Hannah Wen | Breast Cancer | Best Researcher Award

Dr. Hannah Wen | Breast Cancer | Best Researcher Award

Dr. Hannah Wen, MEMORIAL SLOAN KETTERING CANCER CENTER, United States

Dr. Hannah Y. Wen, M.D., Ph.D., is a distinguished breast cancer pathologist and cancer researcher at Memorial Sloan Kettering Cancer Center (MSKCC) in New York. With dual training in medicine and cancer biology, Dr. Wen’s career reflects a deep commitment to advancing the field of translational oncology. Her research focuses on triple-negative breast cancer (TNBC), rare breast tumor subtypes, and predictive/prognostic biomarkers. Dr. Wen is a prolific academic contributor with publications in high-impact journals such as Nature Communications and Cancer Research. She integrates molecular biology with diagnostic pathology to improve cancer stratification and therapy decisions. In addition to her investigative work, she contributes as a principal investigator on multiple IRB-approved studies at MSKCC. Recognized with early academic accolades and continuously advancing the frontiers of cancer pathology, Dr. Wen exemplifies the blend of scientific rigor and clinical relevance. She is a strong candidate for any prestigious research award in pathology and oncology.

Publication Profile:

Scopus

Strengths for the Award:

  1. Extensive Academic Training
    Dr. Wen holds an M.D. from Peking University Health Science Center, one of China’s top medical schools, and a Ph.D. in Cancer Biology from MD Anderson Cancer Center, a global leader in cancer research.

  2. Robust Postdoctoral and Clinical Research Experience
    Her postdoctoral work at Genentech Inc. and ongoing clinical-scientific role at Memorial Sloan Kettering Cancer Center (MSKCC) place her at the intersection of innovative molecular research and high-impact clinical diagnostics.

  3. High-Impact Publications
    She has authored landmark papers in journals like Cancer Research, Nature Cell Biology, PNAS, Modern Pathology, and Nature Communications, covering diverse areas such as:

    • Triple-negative breast cancer

    • Genetic markers (e.g., BRCA1, p202)

    • Molecular subtyping of rare breast tumors

    • Pathologic stratification of early-stage breast cancer

  4. Active Investigator and IRB Leadership
    Dr. Wen is Principal Investigator for multiple MSK IRB protocols involving rare breast cancer subtypes and molecular markers. This shows strong leadership in translational research.

  5. Recognition and Consistency
    From receiving Top 10 Student Awards in Beijing to leading diagnostic-pathologic breakthroughs in 2025, her excellence spans over three decades.

Areas for Improvement:

  1. Visibility of Awards in the U.S. Academic System
    While her early academic awards are impressive, more documented recent honors, society memberships, or fellowships could further enhance her candidacy.

  2. Mentorship and Teaching Roles
    While likely involved, specific mention of mentorship, educational leadership, or curriculum development would strengthen her profile in academic impact.

  3. Interdisciplinary Collaborations
    Explicit examples of cross-disciplinary collaborations (e.g., computational oncology, AI in pathology) would underscore her innovation potential in modern biomedical research.

Education:

Dr. Hannah Y. Wen obtained her M.D. from Peking University Health Science Center, Beijing, China (1988–1993), where she was consistently recognized as an outstanding student. She pursued her Ph.D. in Cancer Biology at the University of Texas Health Science Center/MD Anderson Cancer Center in Houston, TX (1997–2001), focusing on molecular oncology. During her Ph.D., she contributed significantly to understanding interferon-inducible proteins in cancer suppression. Her educational journey reflects deep interdisciplinary training, combining clinical medicine with cutting-edge research. This robust academic background has laid the foundation for her success in translational cancer research and diagnostic pathology. Dr. Wen’s training continues with postdoctoral work at Genentech Inc. in Experimental Pathology, which further honed her molecular diagnostic skills. Her global academic trajectory—from China to elite U.S. institutions—has shaped her into a well-rounded researcher capable of addressing complex challenges in breast cancer diagnosis and treatment.

