Mengting liu | Cell Structure Analysis | Best Researcher Award

Assoc. Prof. Dr. Mengting liu | Cell Structure Analysis | Best Researcher Award

Assoc. Prof. Dr. Mengting liu, Xi’an Jiaotong University, China

Dr. Mengting Liu is an Associate Professor and Master’s Supervisor at the School of Electrical Engineering, Xi’an Jiaotong University. A promising scholar in advanced battery materials, she has made significant contributions to lithium-sulfur, sodium-ion, and zinc-based battery technologies. Dr. Liu holds a Ph.D. in Condensed Matter Physics from Lanzhou University and completed joint doctoral training at the Georgia Institute of Technology, under the mentorship of Prof. Gleb Yushin. As the principal investigator of several high-profile national projects, her work centers around electrolyte design, interfacial chemistry, and cathode material innovation. Dr. Liu has authored over 50 SCI papers in top-tier journals and holds more than 30 patents, reflecting her innovative contributions to electrochemical energy storage. With an H-index of 24 and successful technological transformations, she stands out as a leading young researcher shaping the future of sustainable energy materials in China and globally.

Publication Profile: 

scopus

Strengths for the Award:

  1. High-Impact Publications

    • Over 50 SCI-indexed papers in world-renowned journals such as J. Am. Chem. Soc., Advanced Materials, Energy & Environmental Science, and Nano Energy.

    • Numerous first-author and corresponding-author contributions, showcasing leadership in research.

  2. Innovation in Battery Technology

    • Pioneer in sodium-ion, lithium-sulfur, and zinc-ion battery materials, particularly focusing on interfacial engineering and electrolyte design.

    • Leads cutting-edge research in cold-environment batteries and high-voltage cathodes.

  3. Recognition and Funding

    • Principal Investigator of multiple National Natural Science Foundation of China (NSFC) projects.

    • Successfully translated 3 technologies into industrial application – indicating practical impact.

  4. Patent and Intellectual Property

    • 30+ patents applied/granted, reflecting a commitment to innovation and intellectual property creation.

  5. Academic Metrics

    • H-index: 24, indicating solid citation impact and relevance in the field.

  6. International Exposure

    • Conducted joint Ph.D. research at Georgia Institute of Technology, under the mentorship of global battery expert Prof. Gleb Yushin.

  7. Mentorship and Leadership

    • Serves as Master’s Supervisor, contributing to the training of the next generation of researchers.

🔧 Areas for Improvement:

  1. Public and Global Recognition

    • While the academic output is outstanding, broader international visibility (e.g., keynote speeches, global consortia participation) could strengthen recognition.

  2. Cross-disciplinary Expansion

    • Exploring AI-driven materials discovery or solid-state battery systems could further diversify her portfolio and enhance future relevance.

  3. Team Expansion and Postdoctoral Supervision

    • Expanding mentorship to include postdoctoral researchers and international collaborators could amplify research output and impact.

📚 Education:

Dr. Mengting Liu earned her Ph.D. in Condensed Matter Physics from Lanzhou University (2015–2021), focusing on electrochemical materials and battery interface design. During her doctoral studies, she was awarded a prestigious national scholarship for joint training at the Georgia Institute of Technology (2018–2020), where she conducted cutting-edge research in the School of Materials Science and Engineering under Prof. Gleb Yushin. Her work there focused on advanced cathode materials for sodium-ion and lithium-sulfur batteries, combining material design, characterization, and performance optimization. Her academic foundation is grounded in interdisciplinary training, bridging physics, chemistry, and materials science. Her research was pivotal in understanding phase transitions, solid–electrolyte interfaces, and novel electrolyte systems, which has set the stage for her postdoctoral and faculty research directions in energy storage. Her academic path reflects a strong alignment with innovation in clean energy technologies and fundamental materials science.

🧪 Experience:

Since November 2021, Dr. Mengting Liu has served as an Assistant Professor (Qingxiao Program A) at Xi’an Jiaotong University’s School of Electrical Engineering. She is actively involved in supervising graduate students and leading independent research in electrochemical energy storage. Prior to this role, she spent over two years at the Georgia Institute of Technology during her doctoral studies, collaborating with international experts and engaging in high-impact research. She has led several major research projects funded by the National Natural Science Foundation of China, focusing on electrolyte structure regulation and cathode performance optimization. Her industrial collaborations have led to three technological transformations and over 30 patents. Dr. Liu’s interdisciplinary background and international exposure have enabled her to contribute extensively to frontier research in lithium-ion, lithium-sulfur, and sodium-ion battery technologies. Her teaching and mentoring roles complement her research, contributing to talent development in the energy storage field.

