SANKALP MISRA | Microbiology | Best Researcher Award

Assist. Prof. Dr. SANKALP MISRA | Microbiology | Best Researcher Award

Assist. Prof. Dr. SANKALP MISRA , Shri Ramswaroop Memorial University , India

Dr. Sankalp Misra is a dedicated microbiologist with a Ph.D. in Microbial Technology, currently working as a Research Associate at CSIR-National Botanical Research Institute (NBRI), Lucknow. Born on November 6, 1988, in India, he has cultivated a robust academic and research career focused on plant-microbe interactions and sustainable agriculture. Fluent in both English and Hindi, Dr. Misra has consistently demonstrated a commitment to addressing real-world agricultural challenges through microbiological innovations. His research explores the symbiotic relationships between soil microbes and plants, particularly under stress conditions such as salinity and drought. With a host of fellowships, awards, and scientific publications to his name, Dr. Misra is not only a prolific researcher but also a valued contributor to India’s agricultural biotechnology community. He is a life member of the Association of Microbiologists of India and continues to contribute actively to scientific dialogue and applied research in microbial ecology.

Publication Profile: 

Google Scholar

✅ Strengths for the Award:

  1. Extensive Research Experience
    Over 10 years of continuous research in microbial biotechnology, especially plant-microbe interactions, bioremediation, and stress physiology, primarily under the CSIR-NBRI—a top-tier research institution in India.

  2. Focused Scientific Contributions
    His Ph.D. work on salt-tolerant plant growth-promoting rhizobacteria (PGPR) addresses crucial agricultural challenges, with implications in sustainable farming and climate-resilient agriculture.

  3. Prolific Publication Record
    Co-authored over 15 research papers and book chapters in high-impact journals and internationally reputed publishers (Springer, Wiley, Academic Press).

  4. Nationally Recognized Fellowships & Awards

    • ICMR Research Associate & Senior Research Fellowship

    • Gold Medalist in B.Sc.

    • Multiple Best Poster Awards in national and international conferences

    • Consistent CSIR-UGC NET success (31st and 47th ranks)

  5. Professional Engagement
    Holds a Life Membership in The Association of Microbiologists of India, reflecting his active involvement in the scientific community.

  6. Interdisciplinary Expertise
    Skilled in proteomics, metagenomics, microbial ecology, and plant stress biology, showcasing an ability to tackle complex problems from multiple biological angles.

⚙️ Areas for Improvement:

  1. International Exposure
    While the research is nationally strong, global collaborations or international fellowships could further elevate the impact and visibility of his work.

  2. Grant Leadership & Independent Projects
    Leading funded projects as a Principal Investigator (PI) would demonstrate further maturity in research leadership and scientific management.

  3. Patent/Technology Transfer
    Translating research into patents, bio-formulations, or industry partnerships could bridge the lab-to-land gap, enhancing the practical application of his findings.

🎓 Education:

Dr. Sankalp Misra completed his Ph.D. in Microbial Technology from CSIR-NBRI, focusing on the “Characterization of salt tolerant plant growth promoting rhizobacteria from different agro-climatic zones of Uttar Pradesh.” Guided by Dr. Puneet Singh Chauhan, his doctoral work laid a foundation in microbial stress biology. He qualified the prestigious CSIR-UGC NET in both 2013 (47th rank) and 2014 (31st rank), showcasing strong academic competence. He also cleared the CET-Ph.D in 2012. His undergraduate studies were marked by excellence, earning a Gold Medal in B.Sc., emphasizing his early commitment to academic rigor. These achievements underline his solid foundation in microbiology, plant biology, and biotechnological research. Throughout his educational journey, Dr. Misra has consistently demonstrated a deep curiosity for microbial applications in agriculture and an aptitude for integrating advanced scientific methods to address pressing challenges in crop sustainability and soil health.

💼 Experience:

Dr. Sankalp Misra has over a decade of research experience in plant-microbe interactions. He is currently an ICMR-Research Associate at CSIR-NBRI since October 2019. Prior roles include ICMR-Senior Research Fellow and several project fellowships at CSIR-NBRI from 2013 to 2019. These positions allowed him to work on key projects involving soil microbiomes, salt and drought stress in plants, and bioremediation. His extensive hands-on experience ranges from lab-based experiments to field applications, focusing on sustainable and ecological approaches in agriculture. He has significantly contributed to the development of microbial formulations and transgenic studies aimed at improving crop resilience. His continuous association with CSIR-NBRI reflects a stable and productive research career. Each role has helped him refine his techniques in molecular biology, microbiome analysis, and biotechnological innovation, making him a competent and valuable researcher in environmental microbiology and sustainable agricultural practices.

🏅 Awards and Honors:

Dr. Misra has received multiple accolades recognizing his scientific excellence. He was awarded the prestigious ICMR Research Associateship (Oct 2019) and Senior Research Fellowship (July 2019), reflecting national-level recognition. His scientific presentations have earned him Best Poster Awards in major conferences, including the 3rd National Seminar on Life Sciences (NSCTLS-2021) and the 6th International Conference on Plants and Environmental Pollution (ICPEP-6, 2018). Academically, he secured top ranks in CSIR-UGC NET (31st in 2014 and 47th in 2013) and earned a Gold Medal in B.Sc., demonstrating exceptional merit throughout his academic and research career. His commitment is further underscored by his life membership in The Association of Microbiologists of India (AMI). These achievements highlight his consistent dedication, peer recognition, and leadership potential in the fields of microbiology and agricultural biotechnology.

