Yanlan Wang | Cancer Cell Biology | Best Researcher Award

Dr. Yanlan Wang | Cancer Cell Biology | Best Researcher Award

Dr. Yanlan Wang, Stanford, United States

Dr. Yanlan Wang is a distinguished postdoctoral research fellow at Stanford University’s Department of Pathology. She works in the esteemed Dr. Gerald Crabtree’s lab, where her research revolves around leveraging molecular glues to reprogram cancer drivers and trigger apoptosis. With a strong background in immuno-oncology, antibody engineering, and small molecule therapeutics, Dr. Wang has made significant contributions to targeted cancer therapies. Her interdisciplinary collaborations, notably with Dr. Nathanael Gray’s group, have explored the role of transcription factor complex-inducing compounds (TCIPs) in MLL-rearranged leukemia. Dr. Wang brings a rich international research experience from China and the U.S., with a career spanning translational medicine, biotechnology innovation, and academic excellence. She is known for her rigorous approach to scientific inquiry, collaborative spirit, and prolific publication record. Her passion for understanding and overcoming the mechanisms of cancer resistance positions her as a future leader in oncology drug development and precision medicine.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Outstanding Research Focus
    Dr. Wang’s work on molecular glues and transcription factor modulators represents cutting-edge approaches in cancer therapy, especially in targeting previously undruggable pathways.

  2. High Impact Publications
    With multiple first-author and co-corresponding author papers (e.g., J Immunol Methods 2025, Leukemia & Lymphoma 2020, Clin Pharmacol Ther 2021), Dr. Wang has demonstrated a strong track record in both fundamental and translational cancer research.

  3. Innovation & Translational Impact
    Her efforts in bispecific antibody engineering, IL-15 therapeutics, and AKR1C3-targeted prodrugs show clear applications in oncology drug development, bridging the lab and clinic.

  4. Prestigious Collaborations
    Collaborating with renowned researchers such as Dr. Gerald Crabtree and Dr. Nathanael Gray at Stanford indicates high confidence and integration in world-class research circles.

  5. Recognition & Awards
    She has received the Coxe Fellowship at Stanford and multiple merit-based scholarships, highlighting academic excellence and innovation.

  6. Leadership and Multidisciplinary Skills
    Dr. Wang has led several projects, authored high-level papers, and mentored junior researchers, showcasing both technical and leadership capability.

🔄 Areas for Improvement:

  1. Greater International Presentation Exposure
    Although she has strong publication credentials, more visibility through international oral presentations, keynote addresses, or panel roles would amplify her leadership profile.

  2. Independent Grant Record
    While she is currently in a postdoctoral role, seeking independent funding (e.g., K99/R00, early-career PI grants) would position her more competitively for independent investigator status.

  3. Patent or Commercial Translation
    Given the translational nature of her work, pursuit of intellectual property filings or biotech partnerships would further highlight impact.

🎓 Education:

Dr. Yanlan Wang began her academic journey at Xiangya School of Medicine, Central South University, where she earned her MBBS (M.D. equivalent) in June 2012. She continued at The Second Xiangya Hospital for her clinical residency, completing her M.S. in June 2015. Her pursuit of scientific excellence led her to earn a doctorate (M.D. equivalent to PhD) from Sun Yat-sen University in June 2018, with a research focus on microbial immunology and tumor biology. This diverse educational background gave her a solid foundation in both clinical medicine and biomedical research, allowing her to bridge translational gaps in cancer research. Her early training emphasized immunotherapy, molecular biology, and oncology, all of which paved the way for her postdoctoral work in cutting-edge labs. Her education reflects a consistent upward trajectory, marked by prestigious institutions, interdisciplinary training, and a seamless integration of clinical and scientific disciplines.