🔬 Research Focus:

Dr. Mengting Liu’s research is centered on electrochemical energy storage, with a particular focus on sodium-ion, lithium-sulfur, and lithium-ion batteries. Her work involves the design of high-performance cathode materials, such as layered oxides and composite structures, and the development of nonflammable, stable electrolytes that enable long-life and high-temperature battery operation. She is especially recognized for her studies on interfacial engineering, including cathode-electrolyte interphases (CEI) and solid electrolyte interphases (SEI), which are critical to battery safety and longevity. Her recent research expands into entropy-regulated materials and polymer electrolytes to tackle extreme environmental conditions like ultra-low temperatures. With a holistic approach combining material synthesis, mechanism analysis, and performance validation, Dr. Liu aims to develop next-generation batteries with high energy density, long cycle life, and environmental adaptability. Her research is not only academically impactful but also industrially relevant, bridging fundamental science with practical innovation.

📄 Publication Top Notes: 

  1. 🧯 Cation−Anion Regulation in Flame-Retardant Electrolytes for Safe Na-Ion Batteries – J. Am. Chem. Soc. (2025)

  2. 🔥 Nonflammable Sulfone-Based Electrolytes for High-Temp LiNi0.5Mn1.5O4 – ACS Energy Lett. (2024)

  3. ❄️ Inorganic-Rich Interphases via Nonflammable Electrolytes for Low-Temp LiNi0.5Mn1.5O4 – Adv. Funct. Mater. (2024)

  4. Tailoring Cathode–Electrolyte Interface for High-Power Lithium–Sulfur Batteries – Nano-Micro Lett. (2025)

  5. 🔋 Wadsley–Roth Structure Engineering for High-Power Li-Ion Batteries – Energy Environ. Sci. (2024)

  6. 🔄 Biphaseto-Monophase Transition in Na0.766+xLixNi0.33-xMn0.5Fe0.1Ti0.07O2 – Carbon Energy (2024)

  7. 🛡️ Zn-Ion Channels with Double-Network Layer for Stable Zinc Anodes – Energy Storage Mater. (2024)

  8. 🔗 In-Situ Polymerized Ether Gel Electrolyte for High-Voltage Li-Metal Batteries – Adv. Funct. Mater. (2024)

  9. 🔧 Reinforced Bimetal Oxide-Based PEO Electrolytes for Stable Interfaces – Adv. Funct. Mater. (2025)

  10. ♻️ Phase-Stable and Air-Stable O3-Type Entropy-Reinforced Na Cathodes – Nano Energy (2025)

🧾 Conclusion:

Dr. Mengting Liu is exceptionally well-qualified for the Best Researcher Award. Her track record reflects a rare blend of deep theoretical knowledge, experimental expertise, and real-world application in the fast-evolving field of energy storage.

With a robust publication portfolio, a leadership role in nationally-funded projects, multiple technological transformations, and strong international training, she has already demonstrated leadership and innovation that align perfectly with the purpose of the award.

SWATI SHARMA | Microbial Cell Biology | Best Researcher Award

Dr. SWATI SHARMA | Microbial Cell Biology | Best Researcher Award

Dr. SWATI SHARMA, University of Birmingham, United Kingdom

Dr. Swati Sharma is a highly accomplished researcher in environmental remediation, currently serving as a Marie Curie Postdoctoral Fellow at the University of Birmingham, UK. With deep expertise in microbiology, nanotechnology, and biochemical sciences, her work focuses on sustainable solutions to pollution through advanced bioengineering techniques. Dr. Sharma has consistently demonstrated excellence in both academia and research, with over 1,200 citations and a cumulative impact factor exceeding 80. Her scientific journey began in India, where she earned her Ph.D. from the prestigious Indian Institute of Technology (IIT) Guwahati. Her dedication to multidisciplinary collaboration has led to innovative advances in biosurfactants, nanomaterials, and microbial bioremediation. Through her impactful publications and international collaborations, Dr. Sharma is building a globally recognized research profile aimed at addressing some of the most critical environmental challenges.

Publication Profile: 

Google Scholar

Strengths for the Award:

  1. International Recognition & Funding

    • Marie Curie Fellowship—a highly competitive and prestigious EU-funded postdoctoral program.

  2. High-Impact Publications

    • 23 peer-reviewed journal articles across top-tier journals (e.g., Chemical Engineering Journal, Bioresource Technology).

  3. Strong Research Metrics

    • Over 1200 citations, indicating significant impact and recognition in the field.

  4. Interdisciplinary Excellence

    • Research spans biotechnology, nanoscience, environmental engineering, and materials science.

  5. Innovation in Sustainability

    • Developed eco-friendly technologies for oil spill remediation, heavy metal detoxification, and biosurfactant production.

  6. Proven Teaching & Mentoring

    • Experience as Teaching Assistant in critical subjects like Biophysics, Biochemical Engineering, and Research Methodology at IIT Guwahati.