Experience:

Dr. Wen brings over two decades of research and clinical experience in cancer biology and diagnostic pathology. After completing her Ph.D. at MD Anderson Cancer Center, she conducted postdoctoral research in Experimental Pathology at Genentech, Inc., South San Francisco (2002–2003). Since then, she has held a faculty position at the Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center. At MSKCC, Dr. Wen has served as Principal Investigator on multiple IRB-approved protocols investigating rare breast cancer subtypes and genetic alterations. Her daily work bridges histopathology and genomics to advance precision medicine in breast cancer. Beyond research, she mentors fellows and contributes to academic committees, reinforcing her role as a leader in her field. Her hands-on experience with triple-negative breast cancer, breast tumor markers, and breast pathology variants gives her a rare clinical-research dual expertise, making her a vital figure in contemporary breast cancer diagnostics.

Awards and Honors:

Dr. Hannah Y. Wen has received numerous recognitions throughout her academic journey. Early in her career, she was honored with the Outstanding Student Award by Peking University Health Science Center (1988–1992), a distinction granted to top-tier medical students. She was also named among Beijing’s Top 10 Outstanding Students in 1992, recognizing her academic and leadership excellence. While formal awards during her U.S. career are not extensively documented in the data provided, Dr. Wen’s growing impact in high-impact journals and role as a Principal Investigator at MSKCC are implicit accolades in the competitive world of academic medicine. Her contributions to translational breast cancer research, including studies on BRCA1 inactivation and tumor progression markers, underscore her continuous excellence. Given her record of impactful research and professional standing at one of the world’s leading cancer centers, she remains a strong contender for recognition such as the Best Researcher Award.

Research Focus:

Dr. Wen’s research centers on triple-negative breast cancer (TNBC), a challenging and aggressive subtype of breast cancer with limited therapeutic targets. She also investigates rare and under-recognized breast tumor subtypes such as microglandular adenosis, acinic cell carcinoma, and tall cell carcinoma with reversed polarity. Her work involves the identification of predictive and prognostic markers, employing techniques such as targeted gene sequencing, BRCA1 methylation analysis, and molecular stratification models. As Principal Investigator, she leads studies under MSK IRB Protocols #16-411 and #16-596, exploring the genomic and epigenetic landscape of TNBC. Her research stands out for its clinical translation, directly impacting patient diagnosis and treatment planning. Recent contributions to Nature Communications and Modern Pathology show her innovative use of multimodal histopathological models and molecular profiling. Dr. Wen’s research reflects a powerful blend of diagnostic pathology, molecular genetics, and precision oncology—positioning her as a leader in breast cancer research.

Publications Top Notes:

  1.  The Role of Platelet Activating Factor in Reproduction – Progress of Anatomical Sciences (1996)

  2.  Transforming Growth Factor-α and Its Receptor in Reproduction – Medical Sciences (1997)

  3.  TGF-α Expression in Mouse Embryos and Uterus – J. Beijing Medical Univ. (1997)

  4.  p202 Slows Prostate Cancer Cell Growth – Oncogene (1999)

  5.  p202 Enhances TNF-α-Induced Apoptosis in Breast Cancer – Cancer Research (2000)

  6.  β-catenin as a Prognostic Marker in Breast Cancer – PNAS USA (2000)

  7.  HER-2/neu Drives Androgen-Independent Prostate Cancer – Cancer Research (2000)

  8.  EGFR’s Nuclear Role as a Transcription Factor – Nature Cell Biology (2001)

  9.  p202 Mediates Anti-Tumor Activity in Pancreatic Cancer – Cancer Research (2001)

  10.  Systemic Tumor Suppression via Bik Gene – Cancer Research (2002)

Conclusion:

Dr. Hannah Y. Wen is a highly qualified and deserving nominee for the Best Researcher Award. Her outstanding academic background, consistent and impactful research output, and leadership in breast cancer pathology make her a top-tier researcher in the field of translational oncology. She excels in integrating molecular biology with diagnostic pathology to improve cancer detection, stratification, and treatment.

With minor enhancements in visibility and cross-disciplinary leadership, Dr. Wen is not only suitable but a model candidate for this award. Her work is advancing breast cancer care at both the bench and bedside—fulfilling the core mission of research excellence.

