Cletus Ukwubile | Nanomedicine | Research Excellence Award

Dr. Cletus Ukwubile | Nanomedicine | Research Excellence Award

University of Maiduguri | Nigeria

Dr. Cletus Ukwubile is a pharmacognosy researcher whose work integrates natural product chemistry, analytical instrumentation, and biomedical investigation. His expertise spans advanced chromatographic and spectroscopic techniques, including GC-MS, HPLC, TLC, PTLC, and VLC, which he applies to the characterization of bioactive compounds from medicinal plants. He has extensive experience in statistical and data-driven research using SPSS, GraphPad, R, SQL, and Tableau to support evidence-based scientific inquiry. His research contributions include leadership in university-level pharmacognostic studies and cancer-related investigations, particularly through funded projects such as the TETFund Nigeria Institutional Based Research Grant for brain tumour research. He has also benefited from international training, including a Royal Society of Chemistry fellowship in GC-MS analytics. With additional involvement in scientific societies and editorial bodies, he contributes to advancing natural product research, pharmacological discovery, and translational applications in biomedical science.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications: 

Ukwubile, C. A., Robert, A. E., Nuhu, A., Ahuchaogu, A. A., Ikpefan, E. O., & others. (2026). Nano-enhanced phytotherapy of prostate cancer: Evaluating the combined efficacy of Telfairia occidentalis seed and Annona muricata leaf extracts. Fitoterapia, 188, 106998.

Ukwubile, C. A., Robert, A. E., Ezema, B. O., Yesufu, H. B., Famurewa, A. C., Ikpefan, E. O., & others. (2025). Methanol extract of young Lantana camara leaves exhibits anti-ovarian cancer and anti-inflammatory effects via inhibition of PI3K/AKT/mTOR and MAPK pathways. Chemistry & Biodiversity, e01758.

Ukwubile, C. A., Clement, C. K., Ijoh, B. B., & others. (2025). Evaluation of anticancer and anti-inflammatory properties of Crescentia cujete and Citrullus vulgaris methanol seed extracts against MCF-7 breast cancer cells and molecular docking. Dutse Journal of Pure and Applied Sciences, 11(3e), 260–273.

Ukwubile, C. A., & Malgwi, T. S. (2025). Lantana camara leaf extract-loaded chitosan nanoparticles induce apoptosis and suppress PI3K/AKT and NF-κB signalling in triple-negative breast and colorectal cancer cells. Journal of Pharmacy & Bioresources, 22(3), 185–194.

Ukwubile, C. A., Lawan, M. Z., Malgwi, T. S., Yesufu, H. B., & others. (2025). Evaluation of anti-inflammatory and anticancer activities of Maerua angolensis leaf extract-loaded chitosan nanoparticles. Biomaterials Connect, 2, Article 0018.

Ukwubile, C. A., Yesufu, B. H., Okoro, N. R., & others. (2025). Chitosan-encapsulated linoleic acid from Leucaena leucocephala inhibits FOXL2 mutation in MNU-induced ovarian granulosa cell tumors in Wistar rats. Next Nanotechnology, 8, 100191.

Ukwubile, C. A., Nuhu, A., Famurewa, A. C., Nettey, H., Odugu, J. A., & others. (2025). Chitosan nanoparticles encapsulating Ipomoea digitata tuber and Jatropha gossypiifolia leaf extracts suppress NF-κB, Wnt/β-catenin, and MAPK signalling pathways in colorectal cancer cells. International Journal of Advanced Multidisciplinary Research and Studies, 5(5), 45–58.

Dibal, M. Y., Ukwubile, C. A., Ibrahim, H., Malgwi, T. S., Mohammed, Z., & others. (2025). Pharmacognostic and phytochemical studies of the leaves and stembark of Anogeissus leiocarpus. Journal of Medical Research and Reviews, 4(3), 89–105.

Ikpefan, E. O., & Ukwubile, C. A. (2025). GC-MS analysis and evaluation of analgesic and anticancer activities of Cadaba farinosa methanol leaf extract. Academic Journal of Pharmacy & Biomedical Sciences, 2(1), 10–18.

