Drosos Kourounis | Microbial Cell Biology | Best Researcher Award

Mr. Drosos Kourounis | Microbial Cell Biology | Best Researcher Award

Mr. Drosos Kourounis | Hellenic Pasteur Institute| Greece

Drosos Kourounis is a seasoned biomedical scientist based at the Hellenic Pasteur Institute, Greece. With a strong foundation in molecular biology, his career has spanned from research on parasitic protozoa to developing air purification technologies for public health. His journey began with a BSc and MSc in Biology from the University of Athens, focusing on Leishmania molecular mechanisms. He progressively transitioned into applied research and pharmaceutical quality control, currently serving as the QA/QC Manager at the Hellenic Pasteur Institute. Alongside his scientific duties, he has actively participated in several national seminars and certifications in ISO standards and laboratory quality systems. His contributions to publications, including work on UV-C air disinfection and pathogen bioaerosols, show his commitment to translational science and public health safety. Kourounis’s multidisciplinary skills, research impact, and quality-driven mindset make him a standout figure in the field of biomedical research.

Publication Profile:

Ocrid

✅ Strengths for the Award:

  1. Diverse Research Portfolio: Dr. Kourounis combines basic molecular biology research (e.g., Leishmania donovani protein characterization) with applied public health innovations, such as UVC air filtration devices.

  2. Peer-Reviewed Publications: Multiple first- and co-author publications in reputable journals like International Journal of Molecular Sciences and Clinical Research and Reviews highlight his consistent research productivity.

  3. Quality & Regulatory Expertise: His role as QA/QC Manager and extensive ISO training show strong competence in scientific quality assurance, a rare but highly valuable skill in biomedical research.

  4. Public Health Impact: His work on airborne microbial bioaerosols reduction is highly relevant to healthcare, particularly in post-pandemic times.

  5. Academic Excellence: Achieved a 10/10 thesis grade for MSc research and has shown continued academic engagement and scientific rigor.

🛠️ Areas for Improvement:

  1. More International Collaborations: While his current network is strong locally, expanding his collaborations globally would increase visibility and cross-disciplinary impact.

  2. Greater Research Specialization: A more narrowly defined focus could strengthen academic identity and make his profile stand out further among specialized researchers.

  3. Funding and Grants: No mention of securing independent grants or fellowships, which are key indicators of research independence and innovation leadership.

🎓 Education:

Drosos Kourounis holds both a Bachelor of Science (2013) and Master of Science (2017) in Biology from the University of Athens, Greece. His MSc focused on molecular parasitology, specifically the cloning and characterization of a secreted nexin-like protein from Leishmania donovani, which earned him a perfect thesis score (10/10). Complementing his formal education, Kourounis has pursued multiple professional certifications in laboratory quality systems, including ISO 17025 and ISO/IEC 17025 accreditation seminars, conducted by institutions like TUV HELLAS and HellasLab. In 2021, he also completed certified training in laboratory animal science at the Hellenic Pasteur Institute, showing his commitment to ethical and regulatory compliance in biomedical research. His training portfolio demonstrates a keen interest in continuous education and the application of scientific standards in both academic and industrial environments. His educational journey reflects a balance between foundational science and regulatory excellence.

💼 Experience:

Drosos Kourounis has over 7 years of cumulative experience in biomedical research and quality control. He is currently the Quality Assurance and Quality Control Manager at the Hellenic Pasteur Institute (since January 2023), where he oversees pharmaceutical QC processes. Previously, he served as Senior QC Analyst (2022) and QC Analyst (2019–2021) at the same institution. His earlier roles include Scientific Collaborator at MEGALAB S.A. and Research Assistant at the Intracellular Parasitism group in the Hellenic Pasteur Institute. During his research tenure, he contributed to molecular studies on Leishmania donovani and the development of innovative air disinfection systems. He is recognized for his dual role as a scientist and regulatory professional, combining rigorous lab work with compliance to ISO standards. His professional trajectory showcases a steady progression toward leadership in quality control, along with consistent scientific contributions to public health and infectious disease research.

🔬 Research Focus:

Drosos Kourounis’s research lies at the intersection of molecular parasitology, bioaerosol control, and public health technology. His academic work began with the cloning and analysis of Leishmania donovani proteins, contributing to the understanding of host-parasite interactions. Transitioning from pure biology, his focus expanded to the development of innovative air disinfection technologies, including UV-C integrated filtration systems aimed at mitigating microbial exposure in clinical and public environments. This shift highlights a commitment to translational research that addresses real-world problems, such as hospital-acquired infections and airborne pathogen control. His contributions are evident in publications across molecular sciences and applied electromagnetics. Moreover, he incorporates quality assurance principles into his scientific work, ensuring research reproducibility and compliance with international standards.