Yanlan Wang | Cancer Cell Biology | Best Researcher Award

Dr. Yanlan Wang | Cancer Cell Biology | Best Researcher Award

Dr. Yanlan Wang, Stanford, United States

Dr. Yanlan Wang is a distinguished postdoctoral research fellow at Stanford University’s Department of Pathology. She works in the esteemed Dr. Gerald Crabtree’s lab, where her research revolves around leveraging molecular glues to reprogram cancer drivers and trigger apoptosis. With a strong background in immuno-oncology, antibody engineering, and small molecule therapeutics, Dr. Wang has made significant contributions to targeted cancer therapies. Her interdisciplinary collaborations, notably with Dr. Nathanael Gray’s group, have explored the role of transcription factor complex-inducing compounds (TCIPs) in MLL-rearranged leukemia. Dr. Wang brings a rich international research experience from China and the U.S., with a career spanning translational medicine, biotechnology innovation, and academic excellence. She is known for her rigorous approach to scientific inquiry, collaborative spirit, and prolific publication record. Her passion for understanding and overcoming the mechanisms of cancer resistance positions her as a future leader in oncology drug development and precision medicine.

Publication Profile: 

Scopus

✅ Strengths for the Award:

  1. Outstanding Research Focus
    Dr. Wang’s work on molecular glues and transcription factor modulators represents cutting-edge approaches in cancer therapy, especially in targeting previously undruggable pathways.

  2. High Impact Publications
    With multiple first-author and co-corresponding author papers (e.g., J Immunol Methods 2025, Leukemia & Lymphoma 2020, Clin Pharmacol Ther 2021), Dr. Wang has demonstrated a strong track record in both fundamental and translational cancer research.

  3. Innovation & Translational Impact
    Her efforts in bispecific antibody engineering, IL-15 therapeutics, and AKR1C3-targeted prodrugs show clear applications in oncology drug development, bridging the lab and clinic.

  4. Prestigious Collaborations
    Collaborating with renowned researchers such as Dr. Gerald Crabtree and Dr. Nathanael Gray at Stanford indicates high confidence and integration in world-class research circles.

  5. Recognition & Awards
    She has received the Coxe Fellowship at Stanford and multiple merit-based scholarships, highlighting academic excellence and innovation.

  6. Leadership and Multidisciplinary Skills
    Dr. Wang has led several projects, authored high-level papers, and mentored junior researchers, showcasing both technical and leadership capability.

🔄 Areas for Improvement:

  1. Greater International Presentation Exposure
    Although she has strong publication credentials, more visibility through international oral presentations, keynote addresses, or panel roles would amplify her leadership profile.

  2. Independent Grant Record
    While she is currently in a postdoctoral role, seeking independent funding (e.g., K99/R00, early-career PI grants) would position her more competitively for independent investigator status.

  3. Patent or Commercial Translation
    Given the translational nature of her work, pursuit of intellectual property filings or biotech partnerships would further highlight impact.

🎓 Education:

Dr. Yanlan Wang began her academic journey at Xiangya School of Medicine, Central South University, where she earned her MBBS (M.D. equivalent) in June 2012. She continued at The Second Xiangya Hospital for her clinical residency, completing her M.S. in June 2015. Her pursuit of scientific excellence led her to earn a doctorate (M.D. equivalent to PhD) from Sun Yat-sen University in June 2018, with a research focus on microbial immunology and tumor biology. This diverse educational background gave her a solid foundation in both clinical medicine and biomedical research, allowing her to bridge translational gaps in cancer research. Her early training emphasized immunotherapy, molecular biology, and oncology, all of which paved the way for her postdoctoral work in cutting-edge labs. Her education reflects a consistent upward trajectory, marked by prestigious institutions, interdisciplinary training, and a seamless integration of clinical and scientific disciplines.