Hamidreza Mohammadi | Toxicology and Pharmacology | Best Researcher Award

Prof. Hamidreza Mohammadi | Toxicology and Pharmacology | Best Researcher Award

Mazandaran University of Medical Sciences, Sari, Iran

Dr. Hamidreza Mohammadi is a researcher specializing in toxicology, pharmacology, and nanomedicine, with extensive work focused on the toxicological and therapeutic applications of nanomaterials. His research spans multiple domains including nanotoxicology, polymer therapeutics, clinical and food toxicology, and the development of safer nanopharmaceuticals. He has contributed to advancing the understanding of how engineered nanomaterials interact with biological systems, emphasizing risk assessment, cellular mechanisms of toxicity, and strategies for biocompatibility improvement. Dr. Mohammadi’s studies also explore the design of polymer-based drug delivery systems with enhanced therapeutic efficacy and reduced side effects. His work integrates experimental and applied toxicology to bridge laboratory research with clinical practice, contributing to public health and safety in pharmacological sciences. With interdisciplinary expertise covering both environmental and clinical toxicology, his research aligns with global priorities in nanomedicine innovation and toxicological risk evaluation. His scholarly efforts continue to support the development of next-generation nanotherapeutics with optimized pharmacokinetics and minimized toxic responses, reinforcing the importance of safe and sustainable nanotechnology in medical and pharmaceutical applications.

Profile: Orcid

Featured Publications:

Mokhtari Azad, T., Mohammadi, H., Moosavi, A., Saadatmand, Z., & Nategh, R. (2004). Influenza surveillance in the Islamic Republic of Iran from 1991 to 2001. Eastern Mediterranean Health Journal, 10(3), 315–321.

Cheraghali, A. M., Mohammadi, H. R., Amirahmadi, M., Yazdanpanah, H., Abouhossain, G., & Zamanian, F. (2005). Incidence of patulin contamination in apple juice produced in Iran. Food Control, 16(2), 165–167.

Shafiee, H., Mohammadi, H., Rezayat, S. M., Hosseini, A., Baeeri, M., & Hassani, S. (2010). Prevention of malathion-induced depletion of cardiac cells mitochondrial energy and free radical damage by a magnetic magnesium-carrying nanoparticle. Toxicology Mechanisms and Methods, 20(9), 538–543.

Mohammadi, H., Karimi, G., Rezayat, S. M., Reza, A., Shafiee, H., & Nikfar, S. (2011). Benefit of nanocarrier of magnetic magnesium in rat malathion-induced toxicity and cardiac failure using non-invasive monitoring of electrocardiogram and blood pressure. Toxicology and Industrial Health, 27(5), 417–429.

Soltani, M., Shetab-Boushehri, S. F., Mohammadi, H., & Shetab-Boushehri, S. V. (2013). Proposing boric acid as an antidote for aluminium phosphide poisoning by investigation of the chemical reaction between boric acid and phosphine. Journal of Medical Hypotheses and Ideas, 7(1), 21–24.

Amir Zarebkohan | Nanomedicine | Best Researcher Award

Dr. Amir Zarebkohan | Nanomedicine | Best Researcher Award

Tabriz University of Medical Sciences | Iran

Dr. Amir Zarebkohan’s research focuses on the development of advanced nanomedicine strategies for targeted drug delivery and cancer therapy. His work integrates medical nanotechnology and physiology to design innovative nanosystems capable of precise drug transport within biological environments. He specializes in smart targeted delivery platforms, nano–bio interface studies, and nano chemo-immunotherapy approaches aimed at improving therapeutic efficacy while minimizing systemic toxicity. His current projects involve the co-delivery of cyclophosphamide and HLH peptide using D8 and RIVAP-modified chitosan nanoparticles, engineered to respond to the redox conditions of the tumor microenvironment for glioma targeting in rat models. Additionally, he is developing chitosan-based nanoparticles containing dendrimers loaded with cyclophosphamide and sitagliptin, further functionalized with targeting ligands for enhanced delivery efficiency. His research emphasizes translational applications of nanotechnology in oncology and the exploration of biocompatible polymeric carriers for controlled and localized drug release. Through his studies, Dr. Zarebkohan contributes to advancing nano-chemoimmunotherapeutic platforms that bridge the gap between nanoscience and clinical medicine, offering potential breakthroughs in the treatment of complex and resistant cancers.

Profiles:  Google Scholar | Scopus | Orcid

Featured Publications:

Zarebkohan, A., & colleagues. (2024). Enhanced docetaxel therapeutic effect using dual targeted SRL-2 and TA1 aptamer conjugated micelles in inhibition Balb/c mice breast cancer model. Scientific Reports, 14, Article 75042.

