Assoc. Prof. Dr Amal Zaher | Microbial Cell Biology | Best Researcher Award

Assoc. Prof. Dr Amal Zaher | Microbial Cell Biology | Best Researcher Award

Assoc. Prof. Dr Amal Zaher | Beni-suef University | Egypt

Dr. Amal Zaher Shehata Mohamad is a distinguished researcher in the field of Microbial Cell Biology, affiliated with the Faculty of Postgraduate Studies for Advanced Sciences at Beni-Suef University, Egypt. Her research primarily focuses on sustainable energy solutions, environmental remediation, and the application of nanomaterials in biotechnological processes. Dr. Shehata has co-authored several impactful publications, including studies on the repurposing of Co-Fe LDH and Co-Fe LDH/cellulose micro-adsorbents for sustainable energy generation in direct methanol fuel cells. Her work has been recognized for its innovative approach to recycling waste materials into high-value applications, contributing significantly to the advancement of green technologies

Publication Profile:

scopus

ocrid

Summary of Suitability for Best Researcher Award:

Dr. Amal Zaher Shehata Mohamad is a seasoned and highly productive researcher in the fields of microbial cell biology, nanomaterials, wastewater treatment, and environmental remediation. Her multidisciplinary research intersects applied chemistry, sustainable environmental practices, and biotechnology, making substantial contributions to both academic knowledge and societal needs.

Her publication record is impressive, with dozens of peer-reviewed journal articles, book chapters, and conference presentations in internationally indexed outlets such as Scientific Reports, Environmental Science and Pollution Research, Nanomaterials, and Journal of Molecular Liquids. These works highlight her proficiency in synthesizing and characterizing advanced nanomaterials, particularly layered double hydroxides (LDHs), metal-organic frameworks (MOFs), and electrocatalysts, applied to energy generation and water purification.

Dr. Zaher has repeatedly demonstrated an ability to address real-world environmental challenges through academic rigor. Her investigations into antibiotic and heavy metal removal, green synthesis techniques, and renewable energy solutions underline a commitment to sustainable development goals (SDGs).

She is also a collaborator on various multidisciplinary projects, working alongside chemists, biotechnologists, and engineers, indicating strong team science experience. Furthermore, she has contributed to the academic development of her institution and country through teaching, mentoring, and scholarly engagement.

Education :

Dr. Shehata completed her undergraduate studies at Minia University, Egypt, where she earned her Bachelor’s degree in a relevant field. She further pursued her academic ambitions by obtaining a Master’s degree, followed by a Ph.D. in a specialized area of Microbial Cell Biology. Her doctoral research focused on the application of nanomaterials in environmental and energy-related biotechnological processes. Throughout her academic journey, Dr. Shehata has demonstrated a strong commitment to scientific excellence and innovation, which is evident in her extensive publication record and contributions to the field.

Research Skills :

Dr. Shehata possesses a diverse skill set in microbial cell biology and environmental biotechnology. Her research expertise includes the synthesis and characterization of nanomaterials, particularly Co-Fe LDH and Co-Fe LDH/cellulose composites, for applications in environmental remediation and energy generation. She is proficient in various analytical techniques such as FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses, which she employs to assess the properties and effectiveness of synthesized materials. Furthermore, Dr. Shehata has experience in designing and conducting experiments to evaluate the adsorption capacities and catalytic activities of these materials, contributing to the development of sustainable solutions for wastewater treatment and energy production. Her interdisciplinary approach and technical proficiency make her a valuable asset to the field of microbial cell biology

Publications Top Note:

  • 📘 Nanomaterials for Electrochemical Sensing of Heavy Metals in Wastewater Streams

    • Book: Handbook of Nanosensors

    • Authors: Rehab Mahmoud, E. E. Abdel-Hady, Hamdy F. M. Mohammed, Mohamed Ibrahim, Gehad Abd El-Fatah, Amal Zaher, Yasser Gadelhak

    • Year: 2024

  • 🧪 Iron-trimesic metal organic frameworks as nano-adsorbents for tetracycline and Ceftriaxone contaminated wastewater effluents

    • Journal: Egyptian Journal of Chemistry

    • Authors: Amal Zaher, Hossam Nassar, Alzahraa Shaban, Taha Abdelmonein, Esaraa Salama, Yasser Gaber, Nabila Shehata, Reda Abdelhameed, Rehab Mahmoud