🔬 Experience:

Dr. Yanlan Wang is currently a postdoctoral research fellow in Dr. Gerald Crabtree’s lab at Stanford University, where she focuses on manipulating cancer cell pathways using molecular glues. Her prior research in China included pivotal roles in biotechnology innovation, including bispecific antibody engineering, prodrug design, and immune-oncology drug development. She has also collaborated extensively with Dr. Nathanael Gray’s lab at Stanford, exploring the therapeutic potential of TCIPs in leukemia. Dr. Wang’s hands-on experience includes multiplex screening platforms, flow cytometry, in vivo tumor models, and translational immunotherapy development. Over the years, she has taken leadership roles in preclinical projects, manuscript authorship, and international scientific presentations. Her diverse roles—from clinical residency to laboratory innovation—reflect her capability to translate complex scientific findings into therapeutic strategies. Dr. Wang has also mentored junior researchers and worked across multiple disciplines, underscoring her adaptability, leadership potential, and deep commitment to cancer research.

🏅 Awards and Honors:

Dr. Yanlan Wang’s excellence has been recognized through several prestigious awards. At Stanford, she received the Coxe Fellowship in 2021, honoring outstanding postdoctoral researchers. During her doctoral training, she earned the Special Award of Merit for the BJ-001 Project at BJ Bioscience Inc. in 2019 for her impactful translational research. Her academic merit was consistently acknowledged through the Bidi Scholarship (2016–2017) and Daxiang Scholarship (2015–2016) at Sun Yat-sen University. These honors underscore her commitment to scientific excellence, innovation, and translational impact in oncology and immunotherapy. Her ability to receive awards across both academic and industrial settings highlights her versatility and the real-world relevance of her work. These distinctions serve as a testament to her leadership in cancer drug development, collaborative effectiveness, and contribution to next-generation therapeutic discoveries.

🔍 Research Focus:

Dr. Yanlan Wang’s research lies at the intersection of cancer biology, molecular pharmacology, and immunotherapy. At Stanford, she investigates how molecular glues can be used to hijack cancer drivers and activate apoptosis, offering a novel route for targeted cancer therapies. Her work involves multiplex molecular glue screening, understanding protein degradation pathways, and designing synthetic lethality strategies. In collaboration with Dr. Nathanael Gray, she is also studying Transcription factor Complex-Inducing Compounds (TCIPs) for the treatment of MLL-rearranged leukemia, a particularly aggressive form of blood cancer. Prior to this, her research focused on bispecific antibodies, prodrugs, and IL-15 based immunotherapeutics, with a vision to decouple efficacy from toxicity. Through a blend of basic science and translational applications, she aims to rewire oncogenic signaling pathways and enhance anti-tumor immunity. Her research combines drug discovery, systems biology, and precision oncology, pushing the boundaries of targeted cancer treatment.

📚 Publications Top Notes:

  1. 🔬 Quantitative flow cytometry using quantitative streptavidin-protein G-biotin beads (qBeads)J Immunol Methods, 2025

  2. 🧬 A Bivalent Molecular Glue Linking Lysine Acetyltransferases to Oncogene-directed Cell DeathCell (revising)

  3. 💉 Enhance IL15 anti-tumor efficacy by inhibiting its negative feedback mechanism(in preparation)

  4. ⚛️ Decouple the toxicity and efficacy of BJ-001, an integrin targeting IL-15AACR Abstract, 2019

  5. 🔄 Decoupling the toxicity and efficacy of immunotherapeuticsSITC Abstract, 2019

  6. 🧪 An AKR1C3-specific prodrug with potent anti-tumor activities against T-ALLLeukemia & Lymphoma, 2020

  7. 🧫 A novel AKR1C3 specific prodrug TH3424 with potent anti-tumor activity in liver cancerClin Pharmacol Ther, 2021

  8. 🧲 A GPC3-targeting Bispecific Antibody, GPC3-S-Fab, with Potent CytotoxicityJ Vis Exp, 2018

  9. 🧠 Identification of anti-CD16a single domain antibodies and their application in bispecific antibodiesCancer Biol Ther, 2020

  10. 🧿 Bp-Bs, a novel T-cell engaging bispecific antibody with biparatopic Her2 bindingMol Ther Oncolytics, 2019