📚 Publication Top Notes: 

  • 🧬 Cloning and molecular characterization of the secreted nexin-like protein LdPIBPnex, from the protozoon Leishmania donovani

  • 🌬️ Substantial Reduction of Airborne Microbial Bioaerosols by Using a Novel Combination of Air Filtration and UV Irradiation Technology in Areas of Public Interest

  • 🧫 Characterization of the First Secreted Sorting Nexin Identified in the Leishmania Protists

  • 🏥 A Study on the Reduction of Airborne Microbial Bioaerosols at Indoor Air of Hospital’s Intensive Care Unit by Using Novel Air Filtration and UV Irradiation Technology

  • 😷 Design and Analysis of a Protecting Breathing Device (VITER) Disinfecting Air with an Integrated UVC Radiation Mechanism

 

🧾 Conclusion:

Dr. Drosos Kourounis demonstrates exceptional dedication to biomedical research, quality assurance, and innovation in public health safety. His dual focus on molecular parasitology and technological solutions for microbial air control showcases both scientific depth and societal impact. With a growing publication record and leadership role in a premier research institute, he is well-positioned for recognition. Enhancing global visibility and grant acquisition could elevate his profile further. Overall, he is highly suitable and deserving of serious consideration for the Best Researcher Award.

Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng , Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences , China

Dr. Jie Feng is a distinguished researcher with significant contributions in the fields of edible fungi, biotechnology, and bioactive compounds, particularly focusing on the production and application of polysaccharides from medicinal mushrooms like Ganoderma lucidum. With a background in food chemistry and microbiology, Dr. Feng’s work bridges the gap between traditional medicine and modern industrial applications. He has developed innovative submerged fermentation techniques to improve the production of high molecular weight polysaccharides, optimizing their bioactivity for medical, nutritional, and functional food industries. His interdisciplinary research integrates microbiological methods with biotechnology, contributing to more efficient and scalable production processes. With a collaborative spirit, Dr. Feng has worked extensively with institutions across China and abroad, fostering international research partnerships. His work is widely recognized for its potential in enhancing the nutritional value and therapeutic properties of fungi-derived products, improving human health globally.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Innovative Approach: The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum (GLPs) demonstrates a significant advancement in the production of bioactive compounds with consistent quality. The focus on directed fermentation to improve yields and polysaccharide structure showcases an innovative approach in the field of food chemistry and biotechnological applications.
  2. Relevance and Market Impact: The study is highly relevant to the growing demand for functional ingredients and bioactive compounds from Ganoderma lucidum, especially in pharmaceuticals and functional foods. It addresses industry challenges such as low yield, unstable quality, and long cultivation times in traditional methods. The ability to produce high MW polysaccharides efficiently through submerged fermentation is an essential breakthrough for large-scale applications.
  3. Strong Multi-Disciplinary Expertise: The authors come from a range of institutions (Shanghai Academy of Agricultural Sciences, University of Shanghai for Science and Technology, and the Institute of General and Physical Chemistry in Belgrade), showing the successful collaboration of experts in food microbiology, fermentation science, chemistry, and biotechnology. This interdisciplinary teamwork strengthens the credibility and quality of the research.
  4. Contribution to Bioactivity Understanding: The research contributes to the deeper understanding of the structure-function relationships of GLPs, particularly the immunostimulatory effects of the β-glucan polysaccharides. This opens doors for further investigations into the therapeutic potential of Ganoderma lucidum.
  5. Impact on Biotechnological Production: The controlled conditions of submerged fermentation could offer a more reliable, scalable, and efficient method to produce high-quality polysaccharides for diverse applications, especially in the pharmaceutical and functional food industries.