Zarebkohan, A., & colleagues. (2024). Discovery of a novel dual targeting peptide for human glioma: From in-silico simulation to acting as targeting ligand. Advanced Pharmaceutical Bulletin, 14, Article 033.

Zarebkohan, A., & colleagues. (2023). Dual targeting salinomycin-loaded smart nano-micelles for enhanced accumulation and therapeutic outcome in breast cancer. International Journal of Pharmaceutics, 123095.

Zarebkohan, A., & colleagues. (2023). CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. International Journal of Pharmaceutics, 122815.

Zarebkohan, A., & colleagues. (2023). Exosomal transmission of viruses, a two-edged biological sword. Cell Communication and Signalling, 21, Article 37.

Alessandra Luchini | Cell-Cell Communication | Best Researcher Award

Prof. Alessandra Luchini | Cell-Cell Communication | Best Researcher Award

Prof. Alessandra Luchini , George Mason University , United States

Dr. Alessandra Luchini is a tenured professor at George Mason University in the School of Systems Biology and serves as Director of the Biosciences Ph.D. Program. A native of Italy, she holds a Ph.D. in Bioengineering and a degree in Chemical Engineering cum laude from the University of Padova. She completed her postdoctoral training in proteomics and nanotechnology at George Mason University. Dr. Luchini’s pioneering research integrates nanotechnology with biomedical diagnostics to enhance disease detection and treatment, particularly in cancer, infectious, and inflammatory diseases. She has co-authored numerous peer-reviewed publications and is a co-inventor on several patents. Dr. Luchini also co-founded two biotech companies: Ceres Nanosciences and Monet Pharmaceuticals. Recognized nationally and internationally, she was named one of Popular Science’s “Brilliant 10” and received Virginia’s Outstanding Faculty Award in 2023. Her work bridges academia, innovation, and industry in pursuit of transformative healthcare solutions.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Distinguished Academic and Leadership Role: Tenured professor and director of the Ph.D. Biosciences program at George Mason University, reflecting leadership in both research and education.

  2. Innovative Translational Research: Her work bridges nanotechnology and proteomics to create real-world diagnostic solutions, particularly for cancer, infectious diseases, and neurological conditions.

  3. Entrepreneurial Impact: Co-founder of two biotech companies (Ceres Nanosciences and Monet Pharmaceuticals) that commercialize her academic innovations, demonstrating translational relevance.

  4. Recognition and Awards: Named among the “Brilliant 10” by Popular Science (2011) and recipient of the Virginia Outstanding Faculty Award (2023), showcasing external validation of excellence.

  5. Scientific Productivity: Author of peer-reviewed publications across high-impact journals with an H-index of 31, indicating influence and citation of her work.

  6. Active Research Funding: Current DoD-funded project as Principal Investigator on Lyme disease diagnostics reflects continued support and relevance of her work.

🔍 Areas for Improvement:

  1. Wider Global Collaboration: While she has excellent U.S. academic and biotech engagement, increasing international collaborations (e.g., with European or Asian institutions) could enhance global research impact.

  2. Public Science Communication: Dr. Luchini’s impactful research could benefit from more visibility in mainstream science communication outlets or public forums, particularly on topics like microbiome and cancer diagnostics.

  3. Mentorship Metrics: While she leads a Ph.D. program, formal documentation of mentorship outcomes (e.g., student success stories, awards) could further strengthen her educational impact profile

🎓 Education:

Dr. Alessandra Luchini’s educational journey began in Italy at the prestigious University of Padova, where she earned her degree in Chemical Engineering cum laude. Driven by her passion for biomedical innovation, she pursued a Ph.D. in Bioengineering at the same institution, graduating in 2005. Her doctoral studies provided a foundation in the integration of engineering principles with life sciences, focusing on biomolecular processes. In 2007, she completed postdoctoral training in Proteomics and Nanotechnology at George Mason University in the United States. This specialized training equipped her with expertise in advanced diagnostic tools and molecular profiling technologies. Her educational background uniquely combines strong engineering fundamentals with deep biological insight, allowing her to develop groundbreaking diagnostic platforms and translational research that bridges basic science with clinical applications. Dr. Luchini’s academic credentials laid the groundwork for a prolific research career in bioengineering, nanomedicine, and systems biology.