  11. 🧰 A novel multi-functional anti-CEA-IL15 molecule displays potent anti-tumor activitiesDrug Des Devel Ther, 2018

  12. 🧠 A single domain based anti-Her2 antibody has potent anti-tumor activitiesTransl Oncol, 2018

🧾 Conclusion:

Dr. Yanlan Wang is highly deserving of the Best Researcher Award. Her contributions to cancer therapeutics through novel molecular approaches, her collaborations with globally renowned labs, and her publication record reflect a researcher of exceptional caliber and promise. With a deep understanding of tumor biology, a commitment to innovation, and a growing leadership presence in oncology research, she is not only suitable for the award but stands as a strong role model for future biomedical researchers.

Marija Gjorgoska | Cancer Cell Biology | Best Researcher Award

Mrs. Marija Gjorgoska | Cancer Cell Biology | Best Researcher Award

Mrs. Marija Gjorgoska | Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana | Slovenia

Marija Gjorgoska is a dedicated biomedical researcher and teaching assistant at the Faculty of Medicine, University of Ljubljana, Slovenia. With a strong background in biochemistry, molecular biology, and bioinformatics, she has contributed significantly to cancer research, focusing on steroid hormone signaling in gynecological cancers. Her scientific work combines analytical expertise in LC-MS/MS with a solid foundation in molecular biology and statistical analysis using R programming. Marija is passionate about advancing clinical diagnostics and cancer treatment through high-precision biomolecular profiling. Her academic journey reflects international exposure through internships in the UK and Macedonia. She is known for her collaborative spirit and commitment to scientific rigor, which has led to multiple high-impact publications. Marija continues to mentor students and contribute to the academic community through her teaching role, making her a rising figure in molecular oncology research.

publication profile:

scopus

Strengths:

  1. High Research Productivity 📈
    Marija Gjorgoska has authored or co-authored 10 peer-reviewed publications in high-impact journals such as Progress in Lipid Research (IF 14.0), Trends in Endocrinology and Metabolism (IF 11.4), and Cancers. Her work shows consistent scientific output, often with first or shared first authorship.

  2. Cutting-Edge Technical Expertise 🔬
    She demonstrates advanced proficiency in LC-MS/MS method development, multi-steroid profiling, and bioinformatics (R programming). This makes her an expert in translational hormone research and biomarker discovery.

  3. Clinical Relevance and Innovation ⚕️
    Her research addresses urgent clinical challenges like endometrial cancer diagnosis and ovarian cancer drug resistance, applying modern analytical techniques combined with machine learning, which positions her at the forefront of personalized medicine.

  4. Recognition and Collaboration 🤝
    She has been awarded prestigious grants (e.g., Society of Endocrinology, UK), collaborated internationally (UK, Macedonia), and contributes to academia as a teaching assistant—all signs of an emerging research leader.

  5. Interdisciplinary Impact 🌐
    Marija effectively integrates molecular biology, biochemistry, analytical chemistry, and computational biology—indicative of her versatility and broad scientific impact.

Areas for Improvement:

  1. Independent Research Leadership
    While she has made substantial contributions as a junior and co-investigator, future work could benefit from establishing herself as a principal investigator or project leader, including securing her own research funding.

  2. Diversification of Research Themes
    Her focus has been predominantly on hormone-related cancers. Expanding into other disease models or mechanisms could broaden her impact and create new collaborative opportunities.

  3. Public Engagement and Outreach
    Enhancing her visibility through conference presentations, science communication, or community health initiatives would further solidify her standing as a leader and advocate for biomedical research.

Education :

Marija Gjorgoska is currently enrolled in a doctoral program in Biomedicine, specializing in Biochemistry and Molecular Biology at the University of Ljubljana. Her academic foundation includes a Master’s degree in Molecular Biology (2018–2021) from the same university, completed with an outstanding GPA of 9.52/10. She also gained international experience through a short-term internship at the University of Birmingham, UK, in 2023, focusing on advanced LC-MS/MS techniques for clinical sample analysis. Earlier in her academic career, she completed a long-term internship at the Research Center for Genetic Engineering and Biotechnology in Skopje, Macedonia (2017), where she worked on genetic diagnostics involving haemoglobinopathies, HPV, HBV, and HCV detection. Her education has consistently emphasized both theoretical knowledge and hands-on laboratory skills, particularly in analytical chemistry, molecular biology, and bioinformatics, all of which shape her current research endeavors in cancer diagnostics and hormonal regulation.