🔬 Experience:

Dr. Yanlan Wang is currently a postdoctoral research fellow in Dr. Gerald Crabtree’s lab at Stanford University, where she focuses on manipulating cancer cell pathways using molecular glues. Her prior research in China included pivotal roles in biotechnology innovation, including bispecific antibody engineering, prodrug design, and immune-oncology drug development. She has also collaborated extensively with Dr. Nathanael Gray’s lab at Stanford, exploring the therapeutic potential of TCIPs in leukemia. Dr. Wang’s hands-on experience includes multiplex screening platforms, flow cytometry, in vivo tumor models, and translational immunotherapy development. Over the years, she has taken leadership roles in preclinical projects, manuscript authorship, and international scientific presentations. Her diverse roles—from clinical residency to laboratory innovation—reflect her capability to translate complex scientific findings into therapeutic strategies. Dr. Wang has also mentored junior researchers and worked across multiple disciplines, underscoring her adaptability, leadership potential, and deep commitment to cancer research.

🏅 Awards and Honors:

Dr. Yanlan Wang’s excellence has been recognized through several prestigious awards. At Stanford, she received the Coxe Fellowship in 2021, honoring outstanding postdoctoral researchers. During her doctoral training, she earned the Special Award of Merit for the BJ-001 Project at BJ Bioscience Inc. in 2019 for her impactful translational research. Her academic merit was consistently acknowledged through the Bidi Scholarship (2016–2017) and Daxiang Scholarship (2015–2016) at Sun Yat-sen University. These honors underscore her commitment to scientific excellence, innovation, and translational impact in oncology and immunotherapy. Her ability to receive awards across both academic and industrial settings highlights her versatility and the real-world relevance of her work. These distinctions serve as a testament to her leadership in cancer drug development, collaborative effectiveness, and contribution to next-generation therapeutic discoveries.

🔍 Research Focus:

Dr. Yanlan Wang’s research lies at the intersection of cancer biology, molecular pharmacology, and immunotherapy. At Stanford, she investigates how molecular glues can be used to hijack cancer drivers and activate apoptosis, offering a novel route for targeted cancer therapies. Her work involves multiplex molecular glue screening, understanding protein degradation pathways, and designing synthetic lethality strategies. In collaboration with Dr. Nathanael Gray, she is also studying Transcription factor Complex-Inducing Compounds (TCIPs) for the treatment of MLL-rearranged leukemia, a particularly aggressive form of blood cancer. Prior to this, her research focused on bispecific antibodies, prodrugs, and IL-15 based immunotherapeutics, with a vision to decouple efficacy from toxicity. Through a blend of basic science and translational applications, she aims to rewire oncogenic signaling pathways and enhance anti-tumor immunity. Her research combines drug discovery, systems biology, and precision oncology, pushing the boundaries of targeted cancer treatment.

📚 Publications Top Notes:

  1. 🔬 Quantitative flow cytometry using quantitative streptavidin-protein G-biotin beads (qBeads)J Immunol Methods, 2025

  2. 🧬 A Bivalent Molecular Glue Linking Lysine Acetyltransferases to Oncogene-directed Cell DeathCell (revising)

  3. 💉 Enhance IL15 anti-tumor efficacy by inhibiting its negative feedback mechanism(in preparation)

  4. ⚛️ Decouple the toxicity and efficacy of BJ-001, an integrin targeting IL-15AACR Abstract, 2019

  5. 🔄 Decoupling the toxicity and efficacy of immunotherapeuticsSITC Abstract, 2019

  6. 🧪 An AKR1C3-specific prodrug with potent anti-tumor activities against T-ALLLeukemia & Lymphoma, 2020

  7. 🧫 A novel AKR1C3 specific prodrug TH3424 with potent anti-tumor activity in liver cancerClin Pharmacol Ther, 2021

  8. 🧲 A GPC3-targeting Bispecific Antibody, GPC3-S-Fab, with Potent CytotoxicityJ Vis Exp, 2018

  9. 🧠 Identification of anti-CD16a single domain antibodies and their application in bispecific antibodiesCancer Biol Ther, 2020

  10. 🧿 Bp-Bs, a novel T-cell engaging bispecific antibody with biparatopic Her2 bindingMol Ther Oncolytics, 2019

  11. 🧰 A novel multi-functional anti-CEA-IL15 molecule displays potent anti-tumor activitiesDrug Des Devel Ther, 2018

  12. 🧠 A single domain based anti-Her2 antibody has potent anti-tumor activitiesTransl Oncol, 2018

🧾 Conclusion:

Dr. Yanlan Wang is highly deserving of the Best Researcher Award. Her contributions to cancer therapeutics through novel molecular approaches, her collaborations with globally renowned labs, and her publication record reflect a researcher of exceptional caliber and promise. With a deep understanding of tumor biology, a commitment to innovation, and a growing leadership presence in oncology research, she is not only suitable for the award but stands as a strong role model for future biomedical researchers.