🔍 Research Focus:

Dr. Sankalp Misra’s research centers on plant-microbe interactions, especially under environmental stress like salinity and drought. He explores rhizobacteria that promote plant growth and mitigate stress through mechanisms such as ACC deaminase production, metabolomic reprogramming, and soil microbial community enhancement. His interests extend to soil metagenomics, microbial proteomics, and bioremediation, all aimed at achieving sustainable agriculture. A key aspect of his work involves isolating and characterizing stress-tolerant microbes from diverse agro-climatic zones, using them to enhance crop resilience and productivity. His work contributes to global efforts in climate-resilient farming, making him a notable figure in applied agricultural microbiology. He has co-authored numerous high-impact publications and book chapters that explore these themes, confirming his deep engagement in cutting-edge microbial biotechnology.

📚 Publications Top Notes:

  1. 🌱 Enhancement of Drought Tolerance in Transgenic Arabidopsis thaliana Plants Overexpressing Chickpea Ca14-3-3 Gene

  2. 🦠 Novel trends in endophytic applications for plant disease management

  3. 🌍 Rhizobacteria‐Mediated Bioremediation: Insights and Future Perspectives

  4. 🌾 Endospheric Microbiome-Assisted Alteration in the Metabolomic Profiling of Host towards Abiotic Stress Mitigation

  5. 🧬 Revealing the complexity of protein abundance in chickpea root under drought-stress using comparative proteomics

  6. 🔬 Characterization of alkalotolerant Alcaligenes and Bacillus strains for mitigating alkaline stress in Zea mays

  7. 🌿 Drought tolerant Ochrobactrum sp. inoculation helps maintain homeostasis in Zea mays under water stress

  8. ⚗️ ACC deaminase-producing Bacillus spp. mitigate salt stress and enhance Zea mays growth

  9. 🧪 Exploration of Soil Resistome Through a Metagenomic Approach

  10. 🍃 Essential Oils: Potential Application in Disease Management

📝 Conclusion:

Dr. Sankalp Misra is an excellent and deserving candidate for the Best Researcher Award. His consistent contributions to microbial biotechnology, evidenced by a strong portfolio of peer-reviewed publications, government fellowships, and research impact, make him stand out in his field. His work is not only academically significant but also socially and environmentally relevant in addressing global issues like soil degradation, crop yield loss due to climate stress, and sustainable agriculture.

Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng | Microbial Cell Biology | Best Researcher Award

Dr. Jie Feng , Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences , China

Dr. Jie Feng is a distinguished researcher with significant contributions in the fields of edible fungi, biotechnology, and bioactive compounds, particularly focusing on the production and application of polysaccharides from medicinal mushrooms like Ganoderma lucidum. With a background in food chemistry and microbiology, Dr. Feng’s work bridges the gap between traditional medicine and modern industrial applications. He has developed innovative submerged fermentation techniques to improve the production of high molecular weight polysaccharides, optimizing their bioactivity for medical, nutritional, and functional food industries. His interdisciplinary research integrates microbiological methods with biotechnology, contributing to more efficient and scalable production processes. With a collaborative spirit, Dr. Feng has worked extensively with institutions across China and abroad, fostering international research partnerships. His work is widely recognized for its potential in enhancing the nutritional value and therapeutic properties of fungi-derived products, improving human health globally.

Publication Profile:

Google Scholar

Strengths for the Award:

  1. Innovative Approach: The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum (GLPs) demonstrates a significant advancement in the production of bioactive compounds with consistent quality. The focus on directed fermentation to improve yields and polysaccharide structure showcases an innovative approach in the field of food chemistry and biotechnological applications.
  2. Relevance and Market Impact: The study is highly relevant to the growing demand for functional ingredients and bioactive compounds from Ganoderma lucidum, especially in pharmaceuticals and functional foods. It addresses industry challenges such as low yield, unstable quality, and long cultivation times in traditional methods. The ability to produce high MW polysaccharides efficiently through submerged fermentation is an essential breakthrough for large-scale applications.
  3. Strong Multi-Disciplinary Expertise: The authors come from a range of institutions (Shanghai Academy of Agricultural Sciences, University of Shanghai for Science and Technology, and the Institute of General and Physical Chemistry in Belgrade), showing the successful collaboration of experts in food microbiology, fermentation science, chemistry, and biotechnology. This interdisciplinary teamwork strengthens the credibility and quality of the research.
  4. Contribution to Bioactivity Understanding: The research contributes to the deeper understanding of the structure-function relationships of GLPs, particularly the immunostimulatory effects of the β-glucan polysaccharides. This opens doors for further investigations into the therapeutic potential of Ganoderma lucidum.
  5. Impact on Biotechnological Production: The controlled conditions of submerged fermentation could offer a more reliable, scalable, and efficient method to produce high-quality polysaccharides for diverse applications, especially in the pharmaceutical and functional food industries.