Experience:

Marija Gjorgoska has been actively engaged in research since 2020 as a Research Assistant at the Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana. Her core responsibilities include developing and validating LC-MS/MS analytical methods, conducting proteomic and genetic analyses of cancer tissues, and performing bioinformatic evaluations using R programming. In October 2024, she also began serving as a Teaching Assistant for the course “Principles of Biochemistry,” demonstrating her commitment to education and mentorship. Marija’s prior internships have equipped her with valuable skills in prenatal and infectious disease diagnostics. Her research contributions span experimental planning, scientific writing, and instrument maintenance, establishing her as a versatile scientist. Her collaborative projects with international researchers and clinicians further underline her strength in translational biomedical research. This combination of teaching, laboratory, and analytical expertise supports her growing influence in molecular oncology.

Awards and Honors:

Marija Gjorgoska has been recognized for both academic and research excellence. In 2023, she was awarded the Practical Skills Grant by the Society of Endocrinology, UK, enabling her to undergo advanced training in LC-MS/MS at the University of Birmingham. Earlier, in 2021, she received the Krka Recognition with Special Praise for her Master’s thesis, highlighting her early promise as a researcher in molecular biology. Her scientific publications have appeared in top-tier journals such as Progress in Lipid Research and Trends in Endocrinology and Metabolism, some with impact factors exceeding 14.0. Notably, she earned shared first co-authorship in Methods in Enzymology for her work on enzymatic assay development. These accolades reflect her technical excellence, originality, and scientific contributions in the field of steroid metabolism and gynecological cancers. Marija’s achievements distinguish her as a young researcher with significant impact and high potential for further contributions to science and medicine.

Research Focus :

Marija Gjorgoska’s research focuses on the role of steroid hormones in the development and progression of gynecological cancers, particularly endometrial and ovarian cancers. Her work integrates analytical chemistry (LC-MS/MS), bioinformatics, and molecular biology to uncover diagnostic and prognostic biomarkers. She has developed multi-steroid profiling techniques to differentiate between normal and cancerous tissues, aiding early diagnosis. Marija’s studies also address the pre-receptor regulation of androgenic and estrogenic hormones, exploring their signaling dynamics at the tissue level. Using tools such as Mendelian randomization, she investigates genetic influences on hormone-related disease risk. Her interdisciplinary approach combines advanced mass spectrometry, statistical modeling, and clinical collaboration to translate bench science into meaningful medical applications. Through high-impact publications, she contributes to understanding hormone metabolism in cancer microenvironments, with the goal of informing targeted therapies and overcoming drug resistance. Her work is critical for advancing personalized medicine in hormone-driven malignancies.

Publications Top Notes:

  1. 📘 From fallopian tube epithelium to high-grade serous ovarian cancer: A single-cell resolution review of sex steroid hormone signalingProgress in Lipid Research, 2024

  2. 📘 Integration of androgen hormones in endometrial cancer biologyTrends in Endocrinology and Metabolism, 2022

  3. 📘 Steroid sulfatase and sulfotransferases in gynecological cancers: current status and perspectivesEssays in Biochemistry, 2024

  4. 📘 Estrogens and the Schrödinger’s cat in the ovarian tumor microenvironmentCancers, 2021

  5. 📘 Multi-Steroid Profiling and Machine Learning Reveal Androgens as Biomarkers for Endometrial CancerCancers, 2025

  6. 📘 Simultaneous measurement of 17 endogenous steroid hormones by LC-MS/MSJ. of Steroid Biochemistry and Molecular Biology, 2024

  7. 📘 11-oxyandrogens in normal vs. cancerous endometriumFrontiers in Endocrinology, 2024

  8. 📘 Targeting estrogen metabolism to overcome platinum resistance in ovarian cancerBiomedicine & Pharmacotherapy, 2024