🔍 Areas for Improvement:

  1. Industry Collaboration & Technology Transfer

    • Could further enhance her profile through patents, start-ups, or partnerships with environmental technology companies.

  2. Leadership in Global Research Networks

    • Building roles in international research consortia, editorial boards, or scientific committees would increase visibility and influence.

  3. Public Engagement & Outreach

    • Increased involvement in science communication, outreach programs, or policy advocacy would broaden the societal impact of her research.

🎓 Education:

Dr. Swati Sharma’s academic foundation is rooted in premier Indian institutions known for excellence in science and engineering. She earned her Ph.D. in Biosciences and Bioengineering from the Indian Institute of Technology (IIT) Guwahati in 2022, where she focused on microbial remediation and biosurfactant applications. Prior to her doctoral studies, she obtained her M.Tech. in Biotechnology from the National Institute of Technology (NIT) Durgapur in 2016, building her technical and analytical skills in applied biological sciences. Her undergraduate journey began with a B.E. in Biotechnology from RV College of Engineering, Bangalore in 2014, where she was introduced to biochemical engineering and environmental biotechnology. This robust educational background has equipped her with interdisciplinary expertise, integrating biological sciences, nanotechnology, and environmental engineering to tackle global pollution problems through innovative, research-driven solutions.

👩‍🔬 Experience:

Dr. Swati Sharma has extensive experience in research and academia, particularly in biotechnology and environmental sciences. She is currently a Marie Curie Postdoctoral Fellow at the University of Birmingham, where she is investigating advanced bioremediation and nanotechnology applications for pollution control. From 2017 to 2019, she served as a Teaching Assistant at IIT Guwahati, contributing to undergraduate and postgraduate education in Research Methodology, Biophysics, and Biochemical Engineering. Her hands-on experience in reactor design, biosurfactant production, and wastewater treatment has been complemented by collaborative projects with chemical engineers, microbiologists, and materials scientists. Dr. Sharma has also worked in pilot-scale bioreactors and conducted field studies on oil-spill remediation. Her integrated research and teaching background showcase her versatility, communication skills, and a strong commitment to mentoring future scientists while pushing the boundaries of environmental and biochemical research.

🔬 Research Focus:

Dr. Swati Sharma’s research centers on environmental remediation using biosurfactants, nanomaterials, and microbial consortia. Her primary focus lies in the biodegradation of hydrocarbons, heavy metals, and dyes using engineered microbial systems and green nanotechnology. She has developed and optimized bioprocesses for oil-spill cleanup, wastewater treatment, and pathogen control, including innovative reactor configurations and biosorption mechanisms. Dr. Sharma’s work is interdisciplinary, spanning biotechnology, chemical engineering, and material sciences—with a strong emphasis on sustainability. She explores the synergy between biosorption and biodegradation, enabling cost-effective and scalable remediation systems. Her recent projects involve the use of tungsten-oxide nanomaterials for hydrogen evolution and the disinfection of viral pathogens like SARS-CoV-2 through novel physical methods. Through high-impact research and global collaborations, she aims to bridge the gap between lab-scale discoveries and real-world environmental solutions.

📚 Publications Top Notes: 

  1. 🦴 Design of biphasic Fe and Zn doped hydroxyapatite to combat osteomyelitis – Ceramics Int.

  2. 🌱 Enhanced biosurfactant production by Bacillus subtilis using molasses – J. Biotech

  3. 🛢️ Biodegradation kinetics of Hexadecane & Phenanthrene via microconsortium – Bioresource Tech

  4. ⚡ Bulk synthesis of WO₃ nanomaterials for wastewater and hydrogen generation – Chem Eng J

  5. 🦠 UV-C & IR disinfection of SARS-CoV-2 spike protein – Int. J. Biol. Macromol

  6. 🧽 Hydrophobic biosorption & microbial remediation of oil spills – Ind Eng Chem Res

  7. 🛢️ Fed-batch integration of biosorption and biodegradation for oil cleanup – Lett Appl Microbiol

  8. 🍳 Waste cooking oil biodegradation & rhamnolipid production – Bioproc Biosyst Eng

  9. 🌿 Fungal bioherbicides for water hyacinth control – J. Basic Microbiol

  10. 🛢️ Biosurfactant production from sludge-isolated Bacillus subtilisBioresource Tech

🧾 Conclusion:

Dr. Swati Sharma is an outstanding early-career researcher whose academic rigor, international fellowship recognition, and impactful research position her as a strong and deserving candidate for the Best Researcher Award. Her work addresses urgent global environmental problems using an integrative and innovative scientific approach, bridging fundamental research and applied environmental biotechnology. Given her achievements to date and her potential for continued excellence and leadership, she merits serious consideration for this honor.