Guojie Ji | Cancer Cell Biology | Cancer Cell Biology Award

Mr. Guojie Ji | Cancer Cell Biology | Cancer Cell Biology Award

Mr. Guojie Ji, NORTH HENAN MEDICAL UNIVERSITY, China

Guojie Ji, Master of Medicine Science, is a laboratory technician and the Provincial Director of the Demonstration Center for Biological and Basic Medical Experimental Teaching. With a core research focus on fertility preservation and tumor therapy, he brings an interdisciplinary approach to biomedical science. Ji has played a pivotal role in guiding over 30 research papers and acquiring 13 national patents. In addition to managing over 15 national and provincial projects, his mentorship has led students to win numerous innovation and entrepreneurship awards at both national and provincial levels. Ji is an editorial board member for Contemporary Chemical Research and a peer reviewer for Cell Death Discovery. His leadership and scholarly work have earned him several honors, including being named Outstanding Teacher and Provincial Outstanding Mentor. His recent research delves into ferroptosis in cancer and reproductive toxicity, making impactful contributions to both cancer biology and regenerative medicine.

Publication Profile:

Orcid

✅ Strengths for the Award:

  1. Relevant Research Contributions:

    • Ji has made direct contributions to cancer biology, particularly through:

      • Ferroptosis mechanisms in breast cancer cells (2025, BBRC)

      • 5-Fluorouracil-induced oxidative damage and DNA disruption (2024, Ecotoxicology & Environmental Safety)

      • Exosome impact on melanoma cell growth (2021, Journal of Yangzhou University)

    • These studies reflect deep involvement in molecular mechanisms of cancer cell death, a central theme in cancer cell biology.

  2. Multidisciplinary Integration:

    • Ji’s research spans stem cells, oxidative stress, and reproductive toxicity, all of which tie into cancer research—especially in terms of chemotherapy side effects and regenerative implications.

  3. High Research Output and Recognition:

    • Over 30 peer-reviewed articles, including in high-impact journals such as Cell Death Discovery and BBRC.

    • 13 national patents, indicating applied innovation in biomedical research.

    • Leads national and provincial projects with substantial funding (~¥1 million), showcasing leadership and research management.

  4. Mentorship and Scientific Community Service:

    • Recognized as an Outstanding Innovation Mentor, Editorial Board Member, and Peer Reviewer, reflecting active participation in advancing the field.

    • Mentored award-winning student teams in national competitions, indicating talent cultivation in biomedical research.

⚠️ Areas for Improvement:

  1. Primary Focus Is Fertility & Reproductive Biology:

    • While Ji has notable cancer-related studies, his primary research base lies in fertility preservation. For this award, a broader and more central focus on oncogenic signaling, tumor microenvironments, or immunotherapy might strengthen his profile.

  2. Limited Clinical Cancer Studies:

    • Most cancer work is preclinical or in vitro; integrating clinical collaborations or translational oncology trials could enhance relevance to applied cancer therapy.

Education:

Guojie Ji holds a Master of Medicine Science, with specialized training in biological sciences, biomedical research, and clinical applications in fertility and tumor biology. His academic background includes comprehensive training in cell biology, molecular biology, reproductive medicine, and translational oncology. Through this foundation, he developed a research orientation focused on bridging cell-level discoveries with clinical potential, particularly in the areas of cryopreservation, stem cell differentiation, and tumor cell regulation. Ji’s academic excellence and commitment to research have driven his involvement in interdisciplinary fields, where he combines elements of life sciences and therapeutic innovation. His deep-rooted academic experiences have been critical in enabling his success as a project leader, educator, and recognized biomedical scientist. His education is not just academic but applied, demonstrated by his integration of research into experimental teaching models and training future life scientists.