  9. 📘 Effect of androgens on risk of endometriosis sub-phenotypes and ovarian neoplasmsJ. of Steroid Biochemistry and Molecular Biology, 2024

  10. 📘 Enzymatic assays for 17β-HSD types 1 and 2 using mass spectrometryMethods in Enzymology, 2023

Conclusion:

Marija Gjorgoska is a highly promising early-career researcher with a strong and growing international publication record, deep technical expertise in analytical biochemistry, and a clear focus on clinically relevant research. Her integration of hormonal pathway analysis with state-of-the-art analytical methods has already contributed valuable insights to the field of gynecological oncology. She has the academic rigor, curiosity, and collaborative drive essential for impactful science.

In my opinion, she is a highly suitable candidate for the Best Researcher Award. Continued mentorship and support toward independent research leadership will elevate her even further in the years to come.

Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof . Dalia Saleh | Cancer Cell Biology | Innovative Research Award

Prof . Dalia Saleh | National Research Centre | Egypt

Dr. Dalia Osama Abd El Fattah Saleh is a distinguished pharmacologist with over two decades of experience in experimental pharmacology and drug development. She holds a Ph.D. in Pharmacology from Cairo University and currently serves as a Professor at the National Research Centre in Cairo, Egypt. Dr. Saleh has contributed to numerous high-impact scientific journals and has led pioneering work in the areas of metabolic disorders, drug safety, and vascular pharmacology. Her multidisciplinary collaborations and continuous professional development from institutions like King’s College London demonstrate her dedication to excellence in research and education. She is also recognized for her commitment to academic instruction and quality assurance, having served as a Quality Assurance Director. Her work bridges scientific discovery and real-world therapeutic applications, making her a strong candidate for innovation-focused research awards.

publication profile:

scopus

Strengths for the Award:

  1. Robust Academic Background:
    Dr. Saleh holds a Ph.D. in Pharmacology from Cairo University and has a long-standing academic and research career in pharmacology and drug development. Her doctoral and master’s theses reflect a strong foundation in vascular pharmacology, metabolic disorders, and endocrine influence—fields of enduring relevance.

  2. Consistent Research Productivity:
    Her recent publication record (2022–2024) is prolific and impactful, with studies published in high-visibility journals such as Scientific Reports, Biochemistry and Cell Biology, Naunyn-Schmiedeberg’s Archives of Pharmacology, and Environmental Science and Pollution Research. Her work covers cutting-edge pharmacological topics, including:

    • AMPK/mTOR signaling pathways,

    • Neuroprotection and anti-inflammatory mechanisms,

    • Herbal and synthetic compounds in disease modulation,

    • Hepatic encephalopathy, diabetic nephropathy, and cystitis models.

  3. Interdisciplinary and Translational Approach:
    Dr. Saleh bridges basic pharmacological research with clinical relevance. Her investigations into molecular pathways (e.g., NF-κB, PI3K/Akt, SIRT-1) are grounded in disease models, thus demonstrating translational potential. Her inclusion of both natural and synthetic agents further adds diversity and innovation to her research.

  4. Capacity Building and International Exposure:
    She has participated in Continuing Professional Development modules at King’s College London, emphasizing drug safety, statistics, and ethics—key areas in modern drug development. This international engagement underscores her commitment to staying updated and aligned with global standards.

  5. Institutional Contribution and Leadership:
    As a Professor and former Quality Assurance Director at the National Research Centre (NRC), she has contributed to institutional excellence, including achieving ISO 9001/2008 certification. These roles reflect her leadership, organizational, and strategic planning skills.

Areas for Improvement:

  1. Principal Investigator Leadership:
    While her name appears consistently in multi-author studies, further highlighting her role as the principal investigator (PI) or corresponding author could strengthen her case for innovation leadership.

  2. Patents or Product Development:
    There is no mention of patents or direct product development based on her findings. Translating research into tangible therapeutics or clinical trials would significantly elevate her eligibility for innovation-specific awards.

  3. Global Collaborations and Grants:
    Although she has participated in international seminars, active global collaborations or leading major international grants/projects would further establish her as a global innovator.

