prof. Tian Lan’s research is centered on the molecular pharmacology of metabolic diseases, particularly focusing on fatty liver disease, diabetes, gout, and cardiovascular disorders. His innovative studies aim to uncover new pharmacological targets and develop novel therapeutic strategies that address these pressing health issues. By exploring the mechanisms behind metabolic dysfunction, Prof. Lan has made significant contributions to understanding how various pathways, such as the MAPK and ASK1 signaling pathways, can be modulated to improve disease outcomes. His work with glutathione S-transferase Mu2 (GSTM2) and cordycepin has revealed potential therapeutic targets that mitigate metabolic disorders and inflammatory damage. Furthermore, his research on traditional Chinese medicine and its integration with Western pharmacology showcases his commitment to a holistic approach in treatment. Overall, Prof. Lan’s focus on molecular mechanisms and drug development positions him at the forefront of advancing therapeutic options for metabolic diseases.

Publications Top Notes

  1. Qi Nan agarwood restores podocyte autophagy in diabetic kidney disease by targeting EGFR signaling pathway 📄
  2. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies 📄
  3. Role of Gut Microecology in the Pathogenesis of Drug-Induced Liver Injury and Emerging Therapeutic Strategies 📄
  4. Fufang Zhenzhu Tiaozhi polysaccharides ameliorates high-fat diet-induced non-alcoholic steatohepatitis and intestinal flora disorders in mice 📄
  5. A Systematic Review of Statins for the Treatment of Nonalcoholic Steatohepatitis: Safety, Efficacy, and Mechanism of Action 📄
  6. Tianhuang formula ameliorates liver fibrosis by inhibiting CCL2-CCR2 axis and MAPK/NF-κB signaling pathway 📄
  7. Arbutin ameliorates liver fibrosis in mice by inhibiting macrophage recruitment and regulating the Akt/NF-κB and Smad signaling pathways 📄
  8. FTZ polysaccharides ameliorate kidney injury in diabetic mice by regulating gut-kidney axis 📄
  9. Glaucocalyxin A attenuates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance 📄

Conclusion

Prof. Tian Lan’s robust research portfolio, significant contributions to pharmacology, and commitment to advancing our understanding of metabolic diseases position him as a leading candidate for the Best Researcher Award. His work not only contributes to academic knowledge but also holds the potential for substantial clinical applications, ultimately improving patient outcomes in metabolic health. Recognizing his achievements with this award would validate his impact on the field and inspire further innovation in research.