💼 Experience:

Guojie Ji currently serves as a Laboratory Technician and Provincial Director for a Demonstration Center dedicated to experimental biological and medical teaching. He has led or completed 10+ major national and provincial research projects, along with 5 horizontal interdisciplinary research collaborations, collectively funded with nearly 1 million yuan. Ji’s lab has been instrumental in developing fertility-preservation protocols, studying sperm cryopreservation, and examining cancer cell response to drugs like 5-FU. He has authored over 30 peer-reviewed papers, including key publications in Cell Death Discovery, Ecotoxicology and Environmental Safety, and Biochemical and Biophysical Research Communications. Ji is a mentor to undergraduate innovators, guiding teams to national victories in prestigious competitions. Additionally, he holds editorial and peer-review roles in prominent scientific journals. His work demonstrates strong leadership, scholarly innovation, and an enduring commitment to experimental medical education and biomedical research.

🏆 Awards and Honors:

Guojie Ji’s contributions to research and education have earned him widespread recognition. He has been honored as a Key Teacher, Civilized Teacher, and Outstanding Teacher, along with awards for Outstanding Innovation and Entrepreneurship Mentorship at the provincial level. He has received accolades as Outstanding Supervisor for Bachelor’s Degree Dissertations and Life Sciences Competition Mentor. Ji has successfully supervised student teams winning over 25 awards, including 5 national-level prizes in events such as the Challenge Cup, Internet+, and the National College Life Sciences Competition. These honors reflect his commitment to combining cutting-edge research with student training and public impact. His ability to mentor and lead both in the lab and the classroom has set a benchmark for excellence in academic innovation and practical scientific development. Ji’s holistic excellence makes him a role model in both research mentorship and scientific discovery.

🔬 Research Focus:

Guojie Ji’s research lies at the intersection of fertility preservation, cryobiology, and tumor cell biology. He explores the mechanisms of cell damage, oxidative stress, and DNA integrity during sperm and stem cell preservation, with a growing emphasis on ferroptosis—a regulated form of cell death—in cancer biology. His recent studies demonstrate how agents like 5-Fluorouracil affect cancer cells and male fertility via oxidative and mitochondrial pathways. Ji also investigates mesenchymal stem cell-derived exosomes in tumor growth, highlighting a promising field of cell-free therapies. In plant and animal models, he’s contributed to understanding protein and lipid roles in cell signaling and disease resistance, reinforcing the depth and range of his biomedical expertise. With a diverse research portfolio, Ji aims to translate basic discoveries into therapeutic strategies, particularly targeting tumor suppression and reproductive health. His work continues to expand the molecular understanding of cell survival and death pathways in medicine.

📚 Publications Top Notes:

  1. 🧊 Protective Effect of Sucrose and Antioxidants on Cryopreservation of Sperm Motility and DNA Integrity in C57BL/6 Mice

  2. 💧 Effects of MTG and GSH on Human Sperm Motility and DNA Integrity during Vitrification in the Presence of Trehalose

  3. ❄️ Comparison of Rapid Freezing vs. Vitrification for Human Sperm Cryopreservation Using Sucrose in Closed Straw Systems

  4. 🔍 Studies on Basic Issues Relevant to Sperm Cryopreservation in Humans

  5. 📦 Effects of Exosomes Derived from Mesenchymal Stem Cells on the Growth of Melanoma Cells

  6. 🌱 BMP4 is Insufficient to Differentiate Umbilical Cord MSCs into Germ Cell-like Cells In Vitro

  7. 🧬 Current Status of Male Fertility Preservation in Humans

  8. 🧪 Protein Glycosylation Changes During Systemic Acquired Resistance in Arabidopsis thaliana

  9. 🛡️ Lipid Transfer Proteins in Plant-Pathogen Interactions and Their Molecular Mechanisms

  10. 🔥 Emerging Roles of Ferroptosis in Male Reproductive Diseases

🧾 Conclusion:

Guojie Ji is a strong interdisciplinary researcher with a credible and impactful body of work in cancer cell biology, particularly in the context of ferroptosis, chemotherapy-induced toxicity, and tumor suppression mechanisms. His contributions bridge the fields of cell death, oxidative biology, and reproductive toxicology, offering unique insights into the systemic effects of anti-cancer agents. While cancer is not his sole research domain, his innovative work and translational potential clearly qualify him as a compelling nominee for the Research for Cancer Cell Biology Award—particularly in molecular cancer mechanisms and therapeutic research.