  4. Public/Industry Impact:
    While the academic impact is strong, showcasing industry partnerships or policy-level influence (e.g., contributions to clinical guidelines or regulatory science) would align more directly with innovation awards that emphasize practical application.

🎓 Education Summary :

Dr. Dalia Saleh completed her higher education at Cairo University’s Faculty of Pharmacy, where she earned her Master of Science in Pharmacology in 2009 and Doctor of Philosophy in Pharmacology in 2012. Her M.Sc. thesis focused on the vascular and biochemical effects of rosiglitazone in diabetic rats, reflecting early interests in metabolic pharmacology. Her Ph.D. expanded on this foundation by exploring estrogen’s potential role in managing vascular changes related to insulin resistance. Both theses demonstrated robust experimental designs and contributed new insights into the interplay between hormonal and metabolic pathways in disease models. Dr. Saleh has since built on this academic background with advanced training in clinical drug development, safety, and biostatistics at King’s College London in 2023, indicating a continued commitment to integrating modern pharmaceutical science and translational research into her academic portfolio. This rich educational foundation underpins her success as a researcher and educator.

🔬 Research Focus :

Dr. Saleh’s research focuses on experimental pharmacology, with a special interest in metabolic diseases, drug-induced toxicities, inflammation, and vascular pharmacology. Her studies frequently involve animal models to investigate the mechanisms of drug action and to evaluate the protective or therapeutic roles of natural products and synthetic compounds. A recurring theme in her work is exploring the modulation of signaling pathways like AMPK, NF-κB, PI3K/mTOR, and Nrf2 in the context of oxidative stress, inflammation, and cellular apoptosis. She has also studied the role of hormonal influences in disease models, such as estrogen’s effect on insulin resistance. Her research employs modern analytical techniques and integrates molecular biology with pharmacodynamics to derive mechanistic insights. This strong focus on mechanistic pharmacology enhances her work’s relevance in drug development, particularly for conditions such as diabetic complications, hepatic encephalopathy, nephropathy, and chemotherapy-induced toxicities.

📚 Publications Top Note:

  1. 🧪 Eugenol alleviates acrylamide-induced testicular toxicity via AMPK/pAKT/mTOR modulationScientific Reports, 2024

  2. 🧠 Trimetazidine prevents cisplatin neuropathy through AMPK, Nrf2, and NF-κB pathwaysBiochemistry and Cell Biology, 2023

  3. 🔬 Novel chromone-thiazolopyrimidines as TNF-α, IL-6, and PGE2 inhibitorsPolycyclic Aromatic Compounds, 2023

  4. 🚽 Chrysin protects against cyclophosphamide-induced hemorrhagic cystitis via anti-inflammatory signalingChemico-Biological Interactions, 2023

  5. 🧃 Linagliptin & L-arginine synergy in gastric hyperacidity via EP4 receptor upregulationNaunyn-Schmiedeberg’s Archives of Pharmacology, 2023

  6. 🧠 L-arginine reduces thioacetamide-induced hepatic encephalopathy via NF-κB downregulationEnvironmental Science and Pollution Research, 2023

  7. 🌿 Calotropis procera seed oil shows anti-inflammatory and antiparasitic activityArabian Journal of Chemistry, 2022

  8. 🛡️ Olmesartan mitigates diabetic nephropathy via AGE/PKC and TLR4/SIRT-1 pathwaysEuropean Journal of Pharmacology, 2022

  9. 🍃 Plumbago species show anti-fibrotic effects in liver fibrosis rat modelsScientific Reports, 2022

  10. 🫀 Omega-3 combats doxorubicin-induced liver toxicity via Nrf2/PI3K/Akt signalingPending Publication

Conclusion:

Dr. Dalia O. Saleh presents a strong candidacy for the Research for Innovative Research Award, particularly due to her sustained publication record, mechanistic depth in pharmacology, and commitment to professional development and institutional excellence. Her work spans innovative mechanistic explorations and novel therapeutic evaluations, showing real promise in addressing current pharmacological challenges.