    • Year: 2022

  • 🏭 Application of Quality Control Tools in Carpet Industry: A Case Study

    • Journal: Trends in Sciences

    • Authors: Amal Zaher, Said Ahmed, Hamada Mohamed, Abdel Hakeem EL Minhawy

    • Year: 2022

  • 🦠 Antibacterial activities of layer double hydroxide nanocubes based on Zeolite templates

    • Journal: Egyptian Journal of Chemistry

    • Author: Amal Zaher

    • Year: 2022

  • 🧲 LDH nanocubes synthesized with zeolite templates and their high performance as adsorbents

    • Journal: Nanomaterials

    • Authors: Elkartehi M.E., Mahmoud R., Shehata N., Farghali A., Gamil S., Zaher A.

    • Year: 2021

Conclusion:

Dr. Amal Zaher Shehata Mohamad exhibits all qualities worthy of the Best Researcher Award: an extensive and impactful publication record, demonstrated interdisciplinary collaboration, contribution to solving urgent environmental issues, and an ongoing commitment to scientific excellence.

Her body of work is not only significant in terms of innovation and academic depth but also reflects real-world applicability and societal relevance—key benchmarks for any researcher considered for high-level recognition. As such, she is eminently qualified and deserving of consideration for this prestigious honor.

Fucheng Lin | Microbial Cell Biology | Best Researcher Award

Prof. Fucheng Lin | Microbial Cell Biology | Best Researcher Award

Prof. Fucheng Lin , Zhejiang Academy of Agricultural Sciences (ZAAS) , China

Lin Fu-Cheng is a distinguished professor and president at the Zhejiang Academy of Agricultural Sciences, specializing in the prevention and control of plant fungal diseases. His groundbreaking research on the pathogenic mechanisms of fungi, immune systemic resistance in plants, and the development of disease-resistant crops has earned him numerous accolades, including the prestigious National Science Fund for Distinguished Young Scholars. With over 13,000 citations, he is a leading figure in agricultural science. He has contributed significantly to the understanding of plant fungal diseases, with notable innovations in disease-resistant germplasm and sustainable agricultural practices. He holds several important editorial roles, including as chief editor for prominent journals. Lin Fu-Cheng’s collaborative efforts in research have positioned him as a key scientist in various national and international agricultural research projects.

Publication Profile: 

Orcid

Strengths for the Award:

  1. Outstanding Research Contributions:

    • Lin Fu-Cheng has made groundbreaking contributions in the field of plant pathology, especially in understanding the pathogenic mechanisms of plant fungal diseases. His pioneering work on the relationship between autophagy and pathogenicity in Magnaporthe oryzae has opened new avenues for research on plant pathogenic fungi.
    • His establishment of a novel evolutionary model between endophytic fungi, pathogenic fungi, and plants has furthered sustainable disease management strategies, especially for rice blast, a major threat to rice production globally.
    • Fu-Cheng has creatively integrated interspecific hybridization techniques to create disease-resistant germplasm, enhancing agricultural sustainability.
  2. Innovative Approach to Disease Control:

    • His work using endophytic fungi to induce immunity in rice represents a shift toward environmentally sustainable disease management practices. This innovative strategy offers a promising alternative to chemical-based interventions and aligns with the global push for green agricultural development.
  3. Recognition and Impact:

    • With more than 13,000 citations and over 280 published papers in high-impact journals, Fu-Cheng’s research has had a significant influence on the scientific community. His citation index of over 10,000 demonstrates the global recognition of his work.
    • He has led several major research projects, including national and provincial projects focused on agricultural technology, demonstrating his leadership and expertise.
  4. Leadership and Mentorship:

    • As a professor and doctoral supervisor, Fu-Cheng has mentored numerous students, many of whom are actively contributing to research in related fields. His leadership roles in both national and international scientific organizations further solidify his stature in the research community.
  5. High-Impact Publications and Patents:

    • Fu-Cheng has published over 195 SCI papers and holds 141 patents, many of which have been applied industrially. His contributions to both the academic and practical sides of plant protection are noteworthy.