Areas for Improvement:

  1. Long-Term Stability and Variability: While the research focuses on improving the consistency of high molecular weight polysaccharides, it would be beneficial to explore the long-term stability of the production system and any batch-to-batch variability that could affect commercial scalability. Further exploration of how fermentation scale impacts long-term product stability would be important for real-world industrial applications.
  2. Environmental and Economic Considerations: In an industrial setting, the economic viability and environmental impact of submerged fermentation should be explored further. Incorporating life cycle assessments or a comparison of the economic aspects (e.g., cost-efficiency, energy consumption) of submerged fermentation versus traditional cultivation could provide a more comprehensive analysis of the approach’s benefits.
  3. Further Structural Elucidation of Polysaccharides: The study briefly mentions the structural aspects of the polysaccharides (β-glucan backbone), but further detailed analysis of the molecular configuration and any possible modifications during fermentation could provide additional insights into their bioactivity and potential for therapeutic use.
  4. Exploring Broader Applications: Expanding the research to explore how the produced GLPs interact with other bioactive compounds or their broader applications in nutrition and functional foods could enhance the scope of the work. It could also lead to exploring synergistic effects in combination with other ingredients in the food or pharmaceutical industries.

Education:

Dr. Jie Feng holds a Ph.D. in Food Science from Shanghai Academy of Agricultural Sciences, China, where he specialized in the biotechnology of edible fungi and fermentation processes. Before obtaining his doctoral degree, he completed his Master’s in Microbiology from the University of Shanghai for Science and Technology, focusing on the optimization of microbial fermentation. Throughout his academic journey, Dr. Feng demonstrated a keen interest in microbiology, biotechnology, and food chemistry, working on various projects that explored the bioactive properties of polysaccharides and their applications in functional foods. His doctoral research laid the foundation for innovative submerged fermentation processes for producing high molecular weight polysaccharides. His education reflects a deep understanding of both the theoretical and practical aspects of microbiology and biotechnological applications in food production, setting him apart as an expert in his field.

Experience:

Dr. Jie Feng has a rich academic and research experience in the fields of food science and biotechnology. He has worked as a lead researcher at the Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, where he led groundbreaking projects on the production of high molecular weight polysaccharides from Ganoderma lucidum. In addition to his work in submerged fermentation, Dr. Feng has also contributed to the advancement of biotechnological methods for improving the nutritional and bioactive properties of medicinal mushrooms. His work has been recognized internationally for its impact on functional food development and the medical industry. As a collaborator, Dr. Feng has worked with institutions like the University of Shanghai for Science and Technology and the Institute of General and Physical Chemistry, Belgrade, Serbia. His experience extends to both laboratory research and applied industrial processes, making him a versatile scientist and leader in his field.

Research Focus:

Dr. Jie Feng’s primary research focus is on the biotechnological production of high molecular weight polysaccharides from medicinal fungi, particularly Ganoderma lucidum. His work emphasizes submerged fermentation, a method that allows for precise control over the growth conditions of fungi, enabling the production of structurally defined bioactive polysaccharides. These polysaccharides are of great interest for their potential applications in pharmaceuticals, nutraceuticals, and functional foods. Dr. Feng’s research also investigates the optimization of fermentation parameters such as pH, nutrient supply, and oxygen levels to improve yield and consistency, addressing challenges faced in traditional cultivation methods. His work in the molecular structure and bioactivity of polysaccharides has implications for improving immune response and gut health, along with broader medicinal benefits. Additionally, Dr. Feng’s research aims to enhance the sustainability and scalability of polysaccharide production for industrial applications, making his research pivotal in the fields of functional foods and biotechnology.

Publications Top Notes:

  1. “Innovative Submerged Directed Fermentation: Producing High Molecular Weight Polysaccharides from Ganoderma lucidum” 🍄🔬
  2. “Regulation of Enzymes and Genes for Polysaccharide Synthesis in Ganoderma lucidum” 🧬🍄
  3. “Optimization of Submerged Fermentation for Ganoderma lucidum Polysaccharides” ⏱️🍄
  4. “Improving Immunostimulatory Effects of Ganoderma lucidum Polysaccharides” 💪🍄
  5. “Co-culture Fermentation of Ganoderma lucidum and Beneficial Microorganisms” 🤝🍄
  6. “Enhancing Quality and Yield of Functional Foods from Ganoderma lucidum” 🥗💊
  7. “Fermentation Process Development for Industrial-Scale Production of Polysaccharides” 🏭🔬

Conclusion:

The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum represents a significant step forward in the bioengineering of functional ingredients. It provides a reliable, scalable method for producing bioactive compounds with consistent quality, directly addressing challenges in the production of GLPs. The integration of various expertise from the fields of microbiology, food chemistry, and biotechnology enhances the credibility and applicability of the research. While there are areas for improvement, especially in terms of long-term scalability, economic analysis, and further structural elucidation, the work has great potential to influence both industrial practices and the broader scientific community.