Areas for Improvement:

  1. Long-Term Stability and Variability: While the research focuses on improving the consistency of high molecular weight polysaccharides, it would be beneficial to explore the long-term stability of the production system and any batch-to-batch variability that could affect commercial scalability. Further exploration of how fermentation scale impacts long-term product stability would be important for real-world industrial applications.
  2. Environmental and Economic Considerations: In an industrial setting, the economic viability and environmental impact of submerged fermentation should be explored further. Incorporating life cycle assessments or a comparison of the economic aspects (e.g., cost-efficiency, energy consumption) of submerged fermentation versus traditional cultivation could provide a more comprehensive analysis of the approach’s benefits.
  3. Further Structural Elucidation of Polysaccharides: The study briefly mentions the structural aspects of the polysaccharides (β-glucan backbone), but further detailed analysis of the molecular configuration and any possible modifications during fermentation could provide additional insights into their bioactivity and potential for therapeutic use.
  4. Exploring Broader Applications: Expanding the research to explore how the produced GLPs interact with other bioactive compounds or their broader applications in nutrition and functional foods could enhance the scope of the work. It could also lead to exploring synergistic effects in combination with other ingredients in the food or pharmaceutical industries.

Education:

Dr. Jie Feng holds a Ph.D. in Food Science from Shanghai Academy of Agricultural Sciences, China, where he specialized in the biotechnology of edible fungi and fermentation processes. Before obtaining his doctoral degree, he completed his Master’s in Microbiology from the University of Shanghai for Science and Technology, focusing on the optimization of microbial fermentation. Throughout his academic journey, Dr. Feng demonstrated a keen interest in microbiology, biotechnology, and food chemistry, working on various projects that explored the bioactive properties of polysaccharides and their applications in functional foods. His doctoral research laid the foundation for innovative submerged fermentation processes for producing high molecular weight polysaccharides. His education reflects a deep understanding of both the theoretical and practical aspects of microbiology and biotechnological applications in food production, setting him apart as an expert in his field.

Experience:

Dr. Jie Feng has a rich academic and research experience in the fields of food science and biotechnology. He has worked as a lead researcher at the Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, where he led groundbreaking projects on the production of high molecular weight polysaccharides from Ganoderma lucidum. In addition to his work in submerged fermentation, Dr. Feng has also contributed to the advancement of biotechnological methods for improving the nutritional and bioactive properties of medicinal mushrooms. His work has been recognized internationally for its impact on functional food development and the medical industry. As a collaborator, Dr. Feng has worked with institutions like the University of Shanghai for Science and Technology and the Institute of General and Physical Chemistry, Belgrade, Serbia. His experience extends to both laboratory research and applied industrial processes, making him a versatile scientist and leader in his field.

Research Focus:

Dr. Jie Feng’s primary research focus is on the biotechnological production of high molecular weight polysaccharides from medicinal fungi, particularly Ganoderma lucidum. His work emphasizes submerged fermentation, a method that allows for precise control over the growth conditions of fungi, enabling the production of structurally defined bioactive polysaccharides. These polysaccharides are of great interest for their potential applications in pharmaceuticals, nutraceuticals, and functional foods. Dr. Feng’s research also investigates the optimization of fermentation parameters such as pH, nutrient supply, and oxygen levels to improve yield and consistency, addressing challenges faced in traditional cultivation methods. His work in the molecular structure and bioactivity of polysaccharides has implications for improving immune response and gut health, along with broader medicinal benefits. Additionally, Dr. Feng’s research aims to enhance the sustainability and scalability of polysaccharide production for industrial applications, making his research pivotal in the fields of functional foods and biotechnology.

Publications Top Notes:

  1. “Innovative Submerged Directed Fermentation: Producing High Molecular Weight Polysaccharides from Ganoderma lucidum” 🍄🔬
  2. “Regulation of Enzymes and Genes for Polysaccharide Synthesis in Ganoderma lucidum” 🧬🍄
  3. “Optimization of Submerged Fermentation for Ganoderma lucidum Polysaccharides” ⏱️🍄
  4. “Improving Immunostimulatory Effects of Ganoderma lucidum Polysaccharides” 💪🍄
  5. “Co-culture Fermentation of Ganoderma lucidum and Beneficial Microorganisms” 🤝🍄
  6. “Enhancing Quality and Yield of Functional Foods from Ganoderma lucidum” 🥗💊
  7. “Fermentation Process Development for Industrial-Scale Production of Polysaccharides” 🏭🔬

Conclusion:

The research on innovative submerged directed fermentation for producing high molecular weight polysaccharides from Ganoderma lucidum represents a significant step forward in the bioengineering of functional ingredients. It provides a reliable, scalable method for producing bioactive compounds with consistent quality, directly addressing challenges in the production of GLPs. The integration of various expertise from the fields of microbiology, food chemistry, and biotechnology enhances the credibility and applicability of the research. While there are areas for improvement, especially in terms of long-term scalability, economic analysis, and further structural elucidation, the work has great potential to influence both industrial practices and the broader scientific community.