Areas for Improvement:

  1. Broader Collaboration Across Disciplines:

    • While Fu-Cheng has demonstrated exceptional leadership in his field, expanding collaborations with researchers from other disciplines, such as environmental science and agronomy, could further enhance the applicability and scope of his research in global agricultural practices.
  2. Global Outreach and Dissemination:

    • Though Fu-Cheng’s research is highly impactful, increased visibility in global agricultural policy-making circles could ensure his innovative solutions reach a broader audience. Collaborating with international organizations and policymakers could facilitate the adoption of his findings on a larger scale, particularly in regions most affected by rice blast.
  3. Integration of Climate Change Research:

    • Given the ongoing challenges posed by climate change to agricultural productivity, Fu-Cheng’s future research could benefit from focusing on how climate factors influence the pathogenicity of plant diseases, especially in the context of shifting agricultural practices.

Education:

Lin Fu-Cheng earned his Ph.D. in Plant Pathology and Microbiology from Zhejiang University, China. Over the years, his academic training and postdoctoral research have helped shape his expertise in plant disease control and fungal pathology. As a doctoral supervisor, he has mentored numerous students, guiding them in the realms of agricultural science, plant protection, and microbiology. His rigorous academic foundation in both theoretical research and applied science has laid the groundwork for his leadership in significant projects related to the management of biotic threats to agro-product safety. Lin’s educational journey also involved extensive international collaboration, which broadened his scientific perspectives and fostered a strong commitment to advancing agricultural technology on a global scale.

Experience:

Lin Fu-Cheng is a seasoned academic and research leader with over two decades of experience in the field of plant protection and microbiology. He has presided over numerous high-impact research projects, including national and provincial funding programs. His leadership as the chief scientist in national key research and development programs has contributed substantially to the development of new methodologies for managing plant diseases, particularly fungal pathogens. Lin has been instrumental in bridging academia and industry through his involvement in over 17 consultancy and industry-related projects. His work on the development of disease-resistant crops and innovative agricultural practices has gained widespread recognition. He has also contributed significantly to various scientific journals, where his editorial roles have allowed him to shape the direction of research in plant pathology. Lin’s vast experience in managing large-scale research initiatives has made him a respected figure in agricultural sciences both in China and internationally.

Research Focus:

Lin Fu-Cheng’s research focuses on plant fungal diseases, with a particular emphasis on the pathogenic mechanisms of fungi, immunity induction by endophytic fungi, and the creation of disease-resistant crops. His pioneering work on autophagy in Magnaporthe oryzae has opened new avenues in understanding fungal pathogenicity. He established a groundbreaking model for the interaction between endophytic fungi, pathogenic fungi, and plants, which provides insights into sustainable disease management practices. Additionally, Lin has combined interspecific hybridization with disease-resistant germplasm innovation, contributing to the development of crops that are more resilient to fungal diseases. His research integrates both theoretical studies and practical applications, aimed at enhancing agricultural productivity and promoting the green development of agriculture. With his vast contributions to plant protection, Lin is at the forefront of research that seeks to mitigate the impact of plant diseases on global food security.

Publication Top Notes:

  • A glance at structural biology in advancing rice blast fungus research 🧬
  • A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence, and plasma membrane tension in Magnaporthe oryzae 🌱
  • A pair of nuclear factor Y transcription factors act as positive regulators in jasmonate signaling and disease resistance in Arabidopsis 🌾
  • A repressive H3K36me2 reader mediates Polycomb silencing 🔬
  • A rho-type GTPase activating protein affects the growth and development of Cordyceps cicadae 🍄
  • A Taxonomic Study of Candolleomyces Specimens from China Revealed Seven New Species 🌿
  • Actin-related protein MoFim1 modulated the pathogenicity of Magnaporthe oryzae by controlling three MAPK signaling pathways, appressorium formation, and hydrophobicity 🧪
  • Cand2 inhibits CRL-mediated ubiquitination and suppresses autophagy to facilitate pathogenicity of phytopathogenic fungi 💡
  • Csn5 inhibits autophagy by regulating the ubiquitination of Atg6 and Tor to mediate the pathogenicity of Magnaporthe oryzae 🦠
  • DGK5 6-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase 🌟

Conclusion:

Lin Fu-Cheng’s achievements in plant pathology are not only groundbreaking but also have significant practical implications for sustainable agricultural practices. His research has laid the foundation for innovative disease management strategies, and his work on autophagy, endophytic fungi, and disease-resistant germplasm is leading the way toward more eco-friendly agricultural solutions. His strong academic record, leadership, and contributions to the field make him a highly deserving candidate for the Best Researcher Award. Expanding his collaborations and outreach efforts could further amplify his impact on global agricultural sustainability.