🧪 Experience:

Dr. Luchini began her U.S.-based academic career at George Mason University in 2007 and has steadily advanced to the role of Professor with tenure since 2020 in the School of Systems Biology. She has served as Graduate Program Director for the Ph.D. in Biosciences since 2019. Her leadership extends beyond the classroom, guiding graduate students and junior researchers in fields such as proteomics, nanotechnology, and infectious disease diagnostics. From 2015 to 2020, she was an Associate Professor and contributed extensively to curriculum development and translational research. Dr. Luchini has also co-founded Ceres Nanosciences (2008) and Monet Pharmaceuticals (2019), which commercialize technologies stemming from her research. Her interdisciplinary work spans collaboration with immunologists, chemists, and clinicians, contributing to large-scale projects funded by entities such as the U.S. Army. Her experience reflects a rare blend of academic rigor, entrepreneurial drive, and real-world impact.

🏅 Awards and Honors:

Dr. Alessandra Luchini’s excellence in research and education has earned her prestigious recognitions. In 2023, she was honored with the Outstanding Faculty Award by the State Council of Higher Education for Virginia, the highest faculty award in the state. She was previously named one of Popular Science’s “Brilliant 10” scientists in 2011, highlighting her innovative contributions to nanotechnology and disease diagnostics. These honors underscore her leadership in biomedical engineering, translational research, and mentorship. Dr. Luchini has also been a Principal Investigator on numerous federally funded research projects and holds several issued patents in proteomic diagnostics, which have led to real-world biotech applications. Her scientific impact is reflected in an H-index of 31, showcasing her influential publication record. She is also recognized for public engagement, contributing to both academic and industrial innovation. These achievements solidify her as a leading candidate for a Best Researcher Award.

🔬 Research Focus:

Dr. Alessandra Luchini’s research lies at the intersection of proteomics, nanotechnology, and molecular diagnostics. Her core aim is to improve early detection and therapeutic strategies for diseases such as cancer, Lyme disease, tuberculosis, and neurological disorders. She is a recognized leader in the development of affinity nanoparticle platforms, enabling the capture of disease biomarkers from biofluids like urine and saliva. Recent studies explore how bacterial extracellular vesicles affect calcium signaling in breast cancer, revealing new pathways for early intervention. Her work in protein painting mass spectrometry identifies key binding sites relevant to autoimmune and infectious diseases, while her collaborations with biotech firms bring these discoveries into diagnostic tools. Dr. Luchini is known for applying systems biology to real-world clinical problems, translating lab findings into impactful solutions. Her research integrates computational biology, clinical proteomics, and nanomaterials to open new frontiers in personalized medicine and public health diagnostics.

📚 Publications Top Notes:

  1. 🧫 Urinary bacteriophage cooperation with bacterial pathogens…Commun Biol, 2025

  2. 🧪 Urinary Borrelia Peptides Correlate with GSQ-30 Scores…J Cell Immunol, 2025

  3. 🧏 Hearing Science Accelerator: Sudden Sensorineural Hearing Loss…Otol Neurotol, 2024

  4. 🧬 A set of diagnostic tests for detection of active Babesia duncani…Int J Infect Dis, 2024

  5. 🧠 Protein Painting Mass Spectrometry in Discovery of Interaction Sites…ACS Chem Neurosci, 2024

  6. 🖼️ Wheat-Based Glues in Conservation and Cultural Heritage…J Proteome Res, 2024

  7. 🧬 Identification of Unambiguous Borrelia Peptides…Methods Mol Biol, 2024

  8. 🧠 Molecular profiling reveals nucleoside metabolism in medulloblastoma…Acta Neuropathol Commun, 2023

  9. 🧬 PD-L1 Interface Region Responsible for PD-1 Binding…J Biol Chem, 2023

  10. 💊 Drug discovery efforts at George Mason University…SLAS Discov, 2023

🧾 Conclusion:

Dr. Alessandra Luchini is exceptionally well-qualified for a Best Researcher Award. Her unique combination of high-impact research, translational innovation, academic leadership, and entrepreneurial success places her in the top tier of candidates. Her multidisciplinary approach—spanning bioengineering, nanomedicine, and molecular diagnostics—addresses some of the most pressing challenges in modern medicine. While minor areas such as broader global outreach and science communication could be enhanced, these do not diminish her outstanding achievements. Her track record reflects both depth and breadth of contribution, making her a strong, deserving candidate for this